HW 2

Math 4512 Differential Equations with Applications

Fall 2019 University of Minnesota, Twin Cities

Nasser M. Abbasi

December 20, 2019 Compiled on December 20, 2019 at 10:43am

Contents

1	Section 1.8, problem 8	2
2	Section 1.8, problem 14	4
3	section 1.10, problem 4	7
4	Section 1.10, problem 17	9
5	Section 1.13, problem 2	10

1 Section 1.8, problem 8

A tank contains 300 gallons of water and 100 gallons of pollutant. Fresh water is pumped into the tank at rate 2 gal/min, and the well stirred mixture leaves at the same rate. How long does it take for the concentration of pollutants in the tank to decrease to $\frac{1}{10}$ of its original value?

Solution

Let V(t) be the <u>volume</u> in gallons of the pollutant at time t. Hence

$$\frac{dV(t)}{dt} = R_{in} - R_{out} \tag{1}$$

Where R_{in} is the rate in gallons per min that the pollutant is entering the tank and R_{out} is the rate in gallons per min that the pollutant is leaving the tank. In this problem

$$R_{in} = 0 \tag{1A}$$

Since no pollutant enters the tank. And $R_{out} = 2$ gal/min. But each gallon that leaves contains the ratio $\frac{V(t)}{400}$ of pollutant at any moment of time. This is because the volume of the tank is fixed at 400 gallons since same volume enters as it leaves. Hence

$$R_{out} = 2\frac{V(t)}{400} \qquad \text{gal/min} \tag{1B}$$

Using (1A, 1B) in (1) gives

$$\frac{dV(t)}{dt} = -\frac{2}{400}V(t)$$
$$\frac{dV(t)}{dt} + \frac{1}{200}V(t) = 0$$

This is a linear ODE. The integration factor is $I = e^{\int \frac{1}{200}dt} = e^{\frac{t}{200}}$. Therefore the above can be written as

$$\frac{d}{dt} \left(V(t) I \right) = 0$$
$$\frac{d}{dt} \left(V e^{\frac{t}{200}} \right) = 0$$

Integrating gives the general solution as

$$Ve^{\frac{t}{200}} = C \tag{1}$$

Using initial conditions, at t = 0, V = 100 gallons. Substituting these in the above to solve for *C* gives

$$100 = C$$

Hence the solution (1) becomes

$$V(t) = 100e^{\frac{1}{200}}$$
(2)

To find the time t when V(t) = 10 gallons (this is $\frac{1}{10}$ of the original volume of pollutant,

which is 100 gallons), then the above becomes

$$10 = 100e^{\frac{-1}{200}t_0}$$

Solving for t_0 gives

$$\frac{1}{10} = e^{\frac{-1}{200}t_0}$$
$$\ln\left(\frac{1}{10}\right) = \frac{-1}{200}t_0$$
$$t_0 = -200\ln\left(\frac{1}{10}\right)$$

Hence

$$t_0 = 460.517$$
 minutes

This is the time it takes for the pollutant volume to decrease to $\frac{1}{10}$ of its original value in the tank.

2 Section 1.8, problem 14

Find the orthogonal trajectory of the curve $y = c \sin x$

Solution

Let

$$F(x, y, c) = c \sin x - y \tag{1}$$

Then $F_x = c \cos x$ and $F_y = -1$. Hence the slope of the orhogonal projection is given by

$$\frac{dy}{dx} = \frac{F_y}{F_x} = \frac{-1}{c \cos x}$$

From (1), we need to solve for *c* from F(x, y, c) = 0 which gives $c \sin x - y = 0$ or $c = \frac{y}{\sin x}$. Substituting this back into the above result gives

$$\frac{dy}{dx} = \frac{-1}{\left(\frac{y}{\sin x}\right)\cos x}$$
$$= \frac{-\sin x}{y\cos x}$$
$$= -\frac{1}{y}\tan x$$

The above gives the ODE to sovle for the orthogonal trajectory curves. This is separable. Integrating gives

$$\int y dy = -\int \tan x dx$$

But $\int \tan x dx = -\ln |\cos (x)|$. Hence the above becomes

$$\frac{y^2}{2} = \ln (|\cos (x)|) + C_1$$

$$y^2 = 2\ln (|\cos x|) + C$$

Where $C = 2C_1$. Solving for *y* gives two solutions

$$y(x) = \pm \sqrt{2\ln\left(|\cos x|\right) + C}$$

For illustration, the above was plotted for C = 1, 2, 3, 4, 5 in the following (shown in red color) against the function $\sin(x)$ (in blue color). It shows the projection curves all cross $\sin(x)$ at 90⁰ everywhere as expected.

