MATH 4512 - DIFFERENTIAL EQUATIONS WITH APPLICATIONS HW2 - SOLUTIONS

1. (Section 1.8 - Exercise 8) A tank contains 300 gallons of water and 100 gallons of pollutants. Fresh water is pumped into the tank at the rate of $2 \mathrm{gal} / \mathrm{min}$, and the wellstirred mixture leaves at the same rate. How long does it take for the concentration of pollutants in the tank to decrease to $1 / 10$ of its original value?

Initially there are $V_{0}=300$ gal of water and $S_{0}=100$ gal of pollutants. Inflow and outflow rates are $r_{i}=r_{o}=2 \mathrm{gal} / \mathrm{min}$, while the inflow concentration of pollutants is 0 , since only pure water is pumped into the tank. If $S(t)$ denotes the amount of pollutants in the tank at time t, then IVP for this mixture problem is

$$
\frac{d S}{d t}=0-2 \cdot \frac{S(t)}{400}, \quad S(0)=100
$$

Its solution is $S(t)=100 \mathrm{e}^{-t / 200}$. Thus the concentration $c(t)$ of pollutants in the tank at time t is

$$
c(t)=\frac{S(t)}{400}=\frac{1}{4} \mathrm{e}^{-t / 200}
$$

In order to find how long does it take for the concentration of pollutants in the tank to decrease to $1 / 10$ of its original value, we need to solve for t the problem

$$
c(t)=\frac{1}{10} c(0) .
$$

Then we get

$$
\begin{aligned}
\frac{1}{4} \mathrm{e}^{-t / 200} & =\frac{1}{40} \\
\mathrm{e}^{-t / 200} & =\frac{1}{10} \\
-\frac{t}{200} & =\ln \frac{1}{10} \\
t & =200 \ln 10=460.517 \ldots \min \approx 7 \mathrm{~h} 40 \mathrm{~min}
\end{aligned}
$$

2. (Section 1.8 - Exercise 14)

Find the orthogonal trajectories of the given family of curves

$$
y=c \sin x
$$

Here we can take $F(x, y, c)=y-c \sin x$. Then from

$$
F_{x}=-c \cos x, \quad F_{y}=1, \quad c=\frac{y}{\sin x},
$$

the orthogonal trajectories of the given family are the solution curves of the equation

$$
\frac{d y}{d x}=\frac{F_{y}}{F_{x}}=-\frac{\tan x}{y} .
$$

This is a separable differential equation and we solve it as follows:

$$
\begin{aligned}
\int y d y & =-\int \tan x d x \\
\frac{y^{2}}{2} & =\ln |\cos x|+c
\end{aligned}
$$

Curves $y=c \sin x$ (dashed) and $\frac{y^{2}}{2}=\ln |\cos x|+c($ solid).

3. (Section 1.10 - Exercise 4)

Show that the solution y of the initial-value problem

$$
\frac{d y}{d t}=y^{2}+\cos t^{2}, \quad y(0)=0
$$

exists on the interval $0 \leq t \leq \frac{1}{2}$.

Let $f(t, y)=y^{2}+\cos t^{2}$. The functions f and $f_{y}=2 y$ are continuous on a rectangle

$$
R=\left[t_{0}, t_{0}+a\right] \times\left[y_{0}-b, y_{0}+b\right]=[0, a] \times[-b, b],
$$

for arbitrary constants $a>0$ and $b>0$. Then there exists a unique solution of the IVP on the interval $[0, \alpha]$, with

$$
\alpha=\min \left\{a, \frac{b}{M}\right\}, \quad M=\max _{(t, y) \in R}\left|y^{2}+\cos t^{2}\right| .
$$

Since

$$
M=\max _{(t, y) \in R}\left|y^{2}+\cos t^{2}\right|=b^{2}+1
$$

then

$$
\alpha=\min \left\{a, \frac{b}{M}\right\}=\min \left\{a, \frac{b}{b^{2}+1}\right\} .
$$

Let

$$
g(b)=\frac{b}{b^{2}+1} .
$$

For $b>0$, the function g is positive and

$$
g^{\prime}(b)=\frac{1-b^{2}}{\left(b^{2}+1\right)^{2}}=\frac{(1-b)(1+b)}{\left(b^{2}+1\right)^{2}} .
$$

