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Chapter 1

Introduction

I took this course in winter 2011 to learn about numerical solutions of PDE’s.

1.1 course description from catalog

228A-228B-228C. Numerical Solution of Differential Equations (4-4-4) Lecture 3 hours; term
paper or discussion 1 hour. Prerequisite: course 128C. Numerical solutions of initial-value,
eigenvalue and boundary-value problems for ordinary differential equations. Numerical
solution of parabolic and hyperbolic partial differential equations. Offered in alternate
years.

1.2 class syllabus

See Dr Guy’s web page http://www.math.ucdavis.edu/~guy/teaching/228b/index|
bEmTl

1.3 Text book

Finite Difference Methods
for Ordinary and Partial
Differential Equations

Steady-State and Time-Dependent Problems

Randall J. LeVeque



http://www.math.ucdavis.edu/~guy/teaching/228b/index.html
http://www.math.ucdavis.edu/~guy/teaching/228b/index.html

1.3. Text book CHAPTER 1. INTRODUCTION




Chapter 2

my study notes

2.1 How to decide which fractional stepping to use?

Given a mixed PDE such as u; = Au + Bu where A, B are constant matrices.

Let standard stepping be

u' = Ny@", k)
u"™1l = Ng(u*, k)

Where N, and Np are numerical schemes to solve the problem u; = Au and u; = Bu
respectively. k in the above is the time step.

Let Strang splitting be

u* = Ny, k/f2)
u™ = Np(u", k)
™ = Ny(u™, k/2)

Now, assuming that N, and Ny are each second order accurate in time. Which of the
above two schemes should one select?

Algorithm

---- standard stepping
IF A,B commute THEN

standard stepping is second order in time
ELSE

standard stepping is first order in time
END IF

---- Strang
IF A,B commute THEN
strang gives second order accuracy in time
ELSE
strang also gives second order accuracy in time
END IF

Hence, from the above, the conclusion is that

IF A,B commute THEN

select standard stepping (simpler)
ELSE

select Strang (more accurate)
END IF

some notes from the net [HTMILJ


reference/notes.htm
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HWs
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3.1. Table summary CHAPTER 3. HWS

3.1 Table summary

HW description

1 refinement study 1D for diffusion, successive errors, diffusion-advection

Using Von Nuemann analysis on Peaceman-Rachford ADI. Numerical
solution for diffusion pde using ADI scheme on 2D grid. Discrete con-
servation, refinment study on grid centered in 2D. Numerical solution
of FitzHugh-Nagumo equations. Different initial conditions.

3 refinement study 1D for advection, Lax-Wendroff, C-N for advection,
TVD, periodic boundary conditions.

4 Solve wave equation using Lax-Wendroff as system, cell centered grid.
Proof that TVD scheme is monotone preserving, Finite volume solution
for first order advection ode using different numerical flux functions.
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3.2 HW1

Local contents

3.2.1 Probleml . .. .. . .. e S
3.2.2 Problem 2 . . . . ...
3.2.3 Problem 3 . . . ... e e 38|
3.2.4 Problem 4 . . . . . .. [43]
3.2.5  Screen shot of the GUI matlab application used for HW1 . . . ... ... ..

3.2.6 Matlab Source code developed for this HW
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3.2.1 Probleml

1. Consider the following PDE.

up = 0.0l ugy + 1 —exp(—t), 0<ax<1
u(0,¢) =0 wu(l,t)=0
u(z,0) =0

(a) Write a program to solve the problem using Crank-Nicolson up to time ¢ = 1, and
perform a refinement study that demonstrates that the method is second-order accurate
in space and time.

(b) Solve the problem using a forward Euler method up to time ¢ = 1. Demonstrate in a
refinement study that the method is first-order in time and second-order in space.

Figure 3.1: Problem description

The goal of a refinement study is to perform a numerical experiment to determine the
order of accuracy of a given finite difference scheme. The appendix of this problem contain
a review of the idea behind refinement study.

The problem asked us to determine the order of accuracy in time and in space. A program
implementing the above scheme was run a number of times, each time with a different
initial value for the space and time step. To verify order of accuracy for the C-N scheme,
the space and the time step were divided by 2 simultaneously before the start of each
run. To verify order of accuracy for the forward Euler scheme, the space step was divided
by 2 but the time was divided by 4. For both schemes , the program generated ratios of
successive errors between the numerical solutions at the end of each run (1 second long
run).

Convergence of this ratio to the value 4 implied the results we are asked to demonstrate.

In the following, the C-N and the forward Euler finite difference schemes are derived, then
the numerical results presented, followed by a conclusion.

3.2.1.1 Part (a)

The method of lines (MOL) was used to implement the C-N scheme to solve for the
numerical solution u. The equations are solved using Matlab’s u© = A\b where A is a
sparse matrix (the system update matrix) constructed based on the C-N discretization. An
efficient algorithm to solve for u in this scheme is Thomas algorithm version of Gaussian
elimination. It is understood that this will automatically be done by Matlab ”\” operator
when it recognizes that the A matrix is a tridiagonal giving an O(n) order for the solver
where 7 is the number of unknowns.

Let the PDE be
d uy — Duy, + au = g(x, t) 1)

g(x,t) is an internal source with initial conditions as u(x, t) = u0(x). The Dirichlet boundary
conditions are
u(0,t) = a(t)

u(L,t) = B(t)

and Neumann boundary conditions are

uy(0,1) = a(t)
uy(L, t) = B(t)
The terms d,a above are constants, and D is the diffusion constant. For the C-N scheme

(1) was discretized at point x; with space step as h and with time step as k resulting in

n+l _ u

i1
R T
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Where f" is the RHS of the PDE at time t, = nk, so the above becomes

n+l _ mn
d u = 1[(Duxx —au + gj)ﬂ + (Duxx —au+ gj)n+1]

k 2
n n n
_ Lt ),
) L2 auj =+ gj
un+1 _ 2u1¢+1 + un+]
j-1 j Ll | gt
[D 2 au""" + g

D D
= @(u;?_l - 2ul + u}ﬂrl) + ﬁ(u;lfll —2uf*t + u}“fll)—

S+ + g+ ™)

collecting all terms at time n +1 to the left gives

kD ak\ kD kD D ak kD kD k
n+1 n+1 +1 _ n +1
g (1 et ﬂ)‘zdhz U gt = (1 T @ ﬁ)*”?—lww?ﬂwﬁ(& +5)
Let
(14 kD N ak
TG T
kD
27 a2
_( kD ak
BT T 4
k
Fy= —
DY
Then the above becomes
rlu}’+1 - rzu]’.frll - rzu]’.fll = raul]l + Uy + ol + r4(g]“ + g"”) (2)

The above algebraic equation (2) is the C-N finite difference scheme for (1) and is valid
for x; at the internal points. Considering the case of both ends having Dirichlet boundary
conditions, and using the following grid numberingﬂ

|
1 1

O—O0—O0—0O0——0—0—-0
1 2 3 4 wwwN-1 N
|

1

L
]

Internal nodes

Figure 3.2: Problem grid format

Then (2) above is valid at the internal nodes numbered j = 2---N —1. Hence uf will be
the left boundary point and uy; will be the right boundary point. When the boundary

I This is slightly different from the standard numbering format we used before.
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conditions are Dirichlet, let u] = a(t,) and uy; = B(t,). Converting (2) to matrix form results
in

A x b

1 0 0 0 o][uy] o o o 0o ojfur] [ o

0 rn -rn O 0 Offust! 0 r3 r, 0O 0 0| uj 1@ + 143
0 -1, 1, -1, 0 0 Ofus? 0 rp r3 1, 0 0 Of uj 7433

0 0 -rp, rn - 0 Off * [=]0 0 r, r3 o, O Of uf [+ 7484
00 0 0 Coolfur | : Cool| :

0 0 -, 1 O|[ufy] [0 0 O O rp, ry3 Ofuf_q| [rof+7ra8naa
0 0 0 0 1fjuf™| [0 0 0 0 0 0 Offufy| | pB™*

Where in (3) a(t,,1) + a(t,) = & and B(t,.1) + f(t,) =fand g" + ¢"*1 =3 .

Equation (3) is in the form Au"*! =b. And u"*! is solved for using A\b. Notice that (3) is
in the same form shown in class notes, which is

Dk Dk 1
(1 - 7L)u"+1 = (I + 7L)u" +kf"2 (4)

-1
Where the update matrix B = (I - %kL) (I + %kL). L is the standard Laplace operator for

1D problem given by

(21 0 0 0 o]
1 -2 1.0 0 0
0

0 1 -21

0O 0 0 1 -2 1

(e}
(e}
(e}
(e}
—
Il)

Notice that (3) compared to (4), has additional terms included in the RHS in order to
support the general form the parabolic PDE. Equation (4) represents the diffusion pde
uy — Duy, = 0.

uj when n = 0 is obtained from initial conditions. The first step solves for ujl which is then

used in the second second step to solve for u]2 and so on, until the maximum time to solve
for is reached. Since Dirichlet boundary conditions are used, #} (the solution at the left
edge) and u};, the solution at the right edge are always known. The above system is solved
only for the internal nodes. Next section shows the numerical results.

3.21.11 Result for part(a) The above scheme was implemented with a GUI added
to make it easier to use these algorithms. The following plot shows the numerical solution
att=1.

10
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Solving the 1-D inhomogeneous parabolic golution ulz, ) at t=056250 sec
FOE  d*uit) - D*u"(x) + a*u = Q) + qlx 1) current time step =8
select algarithm ' : ' '
. . o N L B o cument | |
" (explicit) forward time, centered space ' ' ' ! O initial

& (implicit) Crank-Nicolson scheme
.14

v perform refinement study

parameters e

delt, time step (sec) | 0.0625
h, space step (m) [ 0.0625
length () | 1 0.08

D [diffusion constant) 0.01

01

0.06

hiee long to run (sec) I 1 002 :

baoundary conditions
— left end o

& diichlet 0.0 | 0 ‘

v T

Figure 3.3: shows the numerical solution at f =1

The following is the ratio error table. This table shows that the ratio converged to 4.

