HW 3

Math 4512
Differential Equations with Applications

Fall 2019
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Section 2.1, problem 11 2
1.1 Part a 2
1.2 Part b 2
1.3 Part c 2
1.4 Part d 2
2 Section 2.2.1, problem 6 (page 144, complex roots) 3
3 section 2.2.2, problem 6 (page 149, equal roots) 4
4 Section 2.4, problem 6 (page 156, Variation of parameters) 6
5 Section 2.5, problem 14 (page 164, Guessing method) 8

1 Section 2.1, problem 11

Let $y_{1}(t)=t^{2}$ and $y_{2}(t)=t|t|$

1. Show that y_{1}, y_{2} are linearly dependent (L.D.) on the interval $0 \leq t \leq 1$
2. Show that y_{1}, y_{2} are linearly independent (L.I.) on the interval $-1 \leq t \leq 1$
3. Show that $W\left[y_{1}, y_{2}\right](t)$ is identically zero.
4. Show that y_{1}, y_{2} can never be two solutions of (3) which is $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, on the interval $-1<t<1$ if both p, q are continuous in this interval.

Solution

1.1 Part a

On the interval $0 \leq t \leq 1$, then $|t|=t$ since t is positive. Hence $y_{2}(t)=t^{2}$, which is the same as $y_{1}(t)=t^{2}$. Therefore they are linearly dependent (same solution). In other words, $y_{1}(t)=c_{1} y_{2}(t)$ where $c_{1}=1$.

1.2 Part b

When $t \leq 0$ now $y_{2}(t)=-t^{2}$. Hence we have $y_{1}=y_{2}$ for $0 \leq t \leq 1$ and $y_{1}=-y_{2}$ for $-1 \leq t<0$. Therefore it is not possible to find the same constant c such that $y_{1}=c y_{2}$ which will work for all t regions. This implies that $y_{1}(t)$ and $y_{2}(t)$ are linearly independent on $-1 \leq t \leq 1$.

1.3 Part c

$$
W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

If $W(t)=0$ is in some region or at some point, then it must be zero anywhere. Therefore let us pick the interval $0 \leq t \leq 1$ to calculate $W(t)$. This way we avoid having to deal with the $|t|$ when taking derivatives since on this interval, $y_{1}=t^{2}$ and also $y_{2}=t^{2}$. Now $W(t)$ becomes

$$
\begin{aligned}
W(t) & =t^{2}(2 t)-t^{2}(2 t) \\
& =0
\end{aligned}
$$

Therefore $W(t)=0$ everywhere.

1.4 Part d

Since p, q are continuous on $-1<t<1$, then by uniqueness theorem, we know there are two fundamental solutions y_{1}, y_{2}, which must be linearly independent that their linear combination give the general solution $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$.
But from part(b) above we found that the given functions y_{1}, y_{2} are not linearly independent on $-1<t<1$, hence these can never be the fundamental solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.

2 Section 2.2.1, problem 6 (page 144, complex roots)

Solve $y^{\prime \prime}+2 y^{\prime}+5 y=0$ with $y(0)=0, y^{\prime}(0)=2$

Solution

Let $y=e^{\lambda t}$. Substituting in the above ODE gives

$$
\begin{aligned}
\lambda^{2} e^{\lambda t}+2 \lambda e^{\lambda t}+5 e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}+2 \lambda+5\right) & =0
\end{aligned}
$$

Since $e^{\lambda t} \neq 0$, the above simplifies to $\lambda^{2}+2 \lambda+5=0$. The roots are $\lambda=\frac{-b}{2 a} \pm \frac{1}{2 a} \sqrt{b^{2}-4 a c}=$ $\frac{-2}{2} \pm \frac{1}{2} \sqrt{4-4(5)}$ or $\lambda=-1 \pm \frac{1}{2} \sqrt{-16}$. Hence

$$
\lambda=-1 \pm 2 i
$$

Therefore the general solution is linear combination of

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& =c_{1} e^{(-1+2 i) t}+c_{2} e^{(-1-2 i) t} \\
& =e^{-t}\left(c_{1} e^{2 i t}+c_{2} e^{-2 i t}\right)
\end{aligned}
$$

