MATH 4512 – DIFFERENTIAL EQUATIONS WITH APPLICATIONS HW6 - SOLUTIONS

1. (Section 3.8 - Exercise 12) Solve the given initial-value problem

	3	1	-2			1	
$\dot{x}(t) =$	-1	2	1	x(t),	x(0) =	4	
	4	1	$^{-3}$ _				

The characteristic polynomial of the system matrix

$$A = \begin{bmatrix} 3 & 1 & -2 \\ -1 & 2 & 1 \\ 4 & 1 & -3 \end{bmatrix}$$

is

$$det(A - \lambda I) = det \begin{bmatrix} 3 - \lambda & 1 & -2 \\ -1 & 2 - \lambda & 1 \\ 4 & 1 & -3 - \lambda \end{bmatrix}$$
$$= (3 - \lambda)(2 - \lambda)(-3 - \lambda) + 4 + 2 + 8(2 - \lambda) - (3 - \lambda) - (3 + \lambda)$$
$$= (2 - \lambda)(\lambda^2 - 9) + 16 - 8\lambda = (2 - \lambda)(\lambda^2 - 9 + 8)$$
$$= (2 - \lambda)(\lambda - 1)(\lambda + 1).$$

The eigenvalues of the matrix A are $\lambda_1 = 2$, $\lambda_2 = 1$ and $\lambda_3 = -1$. Let v^i denote an eigenvector that corresponds to λ_i , i = 1, 2, 3.

The general solution x(t) will be of the form

$$x(t) = c_1 x^1(t) + c_2 x^2(t) + c_3 x^3(t),$$

where c_1, c_2, c_3 are arbitrary constants, and $x^i(t) = e^{\lambda_i t} v^i$, i = 1, 2, 3. First we will find a vector v^1 and $x^1(t)$. From $(A - \lambda_1 I)v = (A - 2I)v = 0$, we obtain

$$\begin{bmatrix} 1 & 1 & -2 \\ -1 & 0 & 1 \\ 4 & 1 & -5 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The second equation is $-v_1 + v_3 = 0$, i.e. $v_1 = v_3$. Using this property, the first equation $v_1 + v_2 - 2v_3 = 0$ reduces to $v_2 - v_1 = 0$. Thus $v_2 = v_1$. The vector v has the form

$$v = \begin{bmatrix} v_1 \\ v_1 \\ v_1 \end{bmatrix} = v_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

choose $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\top}$ Then

For the eigenvector v^1 we can choose $[1, 1, 1]^{\top}$. Then

$$x^{1}(t) = e^{\lambda_{1}t}v^{1} = e^{2t} \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Now we proceed with finding a vector v^2 and $x^2(t)$. From $(A - \lambda_2 I)v = (A - I)v = 0$, we obtain

Γ	2	1	-2	v_1		$\begin{bmatrix} 0 \end{bmatrix}$	
	-1	1	1	v_2	=	0	
	4	1	$ \begin{array}{c} -2 \\ 1 \\ -4 \end{array} $	v_3		0	
-			_				

Multiplying the first equation $2v_1 + v_2 - 2v_3 = 0$ by -1 and adding to the second equation $-v_1 + v_2 + v_3 = 0$ leads to $-3v_1 + 3v_3 = 0$. Then $v_1 = v_3$. This relation implies $v_2 = 0$. Now the vector v has the form

$$v = \left[\begin{array}{c} v_1 \\ 0 \\ v_1 \end{array} \right] = v_1 \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right].$$

For the eigenvector v^2 we can choose $[1, 0, 1]^{\top}$. Then

$$x^{2}(t) = e^{\lambda_{2}t}v^{2} = e^{t} \begin{bmatrix} 1\\0\\1 \end{bmatrix}.$$