# delt h ratio

2 0.2500000 0.2500000 1.0000e+000
3 0.1250000 0.1250000 2.9347e+000
4 0.0625000 0.0625000 3.6798e+000
5 0.0312500 0.0312500 4.2132e+000
6 0.0156250 0.0156250 4.1209e+000
7 0.0078125 0.0078125 4.0354e+000
8 0.0039063 0.0039063 4.0092e+000

The following is the loglog plot of the above result. The x-axis represents / and the y-axis
the difference in errors (absolute). The slope of the line is seen to be 2 implying a second
order accuracy.

11
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3.2. HW1

ratio

result of refinement study

p LSRR
LR
BEEOEaY
R R TR
w= 0 00 oW oW o
gaEangn
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iy v &
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3 0 g3 uy i v

[= I =T R A
FREsics
=R RN
(SR = = ]
00 W W D P 6

refinement study result,
log(h®+delt?) vs successive errors difference

Figure 3.4: log log plot

th the same PDE as in part (a)

-1

.

ng wi

Conclusion Since the ratio is 4 and since the time step and the space step were halved in

each run, this implies C-N is second order in time and space.

3.2.1.2 Part(b)

Start

(1)

n

g‘

]

!+

d uy — Duy, + au = g(x, t)
For the forward Euler scheme (1) was discretized at point x; with space step as h and with

All terms and boundary conditions and the solution domain are as shown in part (a).
time step as k as follows

Hence

S
[«%)
= |3
= +
S —
~I= ot
+ =
- QS
S k_%
Sl= o4
| - ~
e
— Es
nu..fl |
: Q
= =3
= (q\
N [
_ —
— —
= S~
= =
N— +
D_2
= % n,H
- DWh
nw] s
Il Il
—
+
S
=

the above becomes

_kD  _k
T2 = 52r"3 = 3>

7

ak
d

kD
:(1—2@—

Let 1

(2)

n
]

+ 7138

n
j+1

]"1+1’21/l

1+1"11/l

utl = rauf

]

The above algebraic equation (2) is the forward Euler finite difference scheme for (1) and

is valid for x; at the internal points.
Therefore, the stencil for the forward Euler scheme for the 1D parabolic PDE is

12
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dui—Duy +au =0

Un+l J
' ;f\&
// \\
ko /| N kD
K dnz,/ | N dh?
/ \
// \
_ kD _ ak \
// (1 Zglh—z q ) \\
/ \
S AL S é O

J-1 j J+1

The stencil for forward Euler finite difference scheme to solve
the 1-D parabolic PDE with dirichlet boundary conditions

Figure 3.5: stencile for forward Euler

Considering the case of both ends having Dirichlet boundary conditions, and using the
same numbering as in part (a) then (2) is valid at the internal nodes j=2---N —1.

u} will be the left boundary point and uy; will be the right boundary point. Let u = a(t,)
and uy; = B(t,). Converting (2) to matrix form results in

[w*t] o 000 0 0 0 0 ol w0 ] [ ot
utl 0r rn 00 0 0 Off uj roa™ + 1395
ultl 0 rpb rp r, 00 0 Of uj 395
uf'1 10 0 rp, 11, 0 0 O|f uf N 1384
: 0 0 0 O 0 0 Off : :
uffB| 10 0 0 0 rp ooy Of|uf, "38N-2
uttl 00 0 0 0 1 o Of|ulq| BT+
] 000 00 0 0 O0fuy| | p

And now u"*! is found by direct matrix/vector multiplication as shown above. No matrix
inversion is required in this case since this is an explicit method.

Looking at the stencil above, an idea is now suggested to determine stability directly from
the stencil diagram. By imposing that the weight on each edge in the directed graph not
exceed unity, and that the total algebraic sum of the weight of the edge also not exceed
unity. This includes any combination of edges involved. If this is always the case, then u]’-l“
will always have an amplitude < 1}’ since the weights are never more than 1 no matter what
combinations are used. This idea is applied to this problem with u; + Du,, = 0, hence a = 0
and d = 1. This gives that following conditions on the edges shown in the stencil diagram

above

1) I;—lzj <1 Condition on j -1 or j +1 separately

(2) 2’;—? <1 Condition on j -1 and j + 1 added together

G - 2%| <1 Condition on the j edge

4) ];—12) 1 2% <1 Condition on the j edge with either j -1 orj+1
(5) 2];1—? +1- Zkh—zD <1 Condition that all edges sum to less than 1

13
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Condition (1) is weaker than (2), hence not considered. Condition (3) results in :—12) <1
which is the same as (1). Condition (4) gives |1 - leg <1or leg < 2 which is also weaker
than (2). Condition (5) gives 1 <1 hence no information is obtained from it. Therefore,

condition (2) remains, and that condition says that Ig < 1, which is the strongest condition.
Hence, this is the absolute condition for stability for forward Euler. This agrees with the
method to determine this using Von Neumann analysis.

3.2.1.2.1 Result for part(b) The forward Euler results are below. The space step was
divided by 2 and the time step was divided by 4.

# delt h ratio

2 0.0625000 0.2500000 1.0000e+000
3 0.0156250 0.1250000 3.0842e+000
4 0.0039063 0.0625000 3.7567e+000
5 0.0009766 0.0312500 4.1506e+000
6 0.0002441 0.0156250 4.0794e+000
7 0.0000610 0.0078125 4.0447e+000
8 0.0000153 0.0039063 3.9909e+000

The following is the corresponding loglog plot

refinement study result,

1 log(h*+delt?) vs successive erors difference
10 -

result of refinement study

B e O R L e T |
I =

e P pupr P far ' pr iy v A T

= aelt h ratioc

0.0625000  0.2500000  1.0000=+D00
0 0.1250000 2.0842e+000
0 3.758Te+D0D
4. 1508e+000
58250 4.0754=+000
0.00TB125  4.0447e+000
0.0039063 3. 5505=4+000

o

P

S, E A N 8 Y e
RNT] v ]

[
a-rT

’ ee i 2
10 i : T
-3 -2 -1 0 E
10 i} 10 10
[ dizplay solution in 30 log(h)

Figure 3.6: corresponding loglog plot

Conclusion Since the ratio is 4 and since the time step was divided by 4 and the space
step by 2, this implies forward Euler is first order in time and second order in space.

The appendix of this problem show the steady state analytical solution to the above PDE
derived using Laplace transform method.

14



3.2. HW1 CHAPTER 3. HWS

3.2.1.3 Problem 1 appendix

3.21.31 Review of refinement study process The idea behind refinement study is
reviewed briefly. Assume the goal is to find the order of accuracy of a finite difference
scheme with respect to the space step. The finite difference formula is first derived, and
the exact solution is substituted into this formula. Terms that contain u(x + &), are replaced
by Taylor series approximation. The result is simplified, and the error term is found. An
small example is given to illustrate the idea.

To find the order of accuracy in space using forward Euler finite difference approximation

to a derivative
u(x + h) — u(x)

h
Each term for u in the RHS above is replaced by its exact value, using Taylor series
expansion where needed, resulting in

u'(x) =

[u(x) F () + S )+ S ) + ] — u(x)

w(x) = p

error

2

=u'(x) + gu”(x) + ;l—!u”’(x) + .- 1)

The error term is hence. It is the amount that the RHS differs from the LHS. The leading

error term in (1) (the dominant term) is gu”(x), but since x is a known value (the above is
being evaluated at each grid point, hence x is known), then u”(x) is some constant, and
the leading error term in (1) is of the form Ch, where C is some constant. This is the same
as saying that the error is of order h.

The above method can be used to find the order of the error in approximation when the
exact solution is know. In problem (1), the exact solution is not given and was difficult
to obtain. Hence, instead of finding the order of accuracy using the above method, it was
found using a numerical experiment (refinement study).

In the refinement study the error itself is determined, and from the error profile (as & is
changed), the order is determined. But this error is the error between successive numerical
solutions.

Once the numerical error is found (after running the refinement study), then one method
to find p (order of the error ) is to take the logarithm resulting in

error = Ch?
log(error) = plog(h) +log C
= plog(h) + constant

and this represents an equation of the line Y = pX + k, where p is the line slope which is
the same as the order of accuracy. Hence, by generating different /1 values, and for each h
determine the corresponding error, then p is found by measuring at the slope of line from
the plot generated. If the slope is p =1, then it is first order accuracy, and if the slope is
p =2, it is second order.

The above is a graphical method. Another method is as follows: Starting with some / value,
the error e,_; is found, then £ is divided by half and the error, now called e, is found again.
The ratio 2= is found. If p happened to be 2, then the ratio will come out to be 4. This is

n
Cn-1 — (hn—l)p

en hy_1\P
2

will be 2.

because = 27 and so if p = 2, then the ratio will be 4. If p =1, then the ratio

In the above description, errors are found using differences between successive solutions
as follows

€y-1 = |un+1 - unl
€, = |un - un—ll

The norm used to measure U, the approximate solution, is the Euclidean norm modified
for the space grid

uil = Vauil,
15
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3.21.3.2 Steady state analytical solution to the PDE The following shows the steps
used to determine the steady state solution for

Uy = Ay, + f(t) (1)

where a = 11% and f(t) =1 - ¢! with initial conditions u(0,#) = 0 and boundary conditions
u(0,f) =0 and u(1,f) = 0.

The above is an inhomogeneous PDE (the source term 1 —¢7*). The boundary conditions
are homogeneous, and with zero initial conditions.

Since this is an inhomogeneous PDE, separation of variables can not be used. But the
steady state solution (the particular solution) can be found using an integral transform
approach. Integral transformation is first applied to the PDE, resulting in an ODE which
is then solved in the new transformed space, and the solution in time domain is found by
inverse transforming back.

