MATH 4512 - DIFFERENTIAL EQUATIONS WITH APPLICATIONS HW5 - SOLUTIONS

1. (Section 3.1 - Exercise 4) Convert the pair of second-order equations

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d z}{d t}+2 y=0, \quad \frac{d^{2} z}{d t^{2}}+3 \frac{d y}{d t}+2 z=0
$$

into a system of 4 first-order equations for the variables

$$
x_{1}=y, \quad x_{2}=y^{\prime}, \quad x_{3}=z, \quad \text { and } \quad x_{4}=z^{\prime} .
$$

Using new variables, differential equations can be expressed as

$$
\frac{d x_{2}}{d t}+3 x_{4}+2 x_{1}=0, \quad \frac{d x_{4}}{d t}+3 x_{2}+2 x_{3}=0
$$

The system of differential equations with unknown functions $x_{1}, x_{2}, x_{3}, x_{4}$ is

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2} \\
& \frac{d x_{2}}{d t}=-2 x_{1}-3 x_{4} \\
& \frac{d x_{3}}{d t}=x_{4} \\
& \frac{d x_{4}}{d t}=-3 x_{2}-2 x_{3} .
\end{aligned}
$$

The matrix form of this system is

$$
\frac{d x}{d t}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-2 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 \\
0 & -3 & -2 & 0
\end{array}\right] x(t), \quad x(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right] .
$$

2. (Section 3.2 - Exercise 4) Determine whether the set of all elements $x=\left[x_{1}, x_{2}, x_{3}\right]^{\top}$ where $x_{1}+x_{2}+x_{3}=1$ forms a vector space under the properties of vector addition and scalar multiplication.

Let V denote the given set of vectors, i.e.

$$
V=\left\{x=\left[x_{1}, x_{2}, x_{3}\right]^{\top} \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=1\right\}
$$

Consider vectors $x, y \in V$ where

$$
x=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad y=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

Since

$$
x+y=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \notin V
$$

we conclude that V is not a vector space.
3. (Section 3.3-Exercise 16) Find a basis for \mathbb{R}^{3} which includes the vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right] .
$$

We only need to find a vector $x \in \mathbb{R}^{3}$ that is independent to given vectors. The choice for x is not unique, and each student can get a different answer. For example, let

$$
x=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

A zero linear combination

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

implies

$$
\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+3 c_{2} \\
4 c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Then $c_{2}=0, c_{1}=0$ and $c_{3}=0$. Thus, these three vectors are linearly independent and form a basis for \mathbb{R}^{3}.
4. (Section 3.4 - Exercise 6) For the differential equation

$$
\dot{x}=\left[\begin{array}{rrr}
4 & -2 & 2 \\
-1 & 3 & 1 \\
1 & -1 & 5
\end{array}\right] x
$$

determine whether the given solutions

$$
x^{1}(t)=\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right], \quad x^{2}(t)=\left[\begin{array}{c}
0 \\
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right], \quad x^{3}(t)=\left[\begin{array}{c}
\mathrm{e}^{6 t} \\
0 \\
\mathrm{e}^{6 t}
\end{array}\right]
$$

are a basis for the set of all solutions.

In order to show linear independence of the solutions $x^{1}(t), x^{2}(t), x^{3}(t)$, it is sufficient to prove that the vectors

$$
x^{1}(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad x^{2}(0)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad x^{3}(0)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],
$$

are linearly independent. Their zero linear combination

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

implies

$$
\left[\begin{array}{l}
c_{1}+c_{3} \\
c_{1}+c_{2} \\
c_{2}+c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Substituting $c_{1}=-c_{3}$ and $c_{2}=-c_{3}$ into $c_{1}+c_{2}=0$, we obtain $-2 c_{3}=0$. Thus $c_{1}=c_{2}=c_{3}=0$ and vectors $x^{1}(0), x^{2}(0), x^{3}(0)$ are linearly independent.
5. (Section 3.5 - Exercise 6) Compute the determinant of the matrix

$$
\left[\begin{array}{rrrr}
2 & -1 & 6 & 3 \\
1 & 0 & 1 & -1 \\
1 & 3 & 0 & 2 \\
1 & -1 & 1 & 0
\end{array}\right]
$$

One of the ways to find the determinant of the given matrix is:

$$
\begin{aligned}
\left|\begin{array}{rrrr}
2 & -1 & 6 & 3 \\
1 & 0 & 1 & -1 \\
1 & 3 & 0 & 2 \\
1 & -1 & 1 & 0
\end{array}\right| & \xlongequal{-R_{2}+R_{4}}\left|\begin{array}{rrrr}
2 & -1 & 6 & 3 \\
1 & 0 & 1 & -1 \\
1 & 3 & 0 & 2 \\
0 & -1 & 0 & 1
\end{array}\right| \\
& \xlongequal{4^{\text {th }} \text { row exp. }}(-1)(-1)^{4+2}\left|\begin{array}{rrr}
2 & 6 & 3 \\
1 & 1 & -1 \\
1 & 0 & 2
\end{array}\right|+1(-1)^{4+4}\left|\begin{array}{rrr}
2 & -1 & 6 \\
1 & 0 & 1 \\
1 & 3 & 0
\end{array}\right| \\
& =-(4-6-3-12)+(-1+18-6)=17+11=28 .
\end{aligned}
$$

6. (Section 3.6 - Exercise 10) Find the inverse, it is exists, of the given matrix

$$
\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Let

$$
A=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Then

$$
\operatorname{det} A=\left|\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1 \neq 0
$$

and A^{-1} exists. The cofactor matrix C for A is

$$
\left.\begin{array}{rl}
C=\left[\begin{array} { c c }
{ + | \begin{array} { c c }
{ 1 } & { 0 } \\
{ 0 } & { \operatorname { c o s } \theta }
\end{array} | } & { - | \begin{array} { c c }
{ 0 } & { 0 } \\
{ \operatorname { s i n } \theta } & { \operatorname { c o s } \theta }
\end{array} | } \\
{ - | \begin{array} { c c }
{ 0 } & { - \operatorname { s i n } \theta } \\
{ 0 } & { \operatorname { c o s } \theta }
\end{array} | + | \begin{array} { c c }
{ 0 } & { 1 } \\
{ \operatorname { s i n } \theta } & { 0 }
\end{array} | } \\
{ + | \begin{array} { c c }
{ \operatorname { c o s } \theta } & { - \operatorname { s i n } \theta } \\
{ \operatorname { s i n } \theta } & { \operatorname { c o s } \theta }
\end{array} | } & { - | \begin{array} { c c }
{ \operatorname { c o s } \theta } & { 0 } \\
{ \operatorname { s i n } \theta } & { 0 }
\end{array} | } \\
{ 1 } & { - \operatorname { s i n } \theta }
\end{array} \left|-\left|\begin{array}{cc}
\cos \theta & -\sin \theta \\
0 & 0
\end{array}\right|+\left|\begin{array}{cc}
\cos \theta & 0 \\
0 & 1
\end{array}\right|\right.\right.
\end{array}\right]
$$

Thus adj $A=C^{\top}=A^{\top}$ and

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A=A^{\top}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

