MATH 4512 - DIFFERENTIAL EQUATIONS WITH APPLICATIONS HW6 - SOLUTIONS

1. (Section 3.8 - Exercise 12) Solve the given initial-value problem

$$
\dot{x}(t)=\left[\begin{array}{rrr}
3 & 1 & -2 \\
-1 & 2 & 1 \\
4 & 1 & -3
\end{array}\right] x(t), \quad x(0)=\left[\begin{array}{r}
1 \\
4 \\
-7
\end{array}\right] .
$$

The characteristic polynomial of the system matrix

$$
A=\left[\begin{array}{rrr}
3 & 1 & -2 \\
-1 & 2 & 1 \\
4 & 1 & -3
\end{array}\right]
$$

is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{rrr}
3-\lambda & 1 & -2 \\
-1 & 2-\lambda & 1 \\
4 & 1 & -3-\lambda
\end{array}\right] \\
& =(3-\lambda)(2-\lambda)(-3-\lambda)+4+2+8(2-\lambda)-(3-\lambda)-(3+\lambda) \\
& =(2-\lambda)\left(\lambda^{2}-9\right)+16-8 \lambda=(2-\lambda)\left(\lambda^{2}-9+8\right) \\
& =(2-\lambda)(\lambda-1)(\lambda+1) .
\end{aligned}
$$

The eigenvalues of the matrix A are $\lambda_{1}=2, \lambda_{2}=1$ and $\lambda_{3}=-1$. Let v^{i} denote an eigenvector that corresponds to $\lambda_{i}, i=1,2,3$.

The general solution $x(t)$ will be of the form

$$
x(t)=c_{1} x^{1}(t)+c_{2} x^{2}(t)+c_{3} x^{3}(t),
$$

where c_{1}, c_{2}, c_{3} are arbitrary constants, and $x^{i}(t)=\mathrm{e}^{\lambda_{i} t} v^{i}, i=1,2,3$.
First we will find a vector v^{1} and $x^{1}(t)$. From $\left(A-\lambda_{1} I\right) v=(A-2 I) v=0$, we obtain

$$
\left[\begin{array}{rrr}
1 & 1 & -2 \\
-1 & 0 & 1 \\
4 & 1 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

The second equation is $-v_{1}+v_{3}=0$, i.e. $v_{1}=v_{3}$. Using this property, the first equation $v_{1}+v_{2}-2 v_{3}=0$ reduces to $v_{2}-v_{1}=0$. Thus $v_{2}=v_{1}$. The vector v has the form

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{1} \\
v_{1}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

For the eigenvector v^{1} we can choose $[1,1,1]^{\top}$. Then

$$
x^{1}(t)=\mathrm{e}^{\lambda_{1} t} v^{1}=\mathrm{e}^{2 t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Now we proceed with finding a vector v^{2} and $x^{2}(t)$. From $\left(A-\lambda_{2} I\right) v=(A-I) v=0$, we obtain

$$
\left[\begin{array}{rrr}
2 & 1 & -2 \\
-1 & 1 & 1 \\
4 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Multiplying the first equation $2 v_{1}+v_{2}-2 v_{3}=0$ by -1 and adding to the second equation $-v_{1}+v_{2}+v_{3}=0$ leads to $-3 v_{1}+3 v_{3}=0$. Then $v_{1}=v_{3}$. This relation implies $v_{2}=0$. Now the vector v has the form

$$
v=\left[\begin{array}{c}
v_{1} \\
0 \\
v_{1}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

For the eigenvector v^{2} we can choose $[1,0,1]^{\top}$. Then

$$
x^{2}(t)=\mathrm{e}^{\lambda_{2} t} v^{2}=\mathrm{e}^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