Since the spatial domain in this problem is a bounded interval (from O to 1), Fourier
transformation will not be used because the spatial domain is bounded and does not match
the Fourier transformation domain (from —co to +o0), however, Laplace transformation
(for t > 0) can be used as it matches the time domain of the problem.

Therefore, taking the Laplace transform of (1) w.r.t time gives

d*U(x, 1 1
_u(x/ O) + SU(x, S) = aﬂ + -

dx? s 1+s
But u(x,0) = 0, hence the resulting ODE is
d?>U(x, s) 1 1
AN - _Z
T2 sU(x,s) 1+s s

With the boundary conditions U(0,s) = 0 and U(1,s) = 0 obtained from the spatial domain.
The above ODE is a second order, linear ODE, a inhomogeneous ODE that can be solved

for U(x,s), which results in the following (for the case a = %00)

—_e~10x+5 (610x Vs-1 _ 1)(610x\/§ _ 610\/5)

s2(1 + s)(l + 610‘/5)
The steady state solution can now be found using the limit theorem for Laplace transform,
giving

U(x,s) =

u(x, 00) = li% sU(x, s) (1)
=50x(1 — x) (3.1)

Here is a plot of the particular solution

x=0:0.01:1; plot(x,50*x.*(1-x))

steady state solution of pde

15

L Infinity)

Figure 3.7: steady state plot. PDE solution
16
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3.2.1.3.3 Derivation of forward Euler for periodic boundary conditions From
part(b) above,

T2 d) a3

kD kD ak\ kD k
u}”l 2 Wiy +uj (1 2— )

Periodic boundary conditions implies #(0,#) = u(1, ), Hence u;_; when j is the first note on
the left is the same as node N —1. And u;,; when j is the last node on the right is the same
as node j = 2. As shown in the diagram below

Periodic boundary conditions
e LT T T T T |
Lo T Yo N+1
¢/ 0—0—0—0—0—0—-0- @
0 1 2 3 4 4uw N-1 N 7 |
_________ T"""""“"""""'" et :
' |
I
|
unknowns e
Figure 3.8: Grid format
Then D k D k kD
1 a
lxl?-'_ dhzuN 1t Ug (1 7 h2 — E) + %ug
And
D kD ak\ kD
1_
M’I/l\f— dhzuN 1t MN(l Zd 2 E) + Eﬁug
Letry = (1 - 2;% - a;), ) = ;%,rg, = g, Hence the system can be written as
] 1o, 000 0 1, Of uf 0
uftl rp o1 1rp, 0 0 0 up 385
ultl 0 r, rp 1 0 0| uj 1394
wittl =10 Ty 11 T O uf |+]| 744
0O 0 0o 0o - 00 : :
upt 0 0 0 0 rp rp mf|luy_g| |738N4
_u”N+1 0 r, 0 0 0 rp rflug| | O

3.2.1.3.4 Derivation of forward Euler for Neumann boundary conditions both ends
Using this numbering

17



3.2. HW1 CHAPTER 3. HWS

o—0O0—0O——0
4

e N-1 N
|

L
] ]

Internal nodes

= O
N O
w O

Figure 3.9: Grid format

Assume that #; = a at node 1 and u; =  at node N (these are the Neumann boundary

conditions).

Add a ghost node 0 to the left of node 1, and approximating a(t) gives
Up — Uy
a=——-—
2h
hence
uy = 2ha + uy 1)
But the PDE for node 1 is
kD kD ak\ kD
n+l _ n n n
M1+ dhz + Uy (1 - 2m - E) + @MZ (2)

Substitute (1) into (2) gives

kD
1 _
u’f+ dhz(Zha+u2)+u1(l ZW—g +dh2
i 2D ) D) D
=ull =292 73 2 Y

Similarly for the right end. Add a ghost node N+1 to the right of node N, and approximating
B(t) gives

_ UN-1 T UN41
p= 2h

hence

3)

But the PDE for node N is

kD kD ak kD
uf ! = TNt ”?\r(l 2505~ g) T2 N+ (4)

Substitute (3) into (4) gives

kD kD ak kD
M§l+1 Iz uN 1t uN(l 2d 2 E) a2 (Zhﬁ + Un- 1)

kD kD ak kD
dhzuN 1+ uf(l- Zd 2 2h,/3dh2

18
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Nodes j =2:-- N —1 remain the same as before. In other words

kD kD ak\ kD k
1_
= gt *“?(1 27 7) t it g8
Let r; = (1 - 2,%)2 - % Ty = ;%,,rg, = S, Hence the system becomes (now nodes 1 and N are

unknowns and added)

[ n+1]

u r 2r, 0 0 0 O uf 2ha ry
uftl rp r1 1y 0 0 Of up 1385
i+l 0 12 r 1 0 O uj 7385
uftti=10 0 rp, . rp, 0 O ul [+]| rgt
n+1 n n
uya| |00 0 0 rp o rf|una| | 738N-1
uiHt 0 0 2r, rpf| uf 2hB" 1y

3.2.1.3.5 Derivation of forward Euler for Neumann on left and Dirichlet on right
Using this numbering

| L=1 |
| |
o—O0—O0—0O0—0—0—0
1 2 3 4 2sauN-1 N
L |
] Internal nodes ]

Figure 3.10: Grid format

Assume that uy =  at node N and u; = a at node 1 (these are the Dirichlet and Neumann
boundary conditions).

The unknowns in this case are nodes 1--- N -1, since uy is known from Dirichlet boundary

conditions. Add a ghost node 0 to the left of node 1, and approximating a gives

Uy —Up
2h

a =

hence

uy = 2ha + uy (3)

But the PDE for node 1 is

kD kD ak kD
1_
7 = G+ i1 -2 - )+ @

Substitute (3) into (4) gives
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kD kD ak kD
u’f“ = @(Zha + uz) + M’f(l — ZW - E) + %Mg
—u”l—Z—kD—a—k Zk—Du”+2hak—D

— dn? d dn2 |2 dn?

Nodes j =2:-- N —1 remain the same as before. In other words

kD kD, k,
Llj —@u]-_1+uj 1—2ﬁ—g +@L[j+1+ag]-

Let ry = (1 - 2;% - %), ry = ;%,rg, = S, Hence the system becomes

—uiil+1- 1 27’2 0 0 0 0 O0ff u7ll 2 h 0(”7’2

un+1 rp 1 T 0O 0 0 O ! 7’3g721
2 2

e 0 rp 11 To 0 0 0 o 7"3gg
e of T {+| s
n‘+1 0 0 0 rp 11 Ty 0 n.

UN-1 UN-1 n n
] 0 0 0 0 rp rp Off 7, r3¢n-1 T 2B

Uy UN +1

. 0 0 0 0 0 0 0 : p"

3.2.1.3.6 Derivation of forward Euler for Neumann on right and Dirichlet on left
Using this numbering

| L=1 |
| 1
O—O—0O—O0—0—_0—-0
1 2 3 4 wuwN-1 N
L |
| Internal nodes ]

Figure 3.11: Grid format

Assume that 1y = a at node 1 and u; =  at node N (these are the Dirichlet and Neumann
boundary conditions).

The unknowns in this case are nodes 2--- N, since u; is known from Dirichlet boundary
conditions. Add a ghost node N +1 to the right of node N, and approximating () gives

_ UN-1 ~ UN41
p= 2h

hence

Un+1 = Zhﬁ + UN_1 (3)
But the PDE for node N is

20 ) aEte @

kD ak\ kD
dn?

kD
n+l _ n n
Un un-1 +ug|l-
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Substitute (3) into (4) gives

kD kD ak\ kD
7" = o+ 81257 - )+ s+

kD . (kD ak kD
ZZ@UN_lﬁ‘MN].—zﬁ—E +2hﬁ@

Nodes j =2:--N -1 remain the same as before. In other words

kD kD ak\ kD k
n+tl _ >~ . n n _n_— _ _gn _olt
= dhzuj_1+uj (1 2d 2 d)+dh2uj+1+dgj
Let r; = (1 - 2% - %), Ty = %,,7’3 = S, Hence the system becomes
_ _ _ _ an+1
uitf lo 0 0 0 0 0 Of uf R
uftl 0 rp rp, O 0 O up 2 ragh 382
utl 0 rnp r 1y 0 O} uj ragi
uftt =10 0 r, 1 rn, 0 O uf |+ > ‘:’l
0 . . : 384
ufth|o|o 0 0 rp rn nlluy, raglh
uiH 0 0 0 0 2r, r| uy 3ON-1
! L - - | Zhﬁn ) |

3.2.1.3.7 Derivation of C-N for periodic boundary conditions From part(a) above,

n+1 kD n+l _ . n

1
' 22" a2 T

( kD aAt) kD
; 1

kD ak kD kD k .
taet (— ) ; ; ")

72 2 e e a8 S

Periodic boundary conditions implies u(0, f) = u(1, t), Hence there is an extra one unknown
(in addition to the internal nodes). Either u(0,t) or u(1,) can be selected since they have
the same value. When selecting the right end node, then uy,; becomes an unknown to be
added to the internal nodes. Using the following diagram

Periodic boundary conditions
C T '
LT T Voo \ N+1
¢/ 0—0—0—0—0—0—70"_ @
0O 4y 1 2 3 4 o uw N-1 N ¢ |
"""""" I |
' |
' |
unknowns b -
Figure 3.12: Grid format
Then for node 2
kD aAt\ kD kD kD ak kD kD k
1 1 1 _ 1
(1 ta ﬁ)‘ 2 g = ”3(1‘ o ﬁ) il ot gl 88

- u __un+1_un1_k_D_a_k +unk_D+unk_D+£(n+ n+1
22N T ogets T TN T gz T o) TN THenge T 2g\82 T &2

