
MATH 4512 – DIFFERENTIAL EQUATIONS WITH APPLICATIONS

HW2 - SOLUTIONS

1. (Section 1.8 - Exercise 8) A tank contains 300 gallons of water and 100 gallons of

pollutants. Fresh water is pumped into the tank at the rate of 2 gal/min, and the well-

stirred mixture leaves at the same rate. How long does it take for the concentration

of pollutants in the tank to decrease to 1/10 of its original value?

Initially there are V0 = 300 gal of water and S0 = 100 gal of pollutants. Inflow and

outflow rates are ri = ro = 2 gal/min, while the inflow concentration of pollutants

is 0, since only pure water is pumped into the tank. If S(t) denotes the amount of

pollutants in the tank at time t, then IVP for this mixture problem is

dS

dt
= 0− 2 · S(t)

400
, S(0) = 100.

Its solution is S(t) = 100 e−t/200. Thus the concentration c(t) of pollutants in the

tank at time t is

c(t) =
S(t)

400
=

1

4
e−t/200.

In order to find how long does it take for the concentration of pollutants in the tank

to decrease to 1/10 of its original value, we need to solve for t the problem

c(t) =
1

10
c(0).

Then we get

1

4
e−t/200 =

1

40

e−t/200 =
1

10

− t

200
= ln

1

10

t = 200 ln 10 = 460.517 . . .min ≈ 7h 40min.
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2. (Section 1.8 - Exercise 14)

Find the orthogonal trajectories of the given family of curves

y = c sinx.

Here we can take F (x, y, c) = y − c sinx. Then from

Fx = −c cosx, Fy = 1, c =
y

sinx
,

the orthogonal trajectories of the given family are the solution curves of the equation

dy

dx
=
Fy

Fx

= −tanx

y
.

This is a separable differential equation and we solve it as follows:∫
y dy = −

∫
tanxdx

y2

2
= ln | cosx|+ c.
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Curves y = c sinx (dashed) and y2

2
= ln | cosx|+ c (solid).
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3. (Section 1.10 - Exercise 4)

Show that the solution y of the initial-value problem

dy

dt
= y2 + cos t2, y(0) = 0,

exists on the interval 0 ≤ t ≤ 1
2
.

Let f(t, y) = y2 + cos t2. The functions f and fy = 2y are continuous on a rectangle

R = [t0, t0 + a]× [y0 − b, y0 + b] = [0, a]× [−b, b],

for arbitrary constants a > 0 and b > 0. Then there exists a unique solution of the

IVP on the interval [0, α], with

α = min{a, b
M
}, M = max

(t,y)∈R
|y2 + cos t2|.

Since

M = max
(t,y)∈R

|y2 + cos t2| = b2 + 1,

then

α = min{a, b
M
} = min{a, b

b2 + 1
}.

Let

g(b) =
b

b2 + 1
.

For b > 0, the function g is positive and

g′(b) =
1− b2

(b2 + 1)2
=

(1− b)(1 + b)

(b2 + 1)2
.

The point b = 1 is the local maximum of g on (0,∞) since

b ∈ (0, 1)⇒ g′(b) > 0⇒ g is increasing,

b ∈ (1,∞)⇒ g′(b) < 0⇒ g is decreasing.

Therefore
b

b2 + 1
= g(b) ≤ g(1) =

1

2
.

Consequently, the largest possible value for α is 1/2 (obtained for b = 1 and any

a ≥ 1/2), that concludes the proof.
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4. (Section 1.10 - Exercise 17)

Prove that y(t) = −1 is the only solution of the initial-value problem

dy

dt
= t(1 + y), y(0) = −1.

First notice that the constant function y(t) = −1 is the solution of the given IVP (its

derivative is zero, 1 + y = 0 and y(0) = −1). In order to prove that this is the only

solution, we need to analyze the function f(t, y) = t(1 + y) and its partial derivative

fy = t. On a rectangle

R = [0, a]× [−1− b,−1 + b],

both f and fy are continuous functions, for arbitrary positive constants a, b. Let

M = max
(t,y)∈R

|f(t, y)| = max
(t,y)∈R

|t(1 + y)| = a b,

and

α = min{a, b
M
} = min{a, 1

a
} = 1.

(Remark: Conclusion α = 1 can be deduced from assuming first that min{a, 1/a} = a.

Then a ≤ 1/a and

a− 1

a
≤ 0

a2 − 1

a
≤ 0

(a− 1)(a+ 1)

a
≤ 0 −→ a ≤ 1 −→ min{a, 1

a
} = a ≤ 1.

Similarly, assuming min{a, 1/a} = 1/a we obtain 1/a ≤ a and

a− 1

a
≥ 0

(a− 1)(a+ 1)

a
≥ 0 −→ a ≥ 1 −→ min{a, 1

a
} =

1

a
≤ 1.)

From the existence-uniqueness theorem, we conclude that the solution y(t) = −1 of

the IVP is unique in the interval t0 ≤ t ≤ t0 + α, i.e. when 0 ≤ t ≤ 1.
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5. (Section 1.13 - Exercise 2 with h = 0.1)

Using Euler’s method with step size h = 0.1, determine an approximate value of the

solution at t = 1 for the initial-vale problem

dy

dt
= 2ty, y(0) = 2,

and compare the results with the exact solution y(t) = 2et
2
.

Let t0 = 0, y0 = 2 and f(t, y) = 2ty. Using equidistant points

tk+1 = tk + h, k = 0, 1, . . . , 9, h = 0.1,

Euler’s method

yk+1 = yk + h f(tk, yk), k = 0, 1, . . . , 9, y0 = y(t0),

will generate the following data

k tk yk

0 0 2

1 0.1 2

2 0.2 2.04

3 0.3 2.1216

4 0.4 2.2489

5 0.5 2.42881

6 0.6 2.67169

7 0.7 2.99229

8 0.8 3.41121

9 0.9 3.95701

10 1 4.66927

From this table we read y10 = 4.66927 is the approximation to y(1) = 2 e = 5.43656.

Absolute error is

|y(1)− y10| = 0.767297.
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