At the end we will find a vector v^{3} and $x^{3}(t)$. From $\left(A-\lambda_{3} I\right) v=(A+I) v=0$, we obtain

$$
\left[\begin{array}{rrr}
4 & 1 & -2 \\
-1 & 3 & 1 \\
4 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Multiplying the second equation $-v_{1}+3 v_{2}+v_{3}=0$ by 2 and adding to the first equation $4 v_{1}+v_{2}-2 v_{3}=0$ leads to $2 v_{1}+7 v_{2}=0$. Then $v_{1}=-7 v_{2} / 2$. Using this relation in the second equation, we find $v_{3}=v_{1}-3 v_{2}=-13 v_{2} / 2$. The vector v has the form

$$
v=\left[\begin{array}{c}
-\frac{7}{2} v_{2} \\
v_{2} \\
-\frac{13}{2} v_{2}
\end{array}\right]=v_{2}\left[\begin{array}{r}
-\frac{7}{2} \\
1 \\
-\frac{13}{2}
\end{array}\right] .
$$

For the eigenvector v^{3} we can choose

$$
v=-2\left[\begin{array}{r}
-\frac{7}{2} \\
1 \\
-\frac{13}{2}
\end{array}\right]=\left[\begin{array}{r}
7 \\
-2 \\
13
\end{array}\right]
$$

Then

$$
x^{3}(t)=\mathrm{e}^{\lambda_{3} t} v^{3}=\mathrm{e}^{-t}\left[\begin{array}{r}
7 \\
-2 \\
13
\end{array}\right] .
$$

The general solution is

$$
x(t)=c_{1} \mathrm{e}^{2 t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{-t}\left[\begin{array}{r}
7 \\
-2 \\
13
\end{array}\right]
$$

Initial condition implies

$$
\left[\begin{array}{r}
1 \\
4 \\
-7
\end{array}\right]=x(0)=c_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{r}
7 \\
-2 \\
13
\end{array}\right]=\left[\begin{array}{r}
c_{1}+c_{2}+7 c_{3} \\
c_{1}-2 c_{3} \\
c_{1}+c_{2}+13 c_{3}
\end{array}\right] .
$$

Subtracting first and third equation gives $6 c_{3}=-8$, and consequently $c_{3}=-4 / 3$. From the second equation it follows $c_{1}=2 c_{3}+4=4 / 3$. Finally, $c_{2}=1-c_{1}-7 c_{3}=9$. The solution of the initial-value problem is

$$
x(t)=\frac{4}{3} \mathrm{e}^{2 t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+9 \mathrm{e}^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\frac{4}{3} \mathrm{e}^{-t}\left[\begin{array}{r}
7 \\
-2 \\
13
\end{array}\right] .
$$

2. (Section 3.9 - Exercise 2) Find the general solution of the given system of differential equations

$$
\dot{x}(t)=\left[\begin{array}{rrr}
1 & -5 & 0 \\
1 & -3 & 0 \\
0 & 0 & 1
\end{array}\right] x(t)
$$

The characteristic polynomial of the system matrix

$$
A=\left[\begin{array}{rrr}
1 & -5 & 0 \\
1 & -3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{rrr}
1-\lambda & -5 & 0 \\
1 & -3-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right] \\
& =(1-\lambda)^{2}(-3-\lambda)+5(1-\lambda)=(1-\lambda)\left(-3+2 \lambda+\lambda^{2}+5\right) \\
& =(1-\lambda)\left(\lambda^{2}+2 \lambda+2\right)
\end{aligned}
$$

The eigenvalues of the matrix A are $\lambda_{1}=1, \lambda_{2}=-1+i$ and $\lambda_{3}=-1-i$.
In order to find $x^{1}(t)$, we proceed as in the previous exercise. We start from solving $\left(A-\lambda_{1} I\right) v=(A-I) v=0$, i.e.

$$
\left[\begin{array}{rrr}
0 & -5 & 0 \\
1 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

From the first equation we obtain $v_{2}=0$, while from the second $v_{1}-4 v_{2}=0$ it follows $v_{1}=0$. Thus the vector v has the form

$$
v=\left[\begin{array}{c}
0 \\
0 \\
v_{3}
\end{array}\right]=v_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

For the eigenvector v^{1} we can choose $[0,0,1]^{\top}$. Then

$$
x^{1}(t)=\mathrm{e}^{\lambda_{1} t} v^{1}=\mathrm{e}^{t}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Other eigenvalues of the matrix A are complex. In order to obtain two remaining linearly independent real solutions $x^{2}(t)$ and $x^{3}(t)$, it is sufficient to consider $\lambda_{2}=$ $-1+i$. We first find a complex vector v that solves $\left(A-\lambda_{2} I\right) v=0$, i.e.