21
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And for node N

n+1

kD aAt kD kD kD  ak kD kD k
1 1 1 _
N (1+W+ Zd) 2ai2 N1~ g N = ”?V(l_dﬁ Zd) o1 g7 * W g + g (SR 8K
kD aAt\ kD kD kD  ak kD kD  k
1 1 1 1
uy (1+ﬁ+2d) 2ar2 "N " gt ‘”&(l_@ 2d) W13 * Wi ga + g SR+ ER)
Let
(14 kD N ak
E T T
_ kD
27 2di
_( kD  ak
PE @R
k
r —_ —_—
‘T 2d
gn + gn+1 = g
Converting to matrix form gives
A x b
(v -, 0 0 —nllu] [ 0 rllu] [ng]
~r, 1 -1, 0 0 ||ugt ry T3 Ty uy 7433
0 =Ty T 0 0 : =10 Ty T3 To MZ + 7’4(?4 (3)
0 0 0 w0 00 : :
- 0 0 -r n __ul’ﬁ,” 2 0 0 7 ra||uy| [ra8N]
u711+1 — unN+1

3.2.1.3.8 Derivation of C-N for Neumann boundary conditions both ends

this numbering

Using

| L=1 |
| |
oO—O0O—N0O—O0—0O—_0—-0
1 2 3 4 wuwN-1 N
| |
| Internal nodes ]

Figure 3.13: Grid format

Assuming that 1; = @ at node 1 and u; =  at node
conditions). Add a ghost node 0 to the left of node

Ug — Uy
2h

a =

hence

uy = 2ha + uy

N (these are the Neumann boundary
1, and approximating « gives

1)
22
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But the PDE for node 1 is

n+l _ n+1 n+1

ruf roug T = rouy = rauf + roug + roub (2)

substitute (1) into (2)

ra = o (2ha L+ B *Y) = Ul = raulf + (200 + uf) + 1ol

T = 2 ultt = Ut + 2r0ul) + 2roha + 2rpha

Similarly for the right end. Add a ghost node N+1 to the right of node N, and approximating
B(t) gives

B = UN-1~UNH
2h
hence
Uns1 = 2hB +unq (3)

But the PDE for node N is

P = Uiy — oy = rauly + raufyy + Ul (4)
substitute (3) into (4)

it — roultt — 1, (Zhﬁ”“ + u}‘\,tll) = r3UN + rUN_q + 1o (Zhﬁ + u}l\,_l)

st = 20Ut = ruly + 2roully 4 + 2rohB + 21yt

Nodes j =2--- N —1 remain the same as before. In other words

waf; KD ak\ KD .. KD .. _ ([ kD ak\ . kD kD+k(n+ )
U’ — +—|- - Wttt =u'l- — - = |+ul  —+ul  —+—(¢" + ¢
j a2 " 2d ) 2anz" i Tog et U T g2 T oa) T aame i ognz T2 \8i T8
Let
(14 kD +ak
=T e T
kD
27 2
_ kD ak
BE T T 24
k
Ty = —
DY |
gives
n+1 n+1 n+tl _

n n n n n+1

ru i

]

Then the above becomes
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A x b
[ =2r, 0 0 0 O0][urt] [r3 2r, 0 O ut | [2rha + 2r,han 1]
=Ty 1 =Ty 0 0 MEH—l Ty T3 To 0 0 0 Mg 1’4(gg + gg+1)
0 -r, rn -rn 0 O|fug™| |0 r, r3 , 0 Of uj N r4(g§ + g§+1)
0 0 0 -rp r -rf|uh 0 0 0 rp r njuy, 74(81?1—1 + 8’1?—%)
0 0 =2r, r||uft] [0 0 0 0 2rp r3)| ufy | |2r2hp+2rhp"* |

3.21.3.9 Derivation of C-N for Neumann on left and Dirichlet on right Using this
numbering

| L=k |
| |
o—O0—O0O—0—0—0—0
1 2 3 4 2sauN-1 N
L |
] Internal nodes ]

Figure 3.14: Grid format

Assume that u; = @ at node 1 and uy = f8 at node N (these are the Neumann and Dirichlet
boundary conditions). Add a ghost node 0 to the left of node 1, and approximating a gives

o= Uy — Uy
2h
hence
uy = 2ha + uy (1)
But the PDE for node 1 is
ol — rul T — roul T = Ul + roull + rpul (2)

substitute (1) into (2)

P = 1y (2ha L+ 1l ) = rutt = rgul + rp(2ha + u) + roul

Tt = 2rultt = rault + 2rpul + 2roha + 2rpha !

Nodes j =2:-- N —1 remain the same as before. In other words

kD k\ kD kD
u]”“(l P ) il —— it =y

kD ak kD kD k
+ — |——u’ s n 71+1)
a2 " 2d) 2dn2 Tt pgp2 i T

72~ 21 g gt 2 g
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Let
14+ kD N ak
r = — 4+ —
! dn? " 2d
kD
T = ——
27 2di2
1 kD ak
r3=1--—-—
3 dn2  2d
k
Ty = —
Y,
gives
rlu}‘” — rzu]’-lfll - rzu;-ﬁfll = r_o,u;-1 + rzu;?_l + rzu]fﬂrl + r4(g]’-l + g’-”l)
Then the system becomes
A x b
(v =2, 0 0 0 0 ol[ur] [rs 2, © 0 o ur | [ 2rha+2rhat!
-, rn -1, 0 0 0 Ofust! rp r3 1 0 0l uf r4(g§+g§+1)
0 -r, 1 -n 0ff uatt 0 r, 13 19 0l uj r4(g§+g§’+1)
: . 0 =1: 0 o+ :
0 0 0 -r, rn -r, Olful¥y) [0 0 0 r, rs r Of|ul, ra(gh o + gL
0 0 0 -r, r OJluyt| |o o 0 2, 13 Of|ufy| |ra(ghiy +g4h)+rap"
0 0 0 0 0 1fug?] |0 0 0 0 0 0 0fup| | gt

3.2.1.3.10 Derivation of C-N for Neumann on right and Dirichlet on left Using
this numbering

| L=1 |
| |
o—O0O—O0O—0—0—0—0
1 2 3 4 2sauN-1 N

—_—

Internal nodes

Figure 3.15: Grid format

Assume that 1y = @ at node 1 and #; =  at node N (these are the Dirichlet and Neumann
boundary conditions). Add a ghost node N +1 to the right of node N, and approximating

B gives

_ UN-1 T UN41
p= 2h

hence

UN+1 = 2hB + N 1)

But the PDE for node N is
25
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71“1'1\71 - Tz”z’zfr—ﬁ - Vzu?\]i = 13Uy + 1ol g+ ol (2)

substitute (1) into (2)

it — ruitl - rz(Zhﬁ”“ + u"Ntll) = 13U + roUN_g + rZ(Zhﬁ” + u}{,_l)

it = 2 Uity = raull + 2rpull_y + 21kt + 2rp

Nodes j =2:-- N —1 remain the same as before. In other words

kD . kD k

kD ak\ kD kD D ak
+1 +1 +1 _ o= e +1
g (1 %+ﬁ)_wuﬁl 2aR i =Y (1 a2 2d)+”?—1zdh2+”f+12dh2+2d(g}q +8i")
Let
1+ kD N ak
r — —
! dn? " 2d
kD
2 2
2dh
1 kD  ak
r — —
3 dn?  2d
k
Y
gives
rlLt]’-1+1 - rzu]’frll - rzu]’.ﬂfll = 13Ul + roufly + ol + 7’4(g;Z + g"”)
Then the system becomes
A X b
1 0 0 0 0 0 Ofuftf |0 0 0 0 0 uf a1
0 rn - 0 0 0 0w 0rn n 0 O us | |ralgh+g5™)+ra"
0 -rp r -1 0 0 || ust? 0 rp 13 1 0 0ff uf r4(g§+g’§+1)
0 0 -1, rn -1, 0 O fuff*{=]0 0 r, 3 1, 0O O + r4(g2+g’j+1)
) ) i 0 ) ) ) 0 :
-, rn —n||uiy| [0 0 rp 13 Taf|upo; 74(81'11—2 +g?\ft12)
0 0 0 0 0 -2n rlJ_uIV{,”_ 0 0 0 0 0 2rp r3f|luyq| | 2rhB" + 2r,h |
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3.2.2 Problem 2

Ut = Uy, 0< <1

u(0,t) =1, u(1,t)=0

(2,0) 1 ifz<0.5
u(zx,0) =
0 ifz>0.5

(a) Use Crank-Nicolson with grid spacing h = 0.02 and time step 0.1 to solve the problem
up to time t = 1. Comment on your results. What is wrong with this solution?

(b) Give a mathematical argument to explain the unphysical behavior you observed in the

numerical solution.

(c) Experiment with smaller time steps. How small does the time step need to be to get
reasonable results?

(d) What happens to the numerical solution as At — 0 with the ratio At/h fixed? Explain.
Would this same behavior occur using backward Euler in place of Crank-Nicolson? Ex-
plain.

Figure 3.16: Problem statement

3.2.2.1 Part(a)

The C-N scheme was programmed in Matlab and then run on the above problem. The
following shows the result

select pde solution wx, ] at t=1.00000 sec
diffusion: dut-Du xx+au = Qi) +alxt) : curlrent‘ tmlﬂe Et‘ePI =10 :

" (explicit) forward time, centered space

12
& (implicit) Crank-Nicolson scheme

convection-diffusian: 11-- 4w
dut -Du_xx+au_x=00%+d(xt)
" (explicit) forward-time, centered space
08
parameters

delt, time step {sec) | 0.1
h, space step (m) 0.02 =
length im) | 1
04
D (diffusion constant) | 1
a I 0
0z
d | 1
haw long to run (sec) I 1 . | i
] 0.2 04
boundary conditions x
left end [ display solution in 30
& dichlet U@t | 1
— tight end ahsolute stability condition: delt/d *(a/4 + D/he2) MNIA
& grichiet U0O[ 0
A an L] 't)l 0 [~ perform refinement study

simulation speed internal source

— point source (if any)————————
4 2 I 1
Qi
S it) 0

E Sl

Iitisl condtions st t=0 located at x :I 0.500

run'rtrectangularpuksemnteratx:l 05 Widlh=| 0.5 — general zource

I¥ step function ampmude:l 1 shift amount=| 0.5 alx i
i 0y If ™ unitimpulse atx=| 0.5

Figure 3.17: C-N scheme solution result

In the above plot, the red line represents initial conditions (the step function shifted to the
right by 0.5) and the blue line represents the final numerical solution at time f =1 second.
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The following plot is a closer look at the grid near x = % showing the initial conditions

Solution at time t=0

U(+1) U(+1)

Figure 3.18: the grid near x = % showing the initial conditions

It is clear the numerical solution is not accurate as it does not match what is expected to
occur physically which is for initial data to diffuse. The initial data contained high spatial
frequency that should have been smoothed out rapidly. The final numerical solution is not
smooth and contain high spatial frequency components which should have been attenuated
by the time the run is completed.