But $c_{1} e^{2 i t}+c_{2} e^{-2 i t}$ can be rewritten, using Euler relation, as $C_{1} \cos 2 t+C_{2} \sin 2 t$. The above solution becomes

$$
\begin{equation*}
y(t)=e^{-t}\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right) \tag{1}
\end{equation*}
$$

C_{1}, C_{2} are now found from initial conditions. At $t=0$

$$
0=C_{1}
$$

The solution (1) simplifies to

$$
\begin{equation*}
y(t)=C_{2} e^{-t} \sin 2 t \tag{2}
\end{equation*}
$$

Taking time derivative gives

$$
y^{\prime}(t)=C_{2}\left(-e^{-t} \sin 2 t+2 e^{-t} \cos 2 t\right)
$$

At $t=0$ the above becomes

$$
\begin{aligned}
2 & =2 C_{2} \\
C_{2} & =1
\end{aligned}
$$

Substituting the above in (2) gives the final general solution

$$
y(t)=e^{-t} \sin 2 t
$$

3

 section 2.2.2, problem 6 (page 149, equal roots)Solve the following initial-value problems $y^{\prime \prime}+2 y^{\prime}+y=0$ with $y(2)=1, y^{\prime}(2)=-1$

Solution

Let $y=e^{\lambda t}$. Substituting in the above ODE gives

$$
\begin{aligned}
\lambda^{2} e^{\lambda t}+2 \lambda e^{\lambda t}+e^{\lambda t} & =0 \\
e^{\lambda t}\left(\lambda^{2}+2 \lambda+1\right) & =0
\end{aligned}
$$

Since $e^{\lambda t} \neq 0$, the above simplifies to $\lambda^{2}+2 \lambda+1=0$ or $(\lambda+1)^{2}=0$. Hence there is a double $\operatorname{root} \lambda=-1$. One fundamental solution is

$$
y_{1}=e^{-t}
$$

To find the second solution, reduction of order is used. Let the second solution be

$$
\begin{align*}
y_{2}(t) & =y_{1}(t) u(t) \\
& =e^{-t} u \tag{1}
\end{align*}
$$

Hence

$$
\begin{align*}
y_{2}^{\prime} & =-e^{-t} u+e^{-t} u^{\prime} \tag{2}\\
y_{2}^{\prime \prime} & =e^{-t} u-e^{-t} u^{\prime}-e^{-t} u^{\prime}+e^{-t} u^{\prime \prime} \tag{3}
\end{align*}
$$

Substituting ($1,2,3$) into the ODE gives (since y_{2} is assumed to be a solution)

$$
\begin{aligned}
\left(e^{-t} u-e^{-t} u^{\prime}-e^{-t} u^{\prime}+e^{-t} u^{\prime \prime}\right)+2\left(-e^{-t} u+e^{-t} u^{\prime}\right)+\left(e^{-t} u\right) & =0 \\
\left(u-u^{\prime}-u^{\prime}+u^{\prime \prime}\right)+2\left(-u+u^{\prime}\right)+u & =0 \\
u^{\prime \prime}-2 u^{\prime}+u-2 u+2 u^{\prime}+u & =0 \\
u^{\prime \prime} & =0
\end{aligned}
$$

Hence the solution is $u=C_{1} t+C_{2}$. Therefore from (1) the second solution is

$$
\begin{aligned}
y_{2}(t) & =y_{1}(t) u(t) \\
& =e^{-t}\left(C_{1} t+C_{2}\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y(t) & =C_{3} y_{1}+C_{4} y_{2} \\
& =C_{3} e^{-t}+C_{4} e^{-t}\left(C_{1} t+C_{2}\right)
\end{aligned}
$$

Combining constants gives

$$
\begin{aligned}
y(t) & =C_{3} e^{-t}+e^{-t}\left(C_{1} t+C_{2}\right) \\
& =\left(C_{3}+C_{2}\right) e^{-t}+C_{1} t e^{-t}
\end{aligned}
$$

