HW 3

Math 4512 Differential Equations with Applications

Fall 2019 University of Minnesota, Twin Cities

Nasser M. Abbasi

December 20, 2019 Compiled on December 20, 2019 at 10:44am

Contents

1	Section 2.1, problem 11	2
	1.1 Part a	2
	1.2 Part b	2
	1.3 Part c	2
	1.4 Part d	2
2	Section 2.2.1, problem 6 (page 144, complex roots)	4
3	section 2.2.2, problem 6 (page 149, equal roots)	5
4	Section 2.4, problem 6 (page 156, Variation of parameters)	7
5	Section 2.5, problem 14 (page 164, Guessing method)	10

Let $y_1(t) = t^2$ and $y_2(t) = t |t|$

- 1. Show that y_1, y_2 are linearly dependent (L.D.) on the interval $0 \le t \le 1$
- 2. Show that y_1, y_2 are linearly independent (L.I.) on the interval $-1 \le t \le 1$
- 3. Show that $W[y_1, y_2](t)$ is identically zero.
- 4. Show that y_1, y_2 can never be two solutions of (3) which is y'' + p(t)y' + q(t)y = 0, on the interval -1 < t < 1 if both p, q are continuous in this interval.

Solution

1.1 Part a

On the interval $0 \le t \le 1$, then |t| = t since t is positive. Hence $y_2(t) = t^2$, which is the same as $y_1(t) = t^2$. Therefore they are <u>linearly dependent</u> (same solution). In other words, $y_1(t) = c_1y_2(t)$ where $c_1 = 1$.

1.2 Part b

When $t \le 0$ now $y_2(t) = -t^2$. Hence we have $y_1 = y_2$ for $0 \le t \le 1$ and $y_1 = -y_2$ for $-1 \le t < 0$. Therefore it is not possible to find the same constant *c* such that $y_1 = cy_2$ which will work for all *t* regions. This implies that $y_1(t)$ and $y_2(t)$ are linearly independent on $-1 \le t \le 1$.

1.3 Part c

$$W[y_1, y_2](t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$$

If W(t) = 0 is in some region or at some point, then it must be zero anywhere. Therefore let us pick the interval $0 \le t \le 1$ to calculate W(t). This way we avoid having to deal with the |t|when taking derivatives since on this interval, $y_1 = t^2$ and also $y_2 = t^2$. Now W(t) becomes

$$W(t) = t^2 (2t) - t^2 (2t)$$

= 0

Therefore W(t) = 0 everywhere.

1.4 Part d

Since p, q are continuous on -1 < t < 1, then by uniqueness theorem, we know there are two fundamental solutions y_1, y_2 , which must be linearly independent that their linear combination give the general solution $y(t) = c_1y_1(t) + c_2y_2(t)$.

But from part(b) above we found that the given functions y_1, y_2 are not linearly independent on -1 < t < 1, hence these can never be the fundamental solutions to y'' + p(t)y' + q(t)y = 0.

2 Section 2.2.1, problem 6 (page 144, complex roots)

Solve y'' + 2y' + 5y = 0 with y(0) = 0, y'(0) = 2

Solution

Let $y = e^{\lambda t}$. Substituting in the above ODE gives

$$\lambda^2 e^{\lambda t} + 2\lambda e^{\lambda t} + 5e^{\lambda t} = 0$$
$$e^{\lambda t} \left(\lambda^2 + 2\lambda + 5\right) = 0$$

Since $e^{\lambda t} \neq 0$, the above simplifies to $\lambda^2 + 2\lambda + 5 = 0$. The roots are $\lambda = \frac{-b}{2a} \pm \frac{1}{2a}\sqrt{b^2 - 4ac} = \frac{-2}{2} \pm \frac{1}{2}\sqrt{4 - 4(5)}$ or $\lambda = -1 \pm \frac{1}{2}\sqrt{-16}$. Hence

$$\lambda = -1 \pm 2i$$

Therefore the general solution is linear combination of

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

= $c_1 e^{(-1+2i)t} + c_2 e^{(-1-2i)t}$
= $e^{-t} (c_1 e^{2it} + c_2 e^{-2it})$

But $c_1e^{2it} + c_2e^{-2it}$ can be rewritten, using Euler relation, as $C_1 \cos 2t + C_2 \sin 2t$. The above solution becomes