The exact solution in the Fourier space is (&, t) = f1(&, O)e‘Dgzt, where 71(, 0) is the spectrum
or Fourier coefficients of the initial condition u(x,0). This shows that modes with large
spatial frequency (large wave number &) will attenuate the fastest due to the negative

exponential decay effect. But this was not observed in the above numerical solution.

C-N is a stable scheme (A-stable), but can be inaccurate if the time step used is large relative
to the space step or if initial conditions contain large spatial frequency components. In
C-N, the time step needs to be about the same order of value as the space step for the
scheme to give accurate numerical results. (This is because in C-N, the order of accuracy
of space and time are the same, as was found in problem 1).

Therefore, it appears that C-N scheme does not handle discontinuities in initial conditions
well as this result shows.

In the next part, the amplification factor for C-N is determined, and a mathematical
explanation for the above result is given.

3.2.2.2 Part(b)
The C-N scheme for u; = Du,, is given by

1 1 1
—ruy + (14 2r) - rully = ruly 4w (1= 2r) + g, (1)

AtD L . P
Where r = Zt? Von Neumann analysis is used to determine the magnification facto

Assume u}! = ¢“% and u;-“l = g(é)eiéxf then (1) become

—r(g ei‘f"/e"gh) +g N1 +2r) - r(g ei‘fxfei‘fh) = r(ei‘f"fe‘igh) +€%(1 = 27) + re'“Nieith
g(=2rcos(&h) +1 + 2r) = 2rcos(&h) +1 - 2r

1+ 2rcos(&h) — 2r

1 —2rcos(&h) + 2r

g(&) =

2The magnification factor is the term ¢(&) in the expression relating #"*! to #1" in the expression #"*! = ¢(&)
ﬁn

%1t is possible to derive the amplification factor using direct application of fourier transform, but the
procedure is longer. The final result will be the same. The appendix of this problem contain this derivation.
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Hence, the magnification factor is

© - + 2% (cos(eh) - 1)
T T D coste) - 1)

Let & be written as &, in the above in order to examine g in terms of specific wave number
&p (which has units of radians per unit length). The above becomes

1+ %(cos(éph) - 1)
) o))

(2)

But {, =prandp=1---N, with h = ﬁwhere the line was discretized using the standard
grid convention

| L=1 |
|
o—O0——0O0—_O0—0O0—0—-—=0
0 1 2 3 awas N N+1

—_—

—

Internal nodes

Figure 3.19: Grid format

Therefore cos(éph) = cos(pnh) = cos(N 1) The largest frequency occurs when p = N,
because then / is smallest, and the smallest frequency occurs when p = 1. Hence, there
are a total of N Fourier modes when representing initial data as Fourier series. Now the
magnification factor in (2) becomes

(5 ) _ 1+ %(cos(pnh —1) 3)
S 1- iﬁt(cos(pnh —1)

But since |cos(pnh)| <1, then g(ép) is less than 1 in magnitude for any p, implying that C-N
is stable. To determine the magnitude of g(ép) when the mode has the largest frequency,

let prth = —7'( 7 in (3), resulting in
1-2°7
SEN) = —px (4)
1+ 2h_2

When the time step At > h, then — A > 1, and in the limit |g(&x)| — 1. This shows that large

frequency modes will decay very slowly because g(ép) is now close to 1. No attenuation
will occur between each application of the update matrix or between each time step.

The above explains the result seen in part (a). Large frequency components did not decay
fast as was expected, because the time step used was much larger than the space step. The

problem asked us to use At = 0.1 and & = 0.01, which gives % = 00012 = 1000 and hence
1-2000

8(EN) = |T3000] — 0-9999, and since this is almost one, then large frequency modes did not
attenuate with each time step. The amplification factor needs to be small for attenuation
to occur fast.
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The following is a plot of g(cfp) showing how the amplification factor changes as function
of p for the case of At =0.1 and = 0.01, and D = 1. It shows what was found above, that
at large frequency where p is close to N will have a correspondingly large

-} <Student Version> Figure 1 _ o] x|

FHle Edit View Insert Tools Desktop Window Help k'
NEds 3RO EL-(a0EnD
Magnification factor as function of wave number

C-M scheme for h=0.020000, t=0.1, N=43

09r

08¢t

0.7+

06r

05¢

0.4} . large spatial freq.
small spatial freq.

0 10 20 30 40 50
p, wave number

Figure 3.20: corrected plot of amplification factor

To determine what value of % is required to make the large frequency mode decay right

away, let % = % in (4), this gives g(&y) = 0, which implies that large frequency mode will
1-p04f
be knocked out right away. Here is a plot of g(&y) = ”—E’it as a function of % showing

h2

that when % = 0 then the magnification factor is minimum. This is only for mode p = N.

-z BM
B s
E":..-_ ="
o 1. Dat
E::
[ T T T T T
141 .
1.2F b
1.0F -
S - %
= 08F N\ ]
= L 3 ,
06f \ ]
X .,
04} . ]
L S
0.2t ‘“xa ]
ool ] | ] .HH.“"H.. ] L i
0.0 0.2 0.4 0.6 0.3 1.0
DAt

Figure 3.21: for mode p =N

Conclusion If initial data contained large difference in value over very short distances (in
other words, large spatial frequencies) such as given in this problem, producing disconti-
nuity in data and its space derivative, and when the time step is large compared to the
space step, then the numerical solution produced by C-N will not be accurate since large
frequency modes will not attenuate.
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To compensate for large frequency present in initial data, the ratioDh—ftneeds to be made
close to 0.5 as possible. It might be better not to use C-N at all in such case and look for a
scheme which does not have this problem.

notice that condition that % = % found above, is the same value for the upper limit for

the absolute stability condition for the forward Euler discretization scheme for the 1D
diffusion problem.
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3.2.2.3 Part(c)

The time step was reduced and the program was run for 1 second. When the time step
was reduced all the way to At = 0.01 then the final solution appeared smooth every where
and in particular at x = 0.5. The following diagram illustrates this.

celfmels ) b=t solution u(z, ) at t=1.00000 sec solution u(z, ) at t=1.01250 sec colution u(e ) ot t=1.00000 ssc ‘°‘“‘m:"“(" ‘)‘ =t ‘flluggmm see
urrent time step = 20 e ki Hoae current time step =

nt time step

\ 1 N\
>
i w2 PR TR TR M

0.05 sec 0.025 sec 0.0125 sec 0.01 sec 0.001 sec

Figure 3.22: Final solution at x = 0.5

When using time step of 0.01 sec, 100 steps are used. From the last part it was found

DAt 0.01

that ¢(En) = u—git, hence |g| = 20(')‘_)0212 = 0.96078, and therefore |g|100 — 0.9607819 ~ 0
+ E— —
12 0.022

showing that by the 100" iteration, the large mode frequency have completely smoothed
out as verified by the above plots.

In the plot below, the magnification factor |g(&)| is shown for ¢ = 0.01 and & = 0.02 showing
that at p = 50, g(&) = 0.96078. Compare this value with the one used in part(b) which was
0.999.

Magnification factor as function of wave number
C-M scheme for h=0.020000, t=0.01, M=4%

1] 10 20 30 40 50
B, wave number

Figure 3.23: Comparing with the one used in part(b) which was 0.999.

To obtain smooth solution immediately after one time step, the required time step to
accomplish this, can be determined from the condition for optimal amplification factor

found in the last part which is given by % = % From this relation, and when / = 0.02
and D =1, the time step will be At = 0.0002. This value of time step produces a smooth

32



3.2. HW1 CHAPTER 3. HWS

solution immediately (one step). This was confirmed, and here is the numerical solution,
after only one time step, using At = 0.0002,h = 0.02 and D =1

golution wlwx, {] at £=0.00020 sec
current time step =1

———— cument

o) initial ||

\ Smooth

solution
appears
immediately

Figure 3.24: numerical solution, after only one time step, using At = 0.0002,# = 0.02 and
D=1

It is also possible to determine which At achieves a given specific attenuation of the high
mode. Suppose it is required to attenuate the high mode to 0.001 of its initial amplitude at
the end of 1 second run. Therefore, this means that

1
lg(&n)| ¥ = 0.001
1

DAt | At
sl -
— 2| 000
1+ 2?

Taking logs, and using & = 0.02 and D =1 results in

1 1 — 5000A¢
At °\1 + 5000A¢
log(1 — 5000At) — log(1 + 5000Af) = —3At

The above is not a linear equation, but can be numerically solved for the root At. For
the above example, At came out to be 0.00761 seconds. This means that when using At
= 0.00761 sec, h = 0.02, and D = 1, then the largest frequency harmonic will have its
amplitude attenuated to 0.01% of its original value after 1 second run.

3.2.2.4 Part(d)

Making the time step smaller and smaller, while keeping the ratio % fixed, produces the

following result (all runs are for one second). In this example, the ratio was kept at 5.