At the end we will find a vector v^3 and $x^3(t)$. From $(A - \lambda_3 I)v = (A + I)v = 0$, we obtain

$$\begin{bmatrix} 4 & 1 & -2 \\ -1 & 3 & 1 \\ 4 & 1 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Multiplying the second equation $-v_1 + 3v_2 + v_3 = 0$ by 2 and adding to the first equation $4v_1 + v_2 - 2v_3 = 0$ leads to $2v_1 + 7v_2 = 0$. Then $v_1 = -7v_2/2$. Using this relation in the second equation, we find $v_3 = v_1 - 3v_2 = -13v_2/2$. The vector v has the form

$$v = \begin{bmatrix} -\frac{7}{2}v_2 \\ v_2 \\ -\frac{13}{2}v_2 \end{bmatrix} = v_2 \begin{bmatrix} -\frac{7}{2} \\ 1 \\ -\frac{13}{2} \end{bmatrix}.$$

For the eigenvector v^3 we can choose

$$v = -2 \begin{bmatrix} -\frac{7}{2} \\ 1 \\ -\frac{13}{2} \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \\ 13 \end{bmatrix}$$

Then

$$x^{3}(t) = e^{\lambda_{3}t}v^{3} = e^{-t} \begin{bmatrix} 7\\ -2\\ 13 \end{bmatrix}.$$

The general solution is

$$x(t) = c_1 e^{2t} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + c_2 e^t \begin{bmatrix} 1\\0\\1 \end{bmatrix} + c_3 e^{-t} \begin{bmatrix} 7\\-2\\13 \end{bmatrix}$$

Initial condition implies

$$\begin{bmatrix} 1\\ 4\\ -7 \end{bmatrix} = x(0) = c_1 \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 7\\ -2\\ 13 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 + 7c_3\\ c_1 - 2c_3\\ c_1 + c_2 + 13c_3 \end{bmatrix}.$$

Subtracting first and third equation gives $6c_3 = -8$, and consequently $c_3 = -4/3$. From the second equation it follows $c_1 = 2c_3 + 4 = 4/3$. Finally, $c_2 = 1 - c_1 - 7c_3 = 9$. The solution of the initial-value problem is

$$x(t) = \frac{4}{3} e^{2t} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + 9e^{t} \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{4}{3} e^{-t} \begin{bmatrix} 7\\-2\\13 \end{bmatrix}.$$

2. (Section 3.9 - Exercise 2) Find the general solution of the given system of differential equations

$$\dot{x}(t) = \begin{bmatrix} 1 & -5 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t)$$

The characteristic polynomial of the system matrix

$$A = \left[\begin{array}{rrrr} 1 & -5 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

is

$$det(A - \lambda I) = det \begin{bmatrix} 1 - \lambda & -5 & 0\\ 1 & -3 - \lambda & 0\\ 0 & 0 & 1 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)^2 (-3 - \lambda) + 5(1 - \lambda) = (1 - \lambda)(-3 + 2\lambda + \lambda^2 + 5)$$
$$= (1 - \lambda)(\lambda^2 + 2\lambda + 2).$$

The eigenvalues of the matrix A are $\lambda_1 = 1$, $\lambda_2 = -1 + i$ and $\lambda_3 = -1 - i$.

In order to find $x^1(t)$, we proceed as in the previous exercise. We start from solving $(A - \lambda_1 I)v = (A - I)v = 0$, i.e.

$$\begin{bmatrix} 0 & -5 & 0 \\ 1 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

From the first equation we obtain $v_2 = 0$, while from the second $v_1 - 4v_2 = 0$ it follows $v_1 = 0$. Thus the vector v has the form

$$v = \begin{bmatrix} 0\\0\\v_3 \end{bmatrix} = v_3 \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

For the eigenvector v^1 we can choose $[0, 0, 1]^{\top}$. Then

$$x^{1}(t) = e^{\lambda_{1}t}v^{1} = e^{t} \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

Other eigenvalues of the matrix A are complex. In order to obtain two remaining linearly independent real solutions $x^2(t)$ and $x^3(t)$, it is sufficient to consider $\lambda_2 = -1 + i$. We first find a complex vector v that solves $(A - \lambda_2 I)v = 0$, i.e.