$$y(t) = e^{-t} \left(C_1 \cos 2t + C_2 \sin 2t \right) \tag{1}$$

 C_1,C_2 are now found from initial conditions. At t=0

 $0 = C_1$

The solution (1) simplifies to

$$y(t) = C_2 e^{-t} \sin 2t \tag{2}$$

Taking time derivative gives

$$y'(t) = C_2 \left(-e^{-t} \sin 2t + 2e^{-t} \cos 2t \right)$$

At t = 0 the above becomes

$$2 = 2C_2$$
$$C_2 = 1$$

Substituting the above in (2) gives the final general solution

$$y(t) = e^{-t} \sin 2t$$

3 section 2.2.2, problem 6 (page 149, equal roots)

Solve the following initial-value problems y'' + 2y' + y = 0 with y(2) = 1, y'(2) = -1

Solution

Let $y = e^{\lambda t}$. Substituting in the above ODE gives

$$\lambda^{2} e^{\lambda t} + 2\lambda e^{\lambda t} + e^{\lambda t} = 0$$
$$e^{\lambda t} \left(\lambda^{2} + 2\lambda + 1\right) = 0$$

Since $e^{\lambda t} \neq 0$, the above simplifies to $\lambda^2 + 2\lambda + 1 = 0$ or $(\lambda + 1)^2 = 0$. Hence there is a double root $\lambda = -1$. One fundamental solution is

$$y_1 = e^{-t}$$

To find the second solution, reduction of order is used. Let the second solution be

$$y_2(t) = y_1(t) u(t) = e^{-t} u$$
(1)

Hence

$$y_2' = -e^{-t}u + e^{-t}u'$$
(2)

$$y_2'' = e^{-t}u - e^{-t}u' - e^{-t}u' + e^{-t}u''$$
(3)

Substituting (1,2,3) into the ODE gives (since y_2 is assumed to be a solution)

$$(e^{-t}u - e^{-t}u' - e^{-t}u' + e^{-t}u'') + 2(-e^{-t}u + e^{-t}u') + (e^{-t}u) = 0 (u - u' - u' + u'') + 2(-u + u') + u = 0 u'' - 2u' + u - 2u + 2u' + u = 0 u'' = 0$$

Hence the solution is $u = C_1 t + C_2$. Therefore from (1) the second solution is

$$y_2(t) = y_1(t) u(t)$$

= $e^{-t} (C_1 t + C_2)$

Therefore the general solution is

$$y(t) = C_3 y_1 + C_4 y_2$$

= $C_3 e^{-t} + C_4 e^{-t} (C_1 t + C_2)$

Combining constants gives

$$y(t) = C_3 e^{-t} + e^{-t} (C_1 t + C_2)$$

= (C_3 + C_2) e^{-t} + C_1 t e^{-t}

Let $A = (C_3 + C_2)$, $B = C_1$, then the final solution is

$$y(t) = Ae^{-t} + Bte^{-t} \tag{4}$$

Now *A*, *B* are found from initial conditions y(2) = 1, y'(2) = -1. First initial condition gives

from (4)

$$1 = Ae^{-2} + 2Be^{-2} \tag{5}$$

Taking derivative of (4) gives

$$y'(t) = -Ae^{-t} + B(e^{-t} - te^{-t})$$

Applying second initial condition on the above gives

$$-1 = -Ae^{-2} + B(e^{-2} - 2e^{-2})$$

= -Ae^{-2} - Be^{-2} (6)

Now we need to solve (5,6) for (*A*, *B*). Adding (5,6) gives $0 = Be^{-2}$

Hence B = 0. Therefore from (5) we can now solve for A

$$1 = Ae^{-2}$$
$$A = e^{2}$$

Hence (4) now becomes

$$y(t) = e^2 e^{-t}$$
$$= e^{2-t}$$

4 Section 2.4, problem 6 (page 156, Variation of parameters)

Solve the following initial-value problems $y'' + 4y' + 4y = t^{\frac{5}{2}}e^{-2t}$ with y(0) = 0, y'(0) = 0