The following sequence of ratios are used {E 001 |o%01 | 0.o001 } to generate the following

0.027 0.002” 0.0002” 0.00002
solution after one second run
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solution u(z, #) at t=110000 asc solution u(z, #) at t=1.00000 sec solution u(%, 7) at 1=1.00000 eec solution u(z, ¢) at t=1 00000 sec
current time step = 11 current time step = 100 current time atep = 1000 current Lime step = 10000

0 ] 08 08 LX)
08 ’[\ o8 08 s

04 04 04

02 \‘ 0z 02 02

? 0 02 04 “’"‘5‘5 0% 12 ° L 02 04 ﬂ 08 12 o 0 02 04 ﬂ 08 |_z. ¢ 0 02 04 ﬂ 08
Det=0.1, B Det=0.01, Det=0.001, ) Det=0.0001,
h=0.02 h=0.002 h=0.0002 h=0.00002

Figure 3.25: solution after one second run

Now, recall from part (b) that the magnification factor for the largest Fourier mode was
given by

1-2°7
SEN) = — i
1+2h_2

At .
When It is held constant, say C, then the above becomes

1-Ch!

S

In the limit, as & — 0 then g(£y) — 1, which implies, as was found in part(b), that large
Fourier modes (high p values) will not be attenuated. This is confirmed by the plots above.

3.2.2.41 Using backward Euler in place of C-N When using backward Euler. The
finite difference scheme for u; = Du,, becomes

n+tl _ n

u u:
] v ] =f(1/ln+1) 1)
n+l _ n+1 n+l
_ Duj_l 2ui™ +
= 12

Applying Von Neumann analysis, let u}' = ¢, and utt = g(£)e™Y, then (1) becomes

g eielth — &% = _D;ﬁ—tg(eié"fe—iéh — 26 + ¢ielth)
. DAt . .
geth—1= Fg(e‘“fh — 2+ ¢ih)

g(ei‘fh - %(2 cos(&h) - 2)) =1
1
elch — %(2 cos(&h) - 2))

g(&) =
(

Therefore

g(gr’) - (eiéph _ %(2 cos(&,h) - 2))

But &, =pmand p =1---N, and to evaluate what happens to g(ép) at the largest spatial
frequencies, let £, = N7 and the above becomes

1

iNrh _ DAt N -
et — =5 (2cos(N+1n) 2))

g(En) = (
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N ; ; ..
But T 1 and eN™ ~ ¢ = cos(mt) + isin 7T = —1, then the above becomes

g(EN) !
N =
(—1 - %(2 COS Tl — 2))
Therefore
1
g(CEN) = DA?
4h—2 -

When At > h then [g(&y)| — ﬁ — 0 which implies that large frequency modes will be
knocked out fast. This is opposite to the situation observed using C-N. Hence backward
Euler does not have the same problem with large spatial frequencies in initial data. But

DAt 1 1 .
notice that when — = -, now g(&y) = ;= =1, which means that large frequency mode

will not decay or decay very slowly, This is also opposite of what was found for C-N.

3.2.2.5 Appendix for problem 2

3.2.2.51 Derivation of part (b) by direct application of DFT (the harder way)
The C-N scheme for u; = Du,, given by

]n+1 + un+1(1 + 27) ”+11 = ru] 1+ un(l 21‘) + 77/!]+1 (2)

Assuming the problem is on the whole real line, then

u't =

: F (&)™ de (1A)

Swlz

and
E

+1 _ ~An+1 iéx
uj o f (&) de (1B)
Where #1"(£) is the discrete Fourier transform (DFT) of u;?. In what follows, #I" is written
instead of #1"(£) to make it easier to read the equations. The C-N finite difference scheme
for u; = Du,, is given by

—r 4+ w4 20) = vl =l (U= 2r) (2)

Where r = itTl;. Substitute (1A) and (1B) into (2), but leaving u}’“ as is gives

—_

|
-

5]~
A

i
ﬁn+1ei5(xj+h)d5 —
V2n [

%
fﬁ”“ei‘s(xf_h) d& |+ u}‘*l(l +2r) -1

(‘:\-I:

1
21

T
Mg+ -2 \/;_ f weige | + [
T
_F

_I
h

or

us

h
- f Al JiEY (ich | ich n+l _

ottte=l (et + e dé|+u™ (1 +2r) =
o | ( ) j

h

(7, WM PN il Lo pEX 0y pN 4 1 oSN eiéh)dg

-
|
:lg):‘l.:x
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Simplify

=lA

T
W1 +2r) = — fﬁ”“eigx ith 4 =14 g + —fﬁ”e’gx r(efh + e7i€h) +1 - 2r|dE
] e o oo L firele s )1

T

n
) 1 .
21 2 cos(Eh)eNdE + —fﬁ”(Zr(cos(éh) -1) +1)e'Yd&
V21 v,

n

h
% o
f ( "(2r(cos(&h) — 1)+1)+2rcos(§h)A”+1) i&xjge

Hence
DPT(u]’ﬂ“(l +2r)) = (@"(2r(cos(&h) — 1) +1) + 2r cos(En)ar™1)

DPT( n+1)

(1+2) (#"(2r(cos(&h) = 1) +1) + 2r cos(Eh)a™*?)

This implies that

fr+l = ;(ﬁ”(Zr(cos(éh) -1)+1)+2r cos(éh)ﬁ”“)

(1+2r)
Solving for 71" gives
2 h An+1 1
s “?ff 22;‘ = i3yt @r(cos(én ~1) +1)

a1 +2r) = 2rcos(Eh)\  @"(2r(cos(Eh) —1) +1)

" (1+27) - 1+27)
Hence

ae1 _ @r(cos(Eh)-1)+1)

(1 +2r) - 2rcos(Eh)
_ 1+2rcos(éh)—2r
"~ 1-2rcos(éh) +2r

1+2r cos(&h)-2r . AtD
(&) and since r = then

An+l _ An = """
Therefore 2" = g(£)2", where g(&) = T— cos(Eh)12r’ 22

where &, = pr, is the wave number.

3.2.2.5.2 Another derivation for the magnification factor The magnification factor
g(&) found above is the same as the eigenvalue of the update matrix of the C-N scheme.

From DA DA
t t
(I - TL)M”“ = (I + TL)u”

or 1
DAt \ DAt
u"tl = (I - —L) (I + —L)u”

Where L is the 1D Laplacian grid operator which has eigenvalues A, (cos(pnh) ),
hence, let 1, be the eigenvalue of B above, then
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1+ —4,
[J =
Fo1-2Ea,
_ 1 %}%(cos(pnh) -1
C1- %%(cos(pnh) - 1)
~ 1 %(cos(pnh) - 1)
C1- %(cos(pnh) - 1)

Which is what was found in part(b)
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3.2.3 Problem 3

3. Derive a stability restriction on the time step for solving the diffusion equation using the
second-order accurate explicit Runge-Kutta method

vyt =y" + ALf(y")

A
v =yt SN + ),

for time stepping. Does this scheme offer any practical advantage over Forward Euler for the
diffusion equation?

Figure 3.26: Problem statement

The finite difference scheme for the diffusion problem is shown the appendix of this
problem.

To obtain the absolute stability restriction, let

A
Y-yt = zt(f(yn) +f(v))
A
Y=yt 4 ?t(/\y” +Ay’)

=y'+ %(/\y” + /\(y” + At}ty”))

= ”+At/1 ”+At/\( "+ AtA ”)
=Yy > Y > y Y
At At (AAD)?
— n - n - n n
—y+2/\y+2/1y+ >

2
= (1 + AtA + (Aét) )y”

Assuming AtA =z
1
yi+l= (1 +z+ Ezz)y”

Hence R(z) =1+z + %zz and for absolute stability it is required that |R(z)| <1 which leads
to

12
—1s1+z+§z <1

2<z4i2<0

2<z+=-22<
2

A plot ofz+%z2 shows that -2 <z <0

Infsl:= Plot[z+1/2z*2, {2, -3, 1}]

\ 1o} '

Figure 3.27: absolute stability region
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The above gives the interval of absolute stability for the eigenvalues. To obtain the region
of absolute stability, assume A can be complex in general (complex eigenvalue), which
results in a disk of radius 1 centered at -1. This is the same region of stability as Forward
Euler.

Absolute stability region
for eigenvalues for the R-K
scheme in problem 3

Figure 3.28: region of absolute stability

Notice that since R(0) =1 and dl;f)

=1, then this method is also consistent and first order accurate in time.

To answer the question about any advantage of this method over forward Euler. Recalling
that In forward Euler

un+1 = Bu"

Where B is the update matrix given by B = I + DAtL,, where L, is the 1-D Laplacian

operator for u,, with Dirichlet boundary conditions, with eigenvalue A = hz—z(cos(pnh) - 1)
where p =1--- N using the standard grid convention used before.

Let u be the eigenvalue of the above update matrix B, hence

p=1+ 2122& (cos(pnh) - 1)

For stability, [#| <1 hence

7 t(cos(pnh) - 1) <1

| DAt

1+

1-4—5—

| <1

Simplifying, this gives
0< DAt < 1
T on T2

To compare the above with the R-K scheme in this problem, since

u —u"
At

=Lu"

= %(Lu” + Lu*) 1)
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Expanding gives
+1 At
u™t =y + E(Lu” + L(u" + AtLu™))
At
=u"+ E(Lu” + Lu" + Athu”)

- (1 + g(2L + Ath))u”
2

= Bu"
The eigenvalue of L is - 1) ~1) but si A-1=-2sin* 2, h h)-1=
e elge}lllva ue of L is h—z(cos(pn )— ) ut since cos h— = —2sin” 7, hence cos(pn )— =
~2sin’ % and the eigenvalue is written as —:—2 sin’ ’% .

. h . 4
let sin® p% = w, therefore the eigenvalue of L becomes A = —h—(:.

Using this notation, the above update matrix B for this scheme will have the following
eigenvalue

1 A pte i)
H=27517702 12
4DAtw 8D?%w?
_ 2
=1- " + At i

.1s . . 4 s . . 2pnh _
For stability, |u| < 1. Maximum p will occur at @ =1 implying that sin — =lorp=N,
resulting in

2
2 +Atﬁ

ADAt 8D?
1- <1

Therefore

ADAt ., 8D?
-2 + At p <1
ADAt ., 8D
hz + A th—4 <0

4DAt 8D?