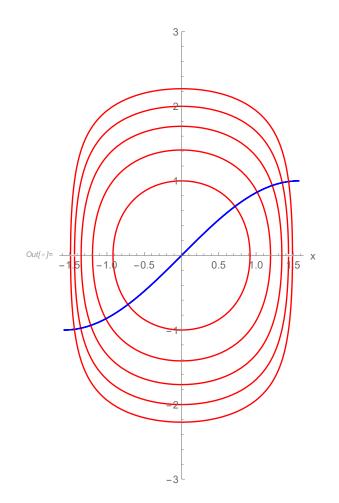


Figure 1: Orthogonal projections for different C values

```
\label{eq:started} \begin{split} & \ln[*] = \text{Show} @ \text{Table}[\text{Plot}[\{\text{Sin}[x], \text{Sqrt}[2 \text{Log}[\text{Abs}[\text{Cos}[x]]] + c]\}, \\ & \{\text{x}, -\text{Pi}/2, \text{Pi}/2\}, \\ & \text{PlotRange} \rightarrow \{\text{All}, \{-3, 3\}\}, \\ & \text{ImageSize} \rightarrow 300, \text{AspectRatio} \rightarrow \text{Automatic}, \\ & \text{PlotStyle} \rightarrow \{\text{Blue}, \text{Red}, \text{Red}\}, \text{AxesLabel} \rightarrow \{\text{"x"}, \text{None}\}, \text{BaseStyle} \rightarrow 14], \{\text{c}, 1, 5\}] \end{split}
```

Figure 2: code used for the above

The following plot is over a larger x range, from -2π to 2π

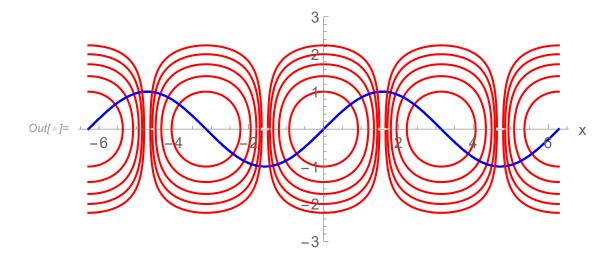


Figure 3: Orthogonal projections for different C values

3 section 1.10, problem 4

Show that the solution y(t) of the given initial value problem exists on the specified interval.

$$y' = y^2 + \cos(t^2)$$
 $y(0) = 0;$ $0 \le t \le \frac{1}{2}$

Solution

Writing the ODE as

$$y' = f(t, y)$$
$$= y^2 + \cos(t^2)$$

Let *R* be rectangle $0 \le t \le \frac{1}{2}$, $y_0 - b \le y \le y_0 + b$. But $y_0 = 0$ as given. Therefore

$$R = \left[0, \frac{1}{2}\right] \times \left[-b, b\right]$$

Now

$$M = \max_{\substack{(t,y) \in \mathbb{R}}} \left| f\left(t,y\right) \right|$$
$$= \max_{\substack{(t,y) \in \mathbb{R}}} \left| y^2 + \cos\left(t^2\right) \right|$$
$$= b^2 + 1$$

Hence

$$\alpha = \min\left(a, \frac{b}{M}\right)$$

But $a = \frac{1}{2}$, $M = b^2 + 1$, therefore the above becomes

$$\alpha = \min\left(\frac{1}{2}, \frac{b}{b^2 + 1}\right)$$

The largest value α can obtain is when $g(b) = \frac{b}{b^2+1}$ is maximum.

$$g'(b) = \frac{(b^2 + 1) - b(2b)}{(b^2 + 1)^2}$$
$$= \frac{b^2 + 1 - 2b^2}{(b^2 + 1)^2}$$
$$= \frac{1 - b^2}{(b^2 + 1)^2}$$