$$
\left[\begin{array}{rrr}
2-i & -5 & 0 \\
1 & -2-i & 0 \\
0 & 0 & 2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

From the last equation we obtain $v_{3}=0$, while from the second it follows $v_{1}=(2+i) v_{2}$. A complex eigenvector v that corresponds to $\lambda_{2}=i$ has the form

$$
v=\left[\begin{array}{r}
(2+i) v_{2} \\
v_{2} \\
0
\end{array}\right]=v_{2}\left[\begin{array}{r}
2+i \\
1 \\
0
\end{array}\right] .
$$

A complex-valued solution is

$$
\left.\begin{array}{rl}
\phi(t) & =\mathrm{e}^{(-1+i) t}\left[\begin{array}{r}
2+i \\
1 \\
0
\end{array}\right]=\mathrm{e}^{-t}(\cos t+i \sin t)\left[\begin{array}{r}
2+i \\
1 \\
0
\end{array}\right] \\
& =\mathrm{e}^{-t}[(2 \cos t-\sin t)+i(2 \sin t+\cos t) \\
\cos t+i \sin t \\
0
\end{array}\right] .
$$

Now,

$$
x^{2}(t)=\mathrm{e}^{-t}\left[\begin{array}{r}
2 \cos t-\sin t \\
\cos t \\
0
\end{array}\right], \quad x^{3}(t)=\mathrm{e}^{-t}\left[\begin{array}{r}
2 \sin t+\cos t \\
\sin t \\
0
\end{array}\right],
$$

and the general solution has the form

$$
\begin{aligned}
x(t) & =c_{1} x^{1}(t)+c_{2} x^{2}(t)+c_{3} x^{3}(t) \\
& =c_{1} \mathrm{e}^{t}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t}\left[\begin{array}{r}
2 \cos t-\sin t \\
\cos t \\
0
\end{array}\right]+c_{3} \mathrm{e}^{-t}\left[\begin{array}{r}
2 \sin t+\cos t \\
\sin t \\
0
\end{array}\right] .
\end{aligned}
$$

3. (Section 3.10 - Exercise 6) Solve the initial-value problem

$$
\dot{x}(t)=\left[\begin{array}{rrr}
-4 & -4 & 0 \\
10 & 9 & 1 \\
-4 & -3 & 1
\end{array}\right] x(t), \quad x(0)=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right] .
$$

The characteristic polynomial of the system matrix

$$
A=\left[\begin{array}{rrr}
-4 & -4 & 0 \\
10 & 9 & 1 \\
-4 & -3 & 1
\end{array}\right]
$$

is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{rrr}
-4-\lambda & -4 & 0 \\
10 & 9-\lambda & 1 \\
-4 & -3 & 1-\lambda
\end{array}\right] \\
& =-(4+\lambda)(9-\lambda)(1-\lambda)+16-3(4+\lambda)+40(1-\lambda)=(2-\lambda)^{3} .
\end{aligned}
$$

The eigenvalue of the matrix A is $\lambda=2$.
In order to find $x^{1}(t)$, we start from solving $(A-\lambda I) v=(A-2 I) v=0$, i.e.

$$
\left[\begin{array}{rrr}
-6 & -4 & 0 \\
10 & 7 & 1 \\
-4 & -3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

From the first equation $-6 v_{1}-4 v_{2}=0$ we obtain $v_{2}=-3 v_{1} / 2$, which together with the last equation $-4 v_{1}-3 v_{2}-v_{3}=0$ implies $v_{3}=-4 v_{1}+9 v_{1} / 2=v_{1} / 2$. The vector v has the form

$$
v=\left[\begin{array}{r}
v_{1} \\
-3 v_{1} / 2 \\
v_{1} / 2
\end{array}\right]=v_{1}\left[\begin{array}{r}
1 \\
-3 / 2 \\
1 / 2
\end{array}\right] .
$$

For the eigenvector we can choose $2[1,-3 / 2,1 / 2]^{\top}=[2,-3,1]^{\top}$. Then

$$
x^{1}(t)=\mathrm{e}^{2 t}\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right] .
$$