2
< 2 — At i <2

-1<1

—2S—

0

1
2

DAt [DAt\?
0<9z 27z ) =

This shows that with the given RK scheme, stability implies the condition 0 < % —Azth—4 <
DAt

%. This is compared to 0 < —5 < % for forward Euler.

What does this mean in terms of the time step? Will this allow the use of a larger time step
than with FE while keep absolute stability?

Assume D =1, This is a table showing the maximum value of At allowed for different
values

scheme h=1|h=01]| h=0.01
FE 0 < % < % 05 | 005 | 0.005
At 2A%t 1
RKO<p-25<2] 05 | 005 | 0005

Hence, the largest time step does not change with this scheme when compared to forward

Euler. It seems based on the above, that the explicit Runge-Kutta scheme for solving the
diffusion PDE does not offer any advantage in handling the stiffness of the PDE since the
time step remained constrained by #? as with FE. It seems that explicit schemes are not
suitable for stiff problems
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3.2.3.1 Appendix for problem 3

3.2.3.2 Derivation of the update matrix for 2 step R-K for diffusion problem with
Dirichlet B.C.

Given
yt = Dyxx
Then
y;_yz Dyz _Zyz +y1+1
At h2
F(v")
D
vi=yi + Ath_z(%nq -2y + y?ﬂ)

Hence

vt =l .
27— = (f(y") + f(v'))

D
= [ﬁ(]/?—l - 2y] +y?+1)} +

D
(i - 20 + y§+1)]

D
= (vl - 200 +yla)+
D
[yz LA (i~ 29 + y?)]—

+

D
2ﬁ[y? + Ay 20 + )

D
ﬁ[ i+1 T Athz (yz 2]/:'1+1 + yzr'l+2)

Expand and simplify

M D (1 _one2 _oaeR
Af Y 2 e
+D " 2+AtD 2 — 4AtD+AtD
12Yi 12 2 e

D D D
+ V(1= 2005 +1-20t
D (. .D

+ 17Yiv2 Afh—z

D[, D\ D\ . D\ . (..D
:h_Zyi—l 2_4Atﬁ +yi —4—2Ath—2 +yi+1 2_4Atﬁ +yi+2 Atﬁ

Hence

DA
W=y o [yl 1(2h2 — 4AtD) + yP(-4k? — 2AtD) + Y, (212 - 4ALD) + i}, »(AtD) |
—”+D2A2 2 Ui —2”£+1 + 2y h—2—2+”
=Y 2h4 yl AtD Yi AtD Yiv1 AtD Yie2

. (DNt K2 (. D*Nt(2K?
=Vl \amm ) P\ e A Y)Y

L (D*Nt( K? . D*N%t
Vet a2 \ap 4] T Ve
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D2A?¢ 2
Let = and let =5 =2 the
r r
y =y 302 = D) + 4 = 112 + D) + (el - 2) + S
2% T
= y?—l(% - 71) +y (1= 2ryry —11) + Yl (1112 — 2r7) + y?+251
Using this 1-D grid
| L=1 |
|
O—O0——O0O—0O0—0—_0—-00
0 1 2 3 asnx N N+1
| |
| Internal nodes |
Figure 3.29: Grid format
The matrix form of the scheme becomes
L] [ -2nry—r)  (rrp—2r) % 0 0 0
M}éH-l (% - 7’1) (1 - 21"11’2 - 7’1) (7’17’2 - 27"1) %1 0
u§+1 _ 0 (% - rl) (1=2rrp —11) (rqry —217) %1
u?\fr_ll 0 0 0 (% - 1’1) (1 - 27’17’2 - 1"1) (1"1 Ty — 27’1)
~u}l\frl_ i 0 0 0 0 (% - r1) (1 =2rr,—1)|"
(%2 - )
0
0
y?\lﬂ%
| (r172 = 2r1 Uy |

There is a problem above at node N as two additional nodes are needed to its right, but
only one node exist. Need to look more into this later, as this part is not required for this

HW.

. . 2oL .
Notice that units of D are meter? per second, hence D s dimensionless, so we are ok.
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3.2.4 Problem 4

4. Consider the forward time, centered space discretization

n+l _  n no__.n no_ n n
j uj N aujJrl Ui _ buj*l 2ui +ujy,
At 2h h? ’

u

to the convection-diffusion equation,
Ut + aty = by, b > 0.

(a) Let v = aAt/h and pu = bAt/h?. Use von Neumann analysis to show that the scheme is
stable if p < 1/2.

(b) Let @ = 80, b = 1, h = 0.05. Generate a numerical solution on the spatial domain
[0,1] with periodic boundary conditions using At = 0.25h%/b with initial condition
u(x,0) = exp(—20(z — 0.5)?). What happens? Does your stability analysis predict this?

(c) Since the solution to the PDE does not grow in time, it seems reasonable to require that
the numerical solution not grow in time. Show that the numerical solution does not
grow (in 2-norm) if and only if 2 < 2u < 1. This is called strict or practical stability,
and as the name suggests it is the restriction one would use in practice.

(d) Generate a numerical solution up to time ¢ = 1072,

Figure 3.30: Problem statement

3.2.41 Part (a)

The PDE is u; + au, = bu,,, with b > 0, the forward time, centered space discretization is

+1
ui™ —uf .\ au}ﬂrl - Uiy _ bu;?_l —2uj + uj,y O
At 2h h?
Applying Von Neumann analysis, let u}' = ¢“* and u}’*l = ¢(&)e"“Y, then (1) becomes
geiéxj _ eiéxj . aeiéx/eigh _ eiéxje—igh _ beiéxje—iéh _ 2ei-§xj + eiéx/eiéh
At 2h - h?
e _ g 4 az_lzt ( % il _ piE%; e_igh) _ % ( 5% pmih _ o] eiéxjejgh)
g-1+ 1é(eiéh - e‘iéh) = y(e‘iéh -2+ eigh)
(&) =1~ g(ei‘sh - e‘i'sh) + p(e‘lgh -2+ eiéh)
Hencel
g(&) =1+ 2u(cos(éh) —1) —ivsin(Eh)
But cos A —1 = -2 sin? g, hence cos(&h) —1 = -2 sin? i—h and the above becomes
h
g(&)=1-4pu sinz(%) — v sin(&h)
Therefore
2 Eh i
ls(&)|” = [1 —4u sinz(?) + 12 sin?(&h) (2)

Using the trig identity

sinz(éh) =4 sinz(gz—h)(l - sinz(%h))

5Notice that the first oder derivatives (or odd order in general) produces eigenvalues that are complex,
and the even order ones produce real eigenvalues.
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then (2) becomes

2
+ 4v sm(2 1 - sin >

h
@) = [1 ~ 4y sinz(%)
Let sinz(%) = w in the above

|g(§)|2 = (1 - 4ya))2 + H20(l - w)

The maximum of |g(5p)| occurs when &h = m, making w = 1, hence from above, the

maximum of |g(cf)|2 is reduced to 1 — 4y, and then for stability

1-4p| <1
therefore
-1<1-4u<1
-2<-4u<0
0<4u<2
Hence ,
O<u<-=
<u< >

The above result can also be derived using the stencil diagram method. The stencil diagram
for the above scheme (for internal nodes only) is

Ut + auy = Duyy
o |
Y jf“&
// \\
<+ H 2 N\ v
/ - =
k 2 // | \\\‘u 2
/
// ll— 2[.l \\
/ | \\
/ \
I b o
J-1 ] J+1
< |
T oh ]
The stencil for problem 4 finite difference scheme with
periodic boundary conditions

Figure 3.31: Grid used

As was done in problem 1, By imposing that the weight on each edge in the above directed
graph not exceed unity, and that the total algebraic sum of the weight of the edge also not
exceed unity. This includes any combination of edges involved. For if this was the case,
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then u;?“ will always have an amplitude < u{'. Applying this to the above diagram gives

1) g +u<l Condition on j -1 edge
(2) |y - §| <1 Condition on j +1 edge
B 2u<1 Condition on j -1 added to j +1 edge
4) |1-2u<1 Condition on the j edge

5) |1 +o - y| <1 Condition on the j edge added to j -1
(6) |1 - g - yl <1 Condition on the j edge added to j +1
(7) 1<1 Condition that all edges sum to less than 1

Condition (7) gives no information. Condition (4) gives u <1 and hence weaker than (3),
condition () is the same as (2) and gives u — g <1, condition (6) gives g + 1 <2 which is
weaker than condition (1). Hence the following are remaining conditions (3),(1),(2).

(1) g +u <1 Condition on j—-1 edge
(2) |y - §| <1 Condition on j+1 edge
3) 2u<1 Condition on j -1 added to j +1 edge

From the above, only condition (3) can provide useful information, which is that y < %,
which is what was found using Von Neumann analysis.

3.2.4.2 Part (b)

The scheme was implemented. The source code is in the appendix of this problem. The
grid used is the standard grid

| L=1 |

1 |

O—0—0—0—0—0—0

0 1 2 3 wxn N N+1
| |

Internal nodes

Figure 3.32: Grid used

In the following, I will be use the following PDE cu; + au, = bu,, (wherec was added a
parameter for the advection term).

Periodic boundary conditions implies #(0, ) = u(1, t), Hence there is an extra one unknown
(in addition to the internal nodes). Either u(0,t) or u(1,t) can be selected since they have
the same value. When selecting the right end node, then uy; becomes an unknown to be
added to the internal nodes. Using the following diagram
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Periodic boundary conditions

r-r———~—~—"~>"~>~~>~—"—"————7 77— m
L e \ N+2
1 N+1"

\uo
]
]
]

unknowns

Figure 3.33: Grid used

The forward time, centered space discretization is

n+1 n n n n n n
Uit = uj Uiy —ujiy Uiy = 2uj + U

c +a =D
At 2h h?