Let $A=\left(C_{3}+C_{2}\right), B=C_{1}$, then the final solution is

$$
\begin{equation*}
y(t)=A e^{-t}+B t e^{-t} \tag{4}
\end{equation*}
$$

Now A, B are found from initial conditions $y(2)=1, y^{\prime}(2)=-1$. First initial condition gives from (4)

$$
\begin{equation*}
1=A e^{-2}+2 B e^{-2} \tag{5}
\end{equation*}
$$

Taking derivative of (4) gives

$$
y^{\prime}(t)=-A e^{-t}+B\left(e^{-t}-t e^{-t}\right)
$$

Applying second initial condition on the above gives

$$
\begin{align*}
-1 & =-A e^{-2}+B\left(e^{-2}-2 e^{-2}\right) \\
& =-A e^{-2}-B e^{-2} \tag{6}
\end{align*}
$$

Now we need to solve $(5,6)$ for (A, B). Adding $(5,6)$ gives

$$
0=B e^{-2}
$$

Hence $B=0$. Therefore from (5) we can now solve for A

$$
\begin{aligned}
1 & =A e^{-2} \\
A & =e^{2}
\end{aligned}
$$

Hence (4) now becomes

$$
\begin{aligned}
y(t) & =e^{2} e^{-t} \\
& =e^{2-t}
\end{aligned}
$$

4 Section 2.4, problem 6 (page 156, Variation of parameters)

Solve the following initial-value problems $y^{\prime \prime}+4 y^{\prime}+4 y=t^{\frac{5}{2}} e^{-2 t}$ with $y(0)=0, y^{\prime}(0)=0$

Solution

The first step is to solve the homogenous ODE $y^{\prime \prime}+4 y^{\prime}+4 y=0$. The characteristic equation is

$$
\begin{array}{r}
\lambda^{2}+4 \lambda+4=0 \\
(\lambda+2)(\lambda+2)=0
\end{array}
$$

Hence a double root at $\lambda=-2$. The first solution is $y_{1}=e^{=2 t}$. Therefore the second solution is $y_{2}=t e^{-2 t}$ (obtained using reduction of order as was done in the above problem with equal roots). Therefore the homogenous $y_{h}(t)$ is

$$
y_{h}(t)=C_{1} e^{-2 t}+C_{2} t e^{-2 t}
$$

To find the particular solution $y_{p}(t)$, Variation of parameters will be used. Assuming the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
\begin{equation*}
u_{1}(t)=-\int \frac{y_{2}(t) f(t)}{W(t)} d t \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
u_{2}(t)=\int \frac{y_{1}(t) f(t)}{W(t)} d t \tag{2}
\end{equation*}
$$

Where in the above $f(t)=t^{\frac{5}{2}} e^{-2 t}$ and $y_{1}=e^{=2 t}, y_{2}=t e^{-2 t}$. We now need to find $W(t)$

$$
\begin{aligned}
W(t) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \\
& =e^{=2 t}\left(e^{-2 t}-2 t e^{-2 t}\right)+2 t e^{-2 t} e^{-2 t} \\
& =e^{-4 t}-2 t e^{-4 t}+2 t e^{-4 t} \\
& =e^{-4 t}
\end{aligned}
$$

Therefore (1) becomes

$$
\begin{aligned}
u_{1}(t) & =-\int \frac{t e^{-2 t} t^{\frac{5}{2}} e^{-2 t}}{e^{-4 t}} d t \\
& =-\int t^{\frac{5}{2}+1} d t \\
& =-\int t^{\frac{7}{2}} d t \\
& =-\frac{t^{\frac{9}{2}}}{\frac{9}{2}} \\
& =\frac{-2}{9} t^{\frac{9}{2}}
\end{aligned}
$$

And (2) becomes

$$
\begin{aligned}
u_{2}(t) & =\int \frac{e^{-2 t} t^{\frac{5}{2}} e^{-2 t}}{e^{-4 t}} d t \\
& =\int t^{\frac{5}{2}} d t \\
& =\frac{t^{\frac{7}{2}}}{\frac{7}{2}} \\
& =\frac{2}{7} t^{\frac{7}{2}}
\end{aligned}
$$