$$\begin{bmatrix} 2-i & -5 & 0 \\ 1 & -2-i & 0 \\ 0 & 0 & 2-i \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

From the last equation we obtain $v_3 = 0$, while from the second it follows $v_1 = (2+i)v_2$. A complex eigenvector v that corresponds to $\lambda_2 = i$ has the form

$$v = \begin{bmatrix} (2+i)v_2\\ v_2\\ 0 \end{bmatrix} = v_2 \begin{bmatrix} 2+i\\ 1\\ 0 \end{bmatrix}.$$

A complex-valued solution is

$$\phi(t) = e^{(-1+i)t} \begin{bmatrix} 2+i\\ 1\\ 0 \end{bmatrix} = e^{-t}(\cos t + i\sin t) \begin{bmatrix} 2+i\\ 1\\ 0 \end{bmatrix}$$

$$= e^{-t} \begin{bmatrix} (2\cos t - \sin t) + i(2\sin t + \cos t) \\ \cos t + i\sin t \\ 0 \end{bmatrix}$$

$$= e^{-t} \begin{bmatrix} 2\cos t - \sin t \\ \cos t \\ 0 \end{bmatrix} + ie^{-t} \begin{bmatrix} 2\sin t + \cos t \\ \sin t \\ 0 \end{bmatrix}.$$

Now,

$$x^{2}(t) = e^{-t} \begin{bmatrix} 2\cos t - \sin t \\ \cos t \\ 0 \end{bmatrix}, \qquad x^{3}(t) = e^{-t} \begin{bmatrix} 2\sin t + \cos t \\ \sin t \\ 0 \end{bmatrix},$$

and the general solution has the form

$$\begin{aligned} x(t) &= c_1 x^1(t) + c_2 x^2(t) + c_3 x^3(t) \\ &= c_1 e^t \begin{bmatrix} 0\\0\\1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 2\cos t - \sin t\\\cos t\\0 \end{bmatrix} + c_3 e^{-t} \begin{bmatrix} 2\sin t + \cos t\\\sin t\\0 \end{bmatrix} \end{aligned}$$

•

3. (Section 3.10 - Exercise 6) Solve the initial-value problem

$$\dot{x}(t) = \begin{bmatrix} -4 & -4 & 0\\ 10 & 9 & 1\\ -4 & -3 & 1 \end{bmatrix} x(t), \qquad x(0) = \begin{bmatrix} 2\\ 1\\ -1 \end{bmatrix}.$$

The characteristic polynomial of the system matrix

$$A = \left[\begin{array}{rrr} -4 & -4 & 0\\ 10 & 9 & 1\\ -4 & -3 & 1 \end{array} \right]$$

is

$$\det(A - \lambda I) = \det \begin{bmatrix} -4 - \lambda & -4 & 0\\ 10 & 9 - \lambda & 1\\ -4 & -3 & 1 - \lambda \end{bmatrix}$$

= $-(4 + \lambda)(9 - \lambda)(1 - \lambda) + 16 - 3(4 + \lambda) + 40(1 - \lambda) = (2 - \lambda)^3.$

The eigenvalue of the matrix A is $\lambda = 2$.

In order to find $x^{1}(t)$, we start from solving $(A - \lambda I)v = (A - 2I)v = 0$, i.e.

$$\begin{bmatrix} -6 & -4 & 0 \\ 10 & 7 & 1 \\ -4 & -3 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

From the first equation $-6v_1 - 4v_2 = 0$ we obtain $v_2 = -3v_1/2$, which together with the last equation $-4v_1 - 3v_2 - v_3 = 0$ implies $v_3 = -4v_1 + 9v_1/2 = v_1/2$. The vector v has the form

$$v = \begin{bmatrix} v_1 \\ -3v_1/2 \\ v_1/2 \end{bmatrix} = v_1 \begin{bmatrix} 1 \\ -3/2 \\ 1/2 \end{bmatrix}.$$