Solution

The first step is to solve the homogenous ODE y'' + 4y' + 4y = 0. The characteristic equation is

$$\lambda^2 + 4\lambda + 4 = 0$$
$$(\lambda + 2) (\lambda + 2) = 0$$

Hence a double root at $\lambda = -2$. The first solution is $y_1 = e^{-2t}$. Therefore the second solution is $y_2 = te^{-2t}$ (obtained using reduction of order as was done in the above problem with equal roots). Therefore the homogenous $y_h(t)$ is

$$y_h(t) = C_1 e^{-2t} + C_2 t e^{-2t}$$

To find the particular solution $y_p(t)$, Variation of parameters will be used. Assuming the particular solution is

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)f(t)}{W(t)}dt$$
(1)

And

$$u_{2}(t) = \int \frac{y_{1}(t) f(t)}{W(t)} dt$$
(2)

Where in the above $f(t) = t^{\frac{5}{2}}e^{-2t}$ and $y_1 = e^{-2t}$, $y_2 = te^{-2t}$. We now need to find W(t)

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$

= $y_1 y'_2 - y_2 y'_1$
= $e^{-2t} (e^{-2t} - 2te^{-2t}) + 2te^{-2t}e^{-2t}$
= $e^{-4t} - 2te^{-4t} + 2te^{-4t}$
= e^{-4t}

Therefore (1) becomes

$$u_{1}(t) = -\int \frac{te^{-2t}t^{\frac{5}{2}}e^{-2t}}{e^{-4t}}dt$$
$$= -\int t^{\frac{5}{2}+1}dt$$
$$= -\int t^{\frac{7}{2}}dt$$
$$= -\frac{t^{\frac{9}{2}}}{\frac{9}{2}}$$
$$= \frac{-2}{9}t^{\frac{9}{2}}$$

And (2) becomes

$$u_{2}(t) = \int \frac{e^{-2t}t^{\frac{5}{2}}e^{-2t}}{e^{-4t}}dt$$
$$= \int t^{\frac{5}{2}}dt$$
$$= \frac{t^{\frac{7}{2}}}{\frac{7}{2}}$$
$$= \frac{2}{7}t^{\frac{7}{2}}$$

Since $y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$, then using the above results we obtain the particular solution

$$y_p(t) = \left(\frac{-2}{9}t^{\frac{9}{2}}\right)e^{-2t} + \left(\frac{2}{7}t^{\frac{7}{2}}\right)te^{-2t}$$
$$= e^{-2t}\left(\frac{-2}{9}t^{\frac{9}{2}} + \frac{2}{7}t^{\frac{9}{2}}\right)$$
$$= \frac{4}{63}e^{-2t}t^{\frac{9}{2}}$$

Since $y(t) = y_h(t) + y_p(t)$ then the final solution is

$$y(t) = \left(C_1 e^{-2t} + C_2 t e^{-2t}\right) + \frac{4}{63} e^{-2t} t^{\frac{9}{2}}$$
$$= e^{-2t} \left(C_1 + C_2 t + \frac{4}{63} t^{\frac{9}{2}}\right)$$
(3)

Now initial conditions are applied to find C_1, C_2 . From y(0) = 0, then (3) becomes

$$0 = C_1$$

Hence the solution (3) simplifies to

$$y(t) = e^{-2t} \left(C_2 t + \frac{4}{63} t^{\frac{9}{2}} \right)$$
(4)

Taking derivatives

$$y'(t) = -2e^{-2t} \left(C_2 t + \frac{4}{63} t^{\frac{9}{2}} \right) + e^{-2t} \left(C_2 + \left(\frac{4}{63} \right) \left(\frac{7}{2} \right) t^{\frac{7}{2}} \right)$$
$$= -2e^{-2t} \left(C_2 t + \frac{4}{63} t^{\frac{9}{2}} \right) + e^{-2t} \left(C_2 + \frac{2}{9} t^{\frac{7}{2}} \right)$$

Applying the second BC y'(0) = 0 to the above gives

 $0 = C_2$

The solution (4) now reduces to

$$y(t) = \frac{4}{63}t^{\frac{9}{2}}e^{-2t}$$

Which is just the particular solution. This makes sense, since both initial conditions are zero, then the homogenous solution will be zero.