The point $b=1$ is the local maximum of g on $(0, \infty)$ since

$$
\left.\begin{array}{rl}
b \in(0,1) & \Rightarrow g^{\prime}(b)>0 \\
b \in(1, \infty) & \Rightarrow g^{\prime}(b)<0
\end{array}\right) \text { is increasing, }, g \text { is decreasing. } .
$$

Therefore

$$
\frac{b}{b^{2}+1}=g(b) \leq g(1)=\frac{1}{2} .
$$

Consequently, the largest possible value for α is $1 / 2$ (obtained for $b=1$ and any $a \geq 1 / 2)$, that concludes the proof.
4. (Section 1.10 - Exercise 17)

Prove that $y(t)=-1$ is the only solution of the initial-value problem

$$
\frac{d y}{d t}=t(1+y), \quad y(0)=-1 .
$$

First notice that the constant function $y(t)=-1$ is the solution of the given IVP (its derivative is zero, $1+y=0$ and $y(0)=-1$). In order to prove that this is the only solution, we need to analyze the function $f(t, y)=t(1+y)$ and its partial derivative $f_{y}=t$. On a rectangle

$$
R=[0, a] \times[-1-b,-1+b],
$$

both f and f_{y} are continuous functions, for arbitrary positive constants a, b. Let

$$
M=\max _{(t, y) \in R}|f(t, y)|=\max _{(t, y) \in R}|t(1+y)|=a b
$$

and

$$
\alpha=\min \left\{a, \frac{b}{M}\right\}=\min \left\{a, \frac{1}{a}\right\}=1 .
$$

(Remark: Conclusion $\alpha=1$ can be deduced from assuming first that $\min \{a, 1 / a\}=a$. Then $a \leq 1 / a$ and

$$
\begin{aligned}
a-\frac{1}{a} & \leq 0 \\
\frac{a^{2}-1}{a} & \leq 0 \\
\frac{(a-1)(a+1)}{a} & \leq 0 \quad \longrightarrow \quad a \leq 1 \quad \longrightarrow \quad \min \left\{a, \frac{1}{a}\right\}=a \leq 1 .
\end{aligned}
$$

Similarly, assuming $\min \{a, 1 / a\}=1 / a$ we obtain $1 / a \leq a$ and

$$
\begin{aligned}
a-\frac{1}{a} & \geq 0 \\
\frac{(a-1)(a+1)}{a} & \left.\geq 0 \quad \longrightarrow \quad a \geq 1 \quad \longrightarrow \quad \min \left\{a, \frac{1}{a}\right\}=\frac{1}{a} \leq 1 .\right)
\end{aligned}
$$

From the existence-uniqueness theorem, we conclude that the solution $y(t)=-1$ of the IVP is unique in the interval $t_{0} \leq t \leq t_{0}+\alpha$, i.e. when $0 \leq t \leq 1$.
5. (Section 1.13 - Exercise 2 with $h=0.1$)

Using Euler's method with step size $h=0.1$, determine an approximate value of the solution at $t=1$ for the initial-vale problem

$$
\frac{d y}{d t}=2 t y, \quad y(0)=2
$$

and compare the results with the exact solution $y(t)=2 \mathrm{e}^{t^{2}}$.
Let $t_{0}=0, y_{0}=2$ and $f(t, y)=2 t y$. Using equidistant points

$$
t_{k+1}=t_{k}+h, \quad k=0,1, \ldots, 9, \quad h=0.1,
$$

Euler's method

$$
y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right), \quad k=0,1, \ldots, 9, \quad y_{0}=y\left(t_{0}\right),
$$

will generate the following data

k	t_{k}	y_{k}
0	0	2
1	0.1	2
2	0.2	2.04
3	0.3	2.1216
4	0.4	2.2489
5	0.5	2.42881
6	0.6	2.67169
7	0.7	2.99229
8	0.8	3.41121
9	0.9	3.95701
10	1	4.66927

From this table we read $y_{10}=4.66927$ is the approximation to $y(1)=2 \mathrm{e}=5.43656$.
Absolute error is

$$
\left|y(1)-y_{10}\right|=0.767297 .
$$