Since $y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, then using the above results we obtain the particular solution

$$
\begin{aligned}
y_{p}(t) & =\left(\frac{-2}{9} t^{\frac{9}{2}}\right) e^{-2 t}+\left(\frac{2}{7} t^{\frac{7}{2}}\right) t e^{-2 t} \\
& =e^{-2 t}\left(\frac{-2}{9} t^{\frac{9}{2}}+\frac{2}{7} t^{\frac{9}{2}}\right) \\
& =\frac{4}{63} e^{-2 t} t^{\frac{9}{2}}
\end{aligned}
$$

Since $y(t)=y_{h}(t)+y_{p}(t)$ then the final solution is

$$
\begin{align*}
y(t) & =\left(C_{1} e^{-2 t}+C_{2} t e^{-2 t}\right)+\frac{4}{63} e^{-2 t} t^{\frac{9}{2}} \\
& =e^{-2 t}\left(C_{1}+C_{2} t+\frac{4}{63} t^{\frac{9}{2}}\right) \tag{3}
\end{align*}
$$

Now initial conditions are applied to find C_{1}, C_{2}. From $y(0)=0$, then (3) becomes

$$
0=C_{1}
$$

Hence the solution (3) simplifies to

$$
\begin{equation*}
y(t)=e^{-2 t}\left(C_{2} t+\frac{4}{63} t^{\frac{9}{2}}\right) \tag{4}
\end{equation*}
$$

Taking derivatives

$$
\begin{aligned}
y^{\prime}(t) & =-2 e^{-2 t}\left(C_{2} t+\frac{4}{63} t^{\frac{9}{2}}\right)+e^{-2 t}\left(C_{2}+\left(\frac{4}{63}\right)\left(\frac{7}{2}\right) t^{\frac{7}{2}}\right) \\
& =-2 e^{-2 t}\left(C_{2} t+\frac{4}{63} t^{\frac{9}{2}}\right)+e^{-2 t}\left(C_{2}+\frac{2}{9} t^{\frac{7}{2}}\right)
\end{aligned}
$$

Applying the second $\mathrm{BC} y^{\prime}(0)=0$ to the above gives

$$
0=C_{2}
$$

The solution (4) now reduces to

$$
y(t)=\frac{4}{63} t^{\frac{9}{2}} e^{-2 t}
$$

Which is just the particular solution. This makes sense, since both initial conditions are zero, then the homogenous solution will be zero.

5 Section 2.5, problem 14 (page 164, Guessing method)

Find the particular solution for $y^{\prime \prime}+2 y^{\prime}=1+t^{2}+e^{-2 t}$

Solution

The first step is to solve the homogeneous solution $y_{h}(t)$ of the ODE $y^{\prime \prime}+2 y^{\prime}=0$. Let $u=y^{\prime}$. Then the ODE becomes

$$
u^{\prime}+2 u=0
$$

The integrating factor is $I=e^{\int 2 d t}=e^{2 t}$. The above becomes

$$
\begin{aligned}
\frac{d}{d t}\left(u e^{2 t}\right) & =0 \\
u e^{2 t} & =C_{1} \\
u & =C_{1} e^{-2 t}
\end{aligned}
$$

But $y^{\prime}=u$. Integrating gives

$$
\begin{aligned}
y_{h}(t) & =\int C_{1} e^{-2 t} d t+C_{2} \\
& =\frac{-1}{2} C_{1} e^{-2 t}+C_{2} \\
& =C_{3} e^{-2 t}+C_{2}
\end{aligned}
$$

