MATH 4512 - DIFFERENTIAL EQUATIONS WITH APPLICATIONS HW3 - SOLUTIONS

1. (Section 2.1-Exercise 11) Let $y_{1}=t^{2}$ and $y_{2}(t)=t|t|$.
(a) Show that y_{1} and y_{2} are linearly dependent on the interval $0 \leq t \leq 1$.
(b) Show that y_{1} and y_{2} are linearly independent on the interval $-1 \leq t \leq 1$.
(c) Show that $W\left[y_{1}, y_{2}\right](t)$ is identically zero.
(d) Show that y_{1} and y_{2} can never be two solutions of

$$
\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=0
$$

on the interval $-1<t<1$, if both p and q are continuous in this interval.
(a) When $0 \leq t \leq 1$ we have that $|t|=t$ and $y_{2}(t)=t^{2}=c y_{1}(t)$, with $c=1$. Thus, functions y_{1} and y_{2} are linearly dependent.
(b) If we assume that y_{1} and y_{2} are linearly dependent on the interval $-1 \leq t \leq 1$, then there exists a constant c such that

$$
y_{2}(t)=c \cdot y_{1}(t), \quad-1 \leq t \leq 1 .
$$

From (a) we obtained $c=1$ when $0 \leq t \leq 1$. But $c=-1$ if $-1 \leq t \leq 0$, because we then have $y_{2}(t)=-t^{2}=-y_{1}(t)$.
Since the value for c should be unique on the whole interval $[-1,1]$, we conclude that y_{1} and y_{2} are not linearly dependent, i.e. linearly independent on the interval $-1 \leq t \leq 1$.
(c) First let $-1 \leq t \leq 0$. Then the Wronskian for the functions $y_{1}(t)=t^{2}$ and $y_{2}(t)=-t^{2}$ is

$$
W\left[y_{1}, y_{2}\right](t)=t^{2} \cdot(-2 t)-2 t \cdot\left(-t^{2}\right)=0 .
$$

For $0 \leq t \leq 1$ and $y_{1}(t)=t^{2}=y_{2}(t)$, we easily get

$$
W\left[y_{1}, y_{2}\right](t)=t^{2} \cdot 2 t-2 t \cdot t^{2}=0
$$

(d) Functions y_{1} and y_{2} have zero Wronskian on $(-1,1)$ and therefore are linearly dependent, reducing to only one solution (up to a constant) of the given problem.
(see also Theorem 4 and its Corollary in M. Braun's book)
2. (Subsection 2.2.1 - Exercise 6) Solve the initial-value problem

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=0, \quad y(0)=0, \quad y^{\prime}(0)=2
$$

The characteristic equation

$$
r^{2}+2 r+5=0
$$

has two complex roots $r_{1}=-1+2 i$ and $r_{2}=-1-2 i$. The general solution has the form

$$
y(t)=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t),
$$

with

$$
y^{\prime}(t)=\left(-c_{1}+2 c_{2}\right) \mathrm{e}^{-t} \cos (2 t)+\left(-2 c_{1}-c_{2}\right) \mathrm{e}^{-t} \sin (2 t)
$$

The initial conditions $y(0)=0, y^{\prime}(0)=2$ give us two equations for finding constants c_{1} and c_{2} :

$$
\begin{aligned}
& 0=y(0)=c_{1} \\
& 2=y^{\prime}(0)=-c_{1}+2 c_{2} .
\end{aligned}
$$

The constants are $c_{1}=0$ and $c_{2}=1$ and the final solution is

$$
y(t)=\mathrm{e}^{-t} \sin (2 t)
$$

3. (Section 2.2.2-Exercise 6) Solve the initial-value problem

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=0, \quad y(2)=1, \quad y^{\prime}(2)=-1
$$

The characteristic equation

$$
r^{2}+2 r+1=0
$$

has one root $r=-1$. The general solution has the form

$$
y(t)=\left(c_{1}+c_{2} t\right) \mathrm{e}^{-t}
$$

with

$$
y^{\prime}(t)=-c_{1} \mathrm{e}^{-t}+c_{2}(1-t) \mathrm{e}^{-t} .
$$

The initial conditions $y(2)=1, y^{\prime}(2)=-1$ give us two equations for finding constants c_{1} and c_{2} :

$$
\begin{gathered}
1=y(2)=c_{1} \mathrm{e}^{-2}+2 c_{2} \mathrm{e}^{-2} \\
-1=y^{\prime}(2)=-c_{1} \mathrm{e}^{-2}-c_{2} \mathrm{e}^{-2} .
\end{gathered}
$$

The constants are $c_{1}=\mathrm{e}^{2}$ and $c_{2}=0$ and the final solution is

$$
y(t)=\mathrm{e}^{2-t} .
$$

4. (Section 2.4 - Exercise 6) Solve the initial-value problem

$$
y^{\prime \prime}+4 y^{\prime}+4 y=t^{5 / 2} \mathrm{e}^{-2 t}, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