For the eigenvector we can choose $2[1, -3/2, 1/2]^{\top} = [2, -3, 1]^{\top}$. Then

$$x^{1}(t) = e^{2t} \begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix}.$$

Now we will find $x^2(t)$. First we need to find a vector v such that

$$(A - 2I)^2 v = 0 \qquad \text{and} \qquad (A - 2I)v \neq 0$$

This implies that v needs to satisfy

$$\begin{bmatrix} -6 & -4 & 0 \\ 10 & 7 & 1 \\ -4 & -3 & -1 \end{bmatrix}^2 \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -4 & -4 & -4 \\ 6 & 6 & 6 \\ -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

which is equivalent to $v_1 + v_2 + v_3 = 0$. The condition $(A - 2I)v \neq 0$ is

$$\begin{bmatrix} -6 & -4 & 0 \\ 10 & 7 & 1 \\ -4 & -3 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -6v_1 - 4v_2 \\ 10v_1 + 7v_2 + v_3 \\ -4v_1 - 3v_2 - v_3 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

We can choose $v = [1, 0, -1]^{\top}$. Then

$$x^{2}(t) = e^{2t}(v + t(A - 2I)v) = e^{2t} \left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix} + t \begin{bmatrix} -6\\9\\-3 \end{bmatrix} \right) = e^{2t} \begin{bmatrix} -6t+1\\9t\\-3t-1 \end{bmatrix}.$$

It remains to determine $x^{3}(t)$. First we need to find a vector v such that

$$(A-2I)^3v = 0 \qquad \text{and} \qquad (A-2I)^2v \neq 0.$$

Calculation shows the matrix $(A - 2I)^3$ is a zero matrix. Then any vector v with the property $v_1 + v_2 + v_3 \neq 0$ can be used to generate $x^3(t)$. Let $v = [1, 0, 0]^{\top}$. Then $(A - 2I)v = [-6, 10, -4]^{\top}$, $(A - 2I)^2v = [-4, 6, -2]^{\top}$ and

$$x^{3}(t) = e^{2t} \left(v + t(A - 2I)v + \frac{t^{2}}{2}(A - 2I)^{2}v \right)$$

= $e^{2t} \left(\begin{bmatrix} 1\\0\\0 \end{bmatrix} + t \begin{bmatrix} -6\\10\\-4 \end{bmatrix} + t^{2} \begin{bmatrix} -2\\3\\-1 \end{bmatrix} \right) = e^{2t} \begin{bmatrix} -2t^{2} - 6t + 1\\3t^{2} + 10t\\-t^{2} - 4t \end{bmatrix}$

The general solution is

$$x(t) = c_1 e^{2t} \begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} -6t+1\\ 9t\\ -3t-1 \end{bmatrix} + c_3 e^{2t} \begin{bmatrix} -2t^2 - 6t+1\\ 3t^2 + 10t\\ -t^2 - 4t \end{bmatrix}.$$

From the initial condition $x(0) = [2, 1, -1]^{\top}$ we get

$$\begin{bmatrix} 2\\1\\-1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\-3\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + c_3 \begin{bmatrix} 1\\0\\0 \end{bmatrix}.$$

Then equating second components from both sides we obtain $-3c_1 = 1$, $c_1 = -1/3$. The last equation $-1 = c_1 - c_2$ results in $c_2 = c_1 + 1 = 2/3$. Finally, $c_3 = 2 - 2c_1 - c_2 = 2$. The final solution is

$$\begin{aligned} x(t) &= -\frac{1}{3} e^{2t} \begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix} + \frac{2}{3} e^{2t} \begin{bmatrix} -6t+1\\ 9t\\ -3t-1 \end{bmatrix} + 2e^{2t} \begin{bmatrix} -2t^2 - 6t+1\\ 3t^2 + 10t\\ -t^2 - 4t \end{bmatrix} \\ &= e^{2t} \begin{bmatrix} -4t^2 - 16t+2\\ 6t^2 + 26t+1\\ -2t^2 - 10t-1 \end{bmatrix}. \end{aligned}$$