Hence the fundamental solutions are

$$
\begin{aligned}
& y_{1}=e^{-2 t} \\
& y_{2}=1
\end{aligned}
$$

We now go back to the original ODE and find the particular solution y_{p}. Since the RHS is $p(t)+e^{-2 t}$ where $p(t)=1+t^{2}$, we can use linearity and find particular solution $y_{p_{1}}(t)$ associated with $p(t)$ only and then find $y_{p_{2}}(t)$ associated with $e^{-2 t}$ only and then add them together to obtain $y_{p}(t)$. In other words

$$
y_{p}(t)=y_{p_{1}}(t)+y_{p_{2}}(t)
$$

To find $y_{p_{1}}(t)$ associated with $1+t^{2}$ we guess $y_{p_{1}}(t)=C_{0}+C_{1} t+C_{2} t^{2}$. But because the ODE is missing the y term in it, then we have to multiply this guess by an extra t. Therefore it becomes

$$
y_{p_{1}}(t)=t\left(C_{0}+C_{1} t+C_{2} t^{2}\right)
$$

To find $y_{p_{2}}(t)$ associated with $e^{-2 t}$ we guess $y_{p_{2}}=A e^{-2 t}$. But because $e^{-2 t}$ is also a fundamental solution of the homogenous solution found above, we have to again adjust this and multiply the guess by t. Hence it becomes

$$
y_{p_{2}}(t)=A t e^{-2 t}
$$

Therefore the full guess for particular solution becomes

$$
\begin{align*}
y_{p}(t) & =y_{p_{1}}(t)+y_{p_{2}}(t) \\
& =t\left(C_{0}+C_{1} t+C_{2} t^{2}\right)+A t e^{-2 t} \\
& =t C_{0}+C_{1} t^{2}+C_{2} t^{3}+A t e^{-2 t} \tag{1A}
\end{align*}
$$

Now

$$
\begin{equation*}
y_{p}^{\prime}(t)=C_{0}+2 C_{1} t+3 C_{2} t^{2}+A e^{-2 t}-2 A t e^{-2 t} \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
y_{p}^{\prime \prime}(t)=2 C_{1}+6 C_{2} t-2 A e^{-2 t}-2 A e^{-2 t}+4 A t e^{-2 t} \tag{2}
\end{equation*}
$$

Substituting (1,2) into LHS of $y^{\prime \prime}+2 y^{\prime}=1+t^{2}+e^{-2 t}$ gives

$$
\begin{aligned}
\left(2 C_{1}+6 C_{2} t-2 A e^{-2 t}-2 A e^{-2 t}+4 A t e^{-2 t}\right)+2\left(C_{0}+2 C_{1} t+3 C_{2} t^{2}+A e^{-2 t}-2 A t e^{-2 t}\right) & =1+t^{2}+e^{-2 t} \\
2 C_{0}+2 C_{1}+4 t C_{1}+6 t C_{2}-2 A e^{-2 t}+6 t^{2} C_{2} & =1+t^{2}+e^{-2 t} \\
e^{-2 t}(-2 A)+t\left(4 C_{1}+6 C_{2}\right)+t^{2}\left(6 C_{2}\right)+\left(2 C_{0}+2 C_{1}\right) & =1+t^{2}+e^{-2 t}
\end{aligned}
$$

$\underline{\text { Comparing coefficients gives }}$

$$
\begin{aligned}
-2 A & =1 \\
4 C_{1}+6 C_{2} & =0 \\
6 C_{2} & =1 \\
2 C_{0}+2 C_{1} & =1
\end{aligned}
$$

Solving gives $A=-\frac{1}{2}, C_{0}=\frac{3}{4}, C_{1}=-\frac{1}{4}, C_{2}=\frac{1}{6}$. Substituting the above in (1A) gives the particular solution as

$$
\begin{aligned}
y_{p}(t) & =t\left(\frac{3}{4}-\frac{1}{4} t+\frac{1}{6} t^{2}\right)-\frac{1}{2} t e^{-2 t} \\
& =\frac{3}{4} t-\frac{1}{4} t^{2}+\frac{1}{6} t^{3}-\frac{1}{2} t e^{-2 t}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y(t) & =y_{h}(t)+y_{p}(t) \\
& =C_{3} e^{-2 t}+C_{2}+\left(\frac{3}{4} t-\frac{1}{4} t^{2}+\frac{1}{6} t^{3}-\frac{1}{2} t e^{-2 t}\right)
\end{aligned}
$$