First we solve the homogeneous problem. The characteristic equation

$$
r^{2}+4 r+4=0
$$

has one root $r=-2$. The functions

$$
y_{1}(t)=\mathrm{e}^{-2 t}, \quad y_{2}(t)=t \mathrm{e}^{-2 t}
$$

form the fundamental set of solutions. The Wronskian is

$$
W\left[y_{1}, y_{2}\right](t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=\mathrm{e}^{-4 t} .
$$

Now we find the particular solution ψ in the form

$$
\psi(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

If $g(t)=t^{5 / 2} \mathrm{e}^{-2 t}$, then

$$
\begin{aligned}
& u_{1}(t)=-\int \frac{g(t) y_{2}(t)}{W\left[y_{1}, y_{2}\right](t)} d t=-\int t^{7 / 2} d t=-\frac{2}{9} t^{9 / 2} \\
& u_{2}(t)=\int \frac{g(t) y_{1}(t)}{W\left[y_{1}, y_{2}\right](t)} d t=\int t^{5 / 2} d t=\frac{2}{7} t^{7 / 2}
\end{aligned}
$$

The particular solution is

$$
\psi(t)=-\frac{2}{9} t^{9 / 2} \mathrm{e}^{-2 t}+\frac{2}{7} t^{7 / 2} t \mathrm{e}^{-2 t}=\frac{4}{63} t^{9 / 2} \mathrm{e}^{-2 t}
$$

The general solution of the starting problem has the form

$$
y(t)=\left(c_{1}+c_{2} t\right) \mathrm{e}^{-2 t}+\psi(t)
$$

with

$$
y^{\prime}(t)=-2 c_{1} \mathrm{e}^{-2 t}+c_{2}(1-2 t) \mathrm{e}^{-2 t}+\frac{4}{63}\left(\frac{9}{2} t^{7 / 2}-2 t^{9 / 2}\right) \mathrm{e}^{-2 t}
$$

The initial conditions $y(0)=y^{\prime}(0)=0$ give us two equations for finding constants c_{1} and c_{2} :

$$
\begin{aligned}
& 0=y(0)=c_{1} \\
& 0=y^{\prime}(0)=-2 c_{1}+c_{2}
\end{aligned}
$$

The constants are $c_{1}=c_{2}=0$ and the final solution is

$$
y(t)=\psi(t)=\frac{4}{63} t^{9 / 2} \mathrm{e}^{-2 t}
$$

5. (Section 2.5 - Exercise 14) Find a particular solution of

$$
y^{\prime \prime}+2 y^{\prime}=1+t^{2}+\mathrm{e}^{-2 t} .
$$

We will find the function ψ by splitting our problem into two parts:
First we will find a particular solution ψ_{1} of the problem

$$
y^{\prime \prime}+2 y^{\prime}=1+t^{2} .
$$

Then we will find a particular solution ψ_{2} of the problem

$$
y^{\prime \prime}+2 y^{\prime}=\mathrm{e}^{-2 t} .
$$

Finally, $\psi=\psi_{1}+\psi_{2}$. In both of those cases, we will use the guessing technique.
(1) We propose

$$
\psi_{1}(t)=t\left(A t^{2}+B t+C\right)
$$

with unknown constants A, B, C. Using

$$
\begin{aligned}
\psi_{1}^{\prime}(t) & =3 A t^{2}+2 B t+C \\
\psi_{1}^{\prime \prime}(t) & =6 A t+2 B
\end{aligned}
$$

the differential equation $\psi_{1}^{\prime \prime}+2 \psi_{1}^{\prime}=1+t^{2}$ becomes

$$
6 A t^{2}+(6 A+4 B) t+2 B+2 C=1+t^{2}
$$

This further implies $A=1 / 6, B=-1 / 4, C=3 / 4$, and

$$
\psi_{1}(t)=\frac{t^{3}}{6}-\frac{t^{2}}{4}+\frac{3 t}{4}
$$

(2) Now we propose

$$
\psi_{2}(t)=D t \mathrm{e}^{-2 t}
$$

with an unknown constant D. Using

$$
\begin{aligned}
& \psi_{2}^{\prime}(t)=D \mathrm{e}^{-2 t}-2 D t \mathrm{e}^{-2 t} \\
& \psi_{2}^{\prime \prime}(t)=-4 D \mathrm{e}^{-2 t}+4 D t \mathrm{e}^{-2 t}
\end{aligned}
$$

the differential equation $\psi_{2}^{\prime \prime}+2 \psi_{2}^{\prime}=\mathrm{e}^{-2 t}$ becomes

$$
\begin{gathered}
-4 D \mathrm{e}^{-2 t}+4 D t \mathrm{e}^{-2 t}+2\left(D \mathrm{e}^{-2 t}-2 D t \mathrm{e}^{-2 t}\right)=\mathrm{e}^{-2 t} \\
-2 D \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}
\end{gathered}
$$

This further implies $D=-1 / 2$, and

$$
\psi_{2}(t)=-\frac{t}{2} \mathrm{e}^{-2 t}
$$

The particular solution for the starting problems is

$$
\psi(t)=\psi_{1}(t)+\psi_{2}(t)=\frac{t^{3}}{6}-\frac{t^{2}}{4}+\frac{3 t}{4}-\frac{t}{2} \mathrm{e}^{-2 t}
$$