Now we will find $x^{2}(t)$. First we need to find a vector v such that

$$
(A-2 I)^{2} v=0 \quad \text { and } \quad(A-2 I) v \neq 0
$$

This implies that v needs to satisfy

$$
\left[\begin{array}{rrr}
-6 & -4 & 0 \\
10 & 7 & 1 \\
-4 & -3 & -1
\end{array}\right]^{2}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{rrr}
-4 & -4 & -4 \\
6 & 6 & 6 \\
-2 & -2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

which is equivalent to $v_{1}+v_{2}+v_{3}=0$. The condition $(A-2 I) v \neq 0$ is

$$
\left[\begin{array}{rrr}
-6 & -4 & 0 \\
10 & 7 & 1 \\
-4 & -3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-6 v_{1}-4 v_{2} \\
10 v_{1}+7 v_{2}+v_{3} \\
-4 v_{1}-3 v_{2}-v_{3}
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We can choose $v=[1,0,-1]^{\top}$. Then

$$
x^{2}(t)=\mathrm{e}^{2 t}(v+t(A-2 I) v)=\mathrm{e}^{2 t}\left(\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]+t\left[\begin{array}{r}
-6 \\
9 \\
-3
\end{array}\right]\right)=\mathrm{e}^{2 t}\left[\begin{array}{c}
-6 t+1 \\
9 t \\
-3 t-1
\end{array}\right]
$$

It remains to determine $x^{3}(t)$. First we need to find a vector v such that

$$
(A-2 I)^{3} v=0 \quad \text { and } \quad(A-2 I)^{2} v \neq 0
$$

Calculation shows the matrix $(A-2 I)^{3}$ is a zero matrix. Then any vector v with the property $v_{1}+v_{2}+v_{3} \neq 0$ can be used to generate $x^{3}(t)$. Let $v=[1,0,0]^{\top}$. Then $(A-2 I) v=[-6,10,-4]^{\top},(A-2 I)^{2} v=[-4,6,-2]^{\top}$ and

$$
\begin{aligned}
x^{3}(t) & =\mathrm{e}^{2 t}\left(v+t(A-2 I) v+\frac{t^{2}}{2}(A-2 I)^{2} v\right) \\
& =\mathrm{e}^{2 t}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-6 \\
10 \\
-4
\end{array}\right]+t^{2}\left[\begin{array}{r}
-2 \\
3 \\
-1
\end{array}\right]\right)=\mathrm{e}^{2 t}\left[\begin{array}{c}
-2 t^{2}-6 t+1 \\
3 t^{2}+10 t \\
-t^{2}-4 t
\end{array}\right] .
\end{aligned}
$$

The general solution is

$$
x(t)=c_{1} \mathrm{e}^{2 t}\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t}\left[\begin{array}{c}
-6 t+1 \\
9 t \\
-3 t-1
\end{array}\right]+c_{3} \mathrm{e}^{2 t}\left[\begin{array}{c}
-2 t^{2}-6 t+1 \\
3 t^{2}+10 t \\
-t^{2}-4 t
\end{array}\right]
$$

From the initial condition $x(0)=[2,1,-1]^{\top}$ we get

$$
\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]=c_{1}\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

Then equating second components from both sides we obtain $-3 c_{1}=1, c_{1}=-1 / 3$. The last equation $-1=c_{1}-c_{2}$ results in $c_{2}=c_{1}+1=2 / 3$. Finally, $c_{3}=2-2 c_{1}-c_{2}=$ 2. The final solution is

$$
\begin{aligned}
x(t) & =-\frac{1}{3} \mathrm{e}^{2 t}\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right]+\frac{2}{3} \mathrm{e}^{2 t}\left[\begin{array}{c}
-6 t+1 \\
9 t \\
-3 t-1
\end{array}\right]+2 \mathrm{e}^{2 t}\left[\begin{array}{c}
-2 t^{2}-6 t+1 \\
3 t^{2}+10 t \\
-t^{2}-4 t
\end{array}\right] \\
& =\mathrm{e}^{2 t}\left[\begin{array}{c}
-4 t^{2}-16 t+2 \\
6 t^{2}+26 t+1 \\
-2 t^{2}-10 t-1
\end{array}\right] .
\end{aligned}
$$