5 Section 2.5, problem 14 (page 164, Guessing method)

Find the particular solution for $y'' + 2y' = 1 + t^2 + e^{-2t}$

Solution

The first step is to solve the homogeneous solution $y_h(t)$ of the ODE y'' + 2y' = 0. Let u = y'. Then the ODE becomes

$$u' + 2u = 0$$

The integrating factor is $I = e^{\int 2dt} = e^{2t}$. The above becomes

$$\frac{d}{dt} \left(ue^{2t} \right) = 0$$
$$ue^{2t} = C_1$$
$$u = C_1 e^{-2t}$$

But y' = u. Integrating gives

$$y_h(t) = \int C_1 e^{-2t} dt + C_2$$

= $\frac{-1}{2} C_1 e^{-2t} + C_2$
= $C_3 e^{-2t} + C_2$

Hence the fundamental solutions are

$$y_1 = e^{-2t}$$
$$y_2 = 1$$

We now go back to the original ODE and find the particular solution y_p . Since the RHS is $p(t)+e^{-2t}$ where $p(t) = 1+t^2$, we can use linearity and find particular solution $y_{p_1}(t)$ associated with p(t) only and then find $y_{p_2}(t)$ associated with e^{-2t} only and then add them together to obtain $y_p(t)$. In other words

$$y_p(t) = y_{p_1}(t) + y_{p_2}(t)$$

To find $y_{p_1}(t)$ associated with $1 + t^2$ we guess $y_{p_1}(t) = C_0 + C_1 t + C_2 t^2$. But because the ODE is missing the y term in it, then we have to multiply this guess by an extra t. Therefore it becomes

$$y_{p_1}(t) = t \left(C_0 + C_1 t + C_2 t^2 \right)$$

To find $y_{p_2}(t)$ associated with e^{-2t} we guess $y_{p_2} = Ae^{-2t}$. But because e^{-2t} is also a fundamental solution of the homogenous solution found above, we have to again adjust this and multiply the guess by *t*. Hence it becomes

$$y_{p_2}(t) = Ate^{-2t}$$

Therefore the full guess for particular solution becomes

$$y_{p}(t) = y_{p_{1}}(t) + y_{p_{2}}(t)$$

= $t (C_{0} + C_{1}t + C_{2}t^{2}) + Ate^{-2t}$
= $tC_{0} + C_{1}t^{2} + C_{2}t^{3} + Ate^{-2t}$ (1A)

Now

$$y'_{p}(t) = C_{0} + 2C_{1}t + 3C_{2}t^{2} + Ae^{-2t} - 2Ate^{-2t}$$
(1)

And

$$y_p''(t) = 2C_1 + 6C_2t - 2Ae^{-2t} - 2Ae^{-2t} + 4Ate^{-2t}$$
(2)
Substituting (1.2) into LHS of $y'' + 2y' - 1 + t^2 + e^{-2t}$ gives

Substituting (1,2) into LHS of
$$y' + 2y' = 1 + t^{-} + e^{-t}$$
 gives

$$(2C_1 + 6C_2t - 2Ae^{-2t} - 2Ae^{-2t} + 4Ate^{-2t}) + 2(C_0 + 2C_1t + 3C_2t^2 + Ae^{-2t} - 2Ate^{-2t}) = 1 + t^2 + e^{-2t}$$

$$2C_0 + 2C_1 + 4tC_1 + 6tC_2 - 2Ae^{-2t} + 6t^2C_2 = 1 + t^2 + e^{-2t}$$

$$e^{-2t}(-2A) + t(4C_1 + 6C_2) + t^2(6C_2) + (2C_0 + 2C_1) = 1 + t^2 + e^{-2t}$$

Comparing coefficients gives

$$-2A = 1$$
$$4C_1 + 6C_2 = 0$$
$$6C_2 = 1$$
$$2C_0 + 2C_1 = 1$$

Solving gives $A = -\frac{1}{2}$, $C_0 = \frac{3}{4}$, $C_1 = -\frac{1}{4}$, $C_2 = \frac{1}{6}$. Substituting the above in (1A) gives the particular solution as

$$y_p(t) = t \left(\frac{3}{4} - \frac{1}{4}t + \frac{1}{6}t^2\right) - \frac{1}{2}te^{-2t}$$
$$= \frac{3}{4}t - \frac{1}{4}t^2 + \frac{1}{6}t^3 - \frac{1}{2}te^{-2t}$$

Therefore the general solution is

$$y(t) = y_h(t) + y_p(t)$$

= $C_3 e^{-2t} + C_2 + \left(\frac{3}{4}t - \frac{1}{4}t^2 + \frac{1}{6}t^3 - \frac{1}{2}te^{-2t}\right)$