Hence g'(b) = 0 gives $1 - b^2 = 0$ or $b = \pm 1$. Taking b = 1 gives $g_{\max}(b) = \frac{1}{1^2 + 1} = \frac{1}{2}$. Therefore

$$\alpha = \min\left(\frac{1}{2}, \frac{1}{2}\right)$$
$$= \frac{1}{2}$$

This shows that the solution y(t) exists on

$$t_0 \le t \le t_0 + \alpha$$

But $t_0 = 0, \alpha = \frac{1}{2}$, therefore

$$0 \leq t \leq \frac{1}{2}$$

Hence a unique solution exist inside rectangle

$$R = \left[0, \frac{1}{2}\right] \times \left[-1, 1\right]$$

4 Section 1.10, problem 17

Prove that y(t) = -1 is the only solution of the initial value problem

$$y' = t(1+y)$$
 $y(0) = -1$

Solution

The solution is found first to show it is y(t) = -1, then using the uniqueness theory, one can show it is unique. The above ODE is separable. Hence

$$\int \frac{dy}{1+y} = \int t dt$$

$$\ln (|1+y|) = \frac{t^2}{2} + C$$

$$|1+y| = e^{\frac{t^2}{2} + C}$$

$$1+y = C_1 e^{\frac{t^2}{2}}$$
(1)

Applying initial conditions gives

$$1 - 1 = C_1$$
$$C_1 = 0$$

Hence the solution (1) becomes

$$1 + y = 0$$
$$y(t) = -1$$

To show the above is the only solution we need to show the uniqueness theorem applies to this ODE over all of \Re . Let

$$y' = f(t, y)$$
$$= t(1 + y)$$

The above shows that f(t, y) is continuous in t over $-\infty < t < \infty$ and continuous in y over $-\infty < y < \infty$. Now

$$\frac{\partial f}{\partial y} = t$$

Hence $\frac{\partial f}{\partial y}$ is also continuous in *y* over $-\infty < y < \infty$. Therefore a solution exist and is unique in any region that includes the initial conditions. Hence the solution y(t) = -1 found above is the only solution.

5 Section 1.13, problem 2

Using Euler's method with step size h = 0.1, determine an approximate value of the solution at t = 1 for

$$y' = 2ty \qquad y(0) = 2$$

Which has analytical solution $y(t) = 2e^{t^2}$. Compute approximate value at t = 1 using just h = 0.1, and compare with y(1).

Solution

Euler method is given by

$$y_{1} = y_{0} + hf(t_{0}, y_{0})$$

$$y_{2} = y_{1} + hf(t_{1}, y_{1})$$

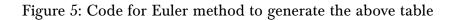
$$\vdots$$

$$y_{k+1} = y_{k} + hf(t_{k}, y_{k})$$

Where $y_0 = 2$ in this problem, and $t_1 = t_0 + h$, $t_2 = t_1 + h$ and so on. Where h = 0.1. The following table shows the numerical value of y(t) found at each t starting from $0, 0.1, 0.2, \dots, 1.0$ and comparing it to the exact y(t) and the error at each step using a small Mathematica program which implements the above method.

	t	appoximate y(t)	exact y(t)	error
	0.	2	2.	0.
	0.1	2.	2.0201	0.0201003
	0.2	2.04	2.08162	0.0416215
	0.3	2.1216	2.18835	0.0667486
Out[•]=	0.4	2.2489	2.34702	0.0981257
Out[•] =	0.5	2.42881	2.56805	0.139243
	0.6	2.67169	2.86666	0.19497
	0.7	2.99229	3.26463	0.272341
	0.8	3.41121	3.79296	0.38175
	0.9	3.95701	4.49582	0.53881
	1.	4.66927	5.43656	0.767297

Figure 4: Table to compare Euler method with exact



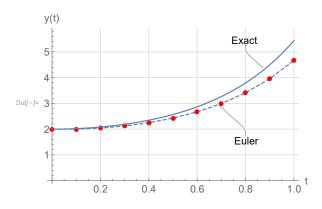


Figure 6: Plot of exact vs. Euler

```
p1 = ListLinePlot[
    Callout[Transpose@{data[[All, 1]], data[[All, 2]]}, "Euler", {0.8, 2}],
    Mesh → All, PlotStyle → Dashed, MeshStyle → Red];
p2 = Plot[Callout[2*Exp[t^2], "Exact", {0.8, 5}], {t, 0, 1}];
Show[{p1, p2}, GridLines → Automatic, GridLinesStyle -> LightGray,
    PlotRange → All, AxesLabel → {"t", "y(t)"}, BaseStyle → 14]
```