Therefore, for nodes 2 --- N, the finite difference scheme is

u;-“l —ul o wh -ty ) Wiy = 2uf +uiy
A T T 7
u o —ul u’ 2u +ul
u}“lzu]’?—uAt ]+12h] Lot h2 i+
c c

1 alt bAt
ui™ = uf - 2ch(]+1 )+ h2( - 2uj +u]+1)

p4l _ aAt bAt alAt  bAt
YT Walog T W =2 * a2

Letv = uc—it, y= %, the above becomes

v
u;,“l = u?_l( + y) + Uu; (1 2#) + u]+1(y 2)

Node j =1 gives
1 v v
ultt = u()‘(z + y) + u’f(l — Zy) + u’ﬁ(u - E)
v v
= ”?\m(i + /J) + (1 -2u) + u?(# - 5)

And for node j =N +1

v
Ui = UN( + #) + ”Km(l - 2#) + u}‘\,+2(y - E)

n v n n v
= ”N(E + P‘) + ”N+1(1 - 2#) i (# - E)

The full system can now be written in matrix form

] [0-20) (w-3) 0 00 (Gl |
| f(wez) (0-21) (w-3) 0 0 0 || s
it 0 (weg) (-2 (w-3) 0 0|
iyt | o 0 0 (u+3) (1-20) (u-3) ||
] {(e-3) 0 0 0 (u+g) (-2u)flua]

The above can also be written as

(1)
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update matrix

[+ ] (0 1 0 0 1] 2 1 0 0 0

0 1]\ w2
us+l -1 0 1 0 0 O 1 -2 1 0 0 O] uj
ustl aAt|0 -1 0 1 0 0| bAtfO 1 -2 1 0 O]

=|r1- = + =
: 2chf: : -1 1 0f k[ i o0 :
ulit 0 0 0 -1 0 1 0 0 1 -2 1| uy
it | 1 0 0 0 -1 0 0 0 0 1 =2)[upy]

u](-) are taken from initial conditions. The above is in the form

un+1 = Bu"

and is implemented directly as above in the code. Using the numerical values given in the
problem

0.2512 (0.05)°
At= = =025 = 0.0006 25
and
_aAt _ 80(0.000625)
VST T T 005
and

_ bAt_ 0.000625 _
H= e (0.05)°

since u < 7 the solution is expected to be stable since this is the condition derived in part

(a).

The following is the result of running the program. The numerical solution grew with time.
Here are few snap shots taken at increasing time steps showing the problem. After only
about 10 time steps, the numerical solution can be seen to grow more than the initial
conditions
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solution u(g, #) sk 1=0.00000 sec

eolution u(z, £) at £=0.00083 eec

aolution u(z, ¢) b t=000125 sec
current tims atep = 2

solution u(z,#) ab 1=0.00800 sec
current time step = 8

current time atep =0 current Lime sep = 1
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02 04 oe 08 1.2 ° 02 04 08 08 = 12 ‘ 02 2N . 08 08 . 12 ‘ o o x - o !
t=0.00125 t=0.005
t=0 t=0.00063
; - aolution u(x,#) at 4=0.00938 aec el (e ) of DA ce aohition (2 7) at 1 =0.01a7E ses
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Figure 3.34: few snap shots taken at increasing time steps showing the problem

The stability analysis that was done did not predict this based on the value of y which was

1
<.
2
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3.2.4.3 Part(c)

The eigenvalues u, of the update matrix derived in part (b) are

u, =1- i%At sin(nph) + %(cos(nph) - 1)

But v = %At, U= %, then the above becomes

u,=1-1v sin(nph) + Zp(cos(nph) - 1)
Let sinz(i—h) = w, then the above can be written as

|up|2 = (1 - 4_ya))2 + 4wl - w)

As was done in part (a).

From part (a), it was found that when w = 1, this resulted in the condition of stability being
O0<u< %, and when w = 0, the maximum eigenvalue is 1. To find the condition of |up| <1

2
for the full range of w, first expand |up| into a quadratic in @ and minimize

2
|up| =1+16p%w? - 8uw + HPw — H2w?

=1- 4a)(2y - V2) + 4a)2(4y2 - 1/2)

. . niph . . .
Since w = sz(%), then w values are from 0---1. Since the maximum eigenvalue occurs

when w = 0, then w = 0 is the maximum point of the quadratic 1—4a)(2y - v2)+4a)2(4p2 - 1/2),
hence the slope of this quadratic at @ = 0 must be negative. But the slope is

d d
| = = (1~ 40(2u - 1?) + 40?(442 - 12))
= —4(2y - vz) + 8a)(4y2 - 1/2)

For the above to be negative (so that the eigenvalue remain below 1) implies that 2y — 12
must be positive, i.e.
2u-1v*2>0

or
V2 < 2u

And since from part(a) it was found that y < %, or 2u <1 then the above become

v2<2u<l

3.2.4.4 Part(d)

The solution for At = 0.000625, h = 0.05, a = 80, b = 1, with u(x,0) = exp(-20(x - 0.5)%) at
t = 0.01 seconds is
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zelect poe

diffusion: du t-Du xx +au = Q) +glxt)

" (explicit) forward time, centered space

" (implicit) Crank-Nicolson scheme

convection-diffusion:
dut -Du xx+au x=001 +glxt)

#* (explicit) forward-time, centered space

parameters
delt, time step (sec) | 0.25°0.05%2
h, space step (m) 0.05

length (m) | 1
O (diffusion constant) | 1

how long to run (sec) 0.01

boundary conditions

18

golution u(z, #) at t=0.01000 zec

current time step = 16

———— current |7

o} initial

Figure 3.35: Part c final solution

The value of the numerical solution at that time is

|
o

L1727
.1817
.6603
.1158
.4092
.4609
.2868
.9910
.6912
.4441
.2527
.1168
.0451
.0337
.05632
.0563
-0.0013
-0.1275
-0.2680
-0.3162
-0.1727

el eolNolNeolNeolNeolNoNolNoN i ol el el

3.2.4.5 Appendix for problem 4

12

3.2.4.51 derivation of the convection-diffusion using general terms The PDE is
cu; + au, = buy,, with b > 0, the forward time, centered space discretization is

n+l _ mn

u u

no_n
i i a”]'+1 U1

no_ oy
Uiy —2uj +

n
Ui

+
A

2h

hZ

(1)
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Therefore, for nodes 2 --- N, the finite difference scheme is

u}”l —uwl o wh -ty ) Wiy = 2uf + iy
Ta T T 2
ulq— = 2uj’ + uj!
utl =y — g/t i + bAt i M
J 2ch ch2
1 alt bAt
u;l+ - u]?l 2ch( L ) + ch2 ( 2” + ”]+1)
alAt  bAt alAt  bAt
u]ml = U (2ch ) ( ) ]n+1( 2a W)
Let v = uc—it, y= %, the above becomes

v
u}”l 71( +y)+u(l 2y)+u]+1(,u 2)

Node j =1 gives

uptl ug(g + y) + u’f(l - Zy) + ug(y - g)

v v
”?\m(i + /J) +uf(1-2p) + uZ(# - 5)

And for node j =N +1
v
uifh = ”N(z + #) + ”Km(l - 2#) + ”Jn\r+2(# - 5)
n v n n v
= ”N(E + /4) + ”N+1(1 - 2#) LS (ll - E)

3.2.5 Screen shot of the GUI matlab application used for HW1

i
@]
X

-} <Student Version> : 1-D parabolic PDE solver, By Nasser M. Abbasl
BN e »
solution u(x, f) sl L=058000 see
current time step = 19

gelscl pols

diffusion: du_t- Du_xx +3 u = Q) +al=1)
I+ [explecet} forward time, centered space ) .
I [imphicit) Crank-Micolson scheme : 1’* """ d’ﬁs

LA locstion tn sheslubs stabdity region
! [E—— Fastest time prale=0 022742 (rec)
t]nmh i soala=258.414725 [sac}

cormection-dffugsion E T
dut -Duxx+au x=0i)+olxh LIS
" {explicit) forward-tima_ centered spaca

paramalers

del, time step(secy | 0.05 |
hospacestep (m) [ 01
engit(m) [ Zp1 || 2F

D (dffusion canstant) | 011
d ]f ]

A gpecirm of linear cparaior
H : f / . k= 1710, max & = —0 023257
| ! | | 1 nin A = =43 071763

how lang to run (sec) ] 1 a8 ‘; 1 : : . s ‘ ? : mmmyqnh_a: _1&5_{“&@?5
bounclery conetions = : i ! : s
e e ™ gy sbson in 20 o S R
e — | I |~
" Neumann WD) i T _'_v _____ '__: _____ E
~— right end absolule stabifly condition: delt'd *(ad + 'D.I'h‘Q}i 0.55000 ! : H :
¢ dnchist U0 0 e
£ Meumann “'UJ'Ji—: I~ perorm refinamant study - ol hiokie
2 *
sidotion speed I kraara o+
JJ—J [— Do E0urca (M ey an ¥
inftesood-10" am .
T ity | snft)esp(-10°) . as
o i
Irtial condbions af s located at x = 0500 (] B2 04 08 08 1
I unk rectangulss pulss conber six=] 0.5  widh=] 0.5 T ad ;ni:prﬂﬂms i)
r fenction = i =
slep sl 1 shift smourd=| 0.5 m:n| sin{O"expi) 0z
ute. 01 | cos(2'H) I~ untimpuies atx=| 0.5 g ¢
select an nieresing preconfigured test case (then hit RN button) L /
|l:ase 1: both ends Dinchlet, exphcit showing instability j A o 2 ] = 8 E

Figure 3.36: Matlab program I developed for this HW
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3.2.6 Matlab Source code developed for this HW
3.2.6.1 nma math228b build HW1l.m

function nma math228b_build_ HW1()
list = dir('*.m");

if isempty(list)
fprintf('no matlab files found\n');
return

end

for i=1:length(list)
name=1ist (i) .name;
fprintf ('processing %s\n',name)
pO = fdep(list(i) .name,'-q');
[pathstr, name_of_matlab_function, ext] = fileparts(name);

%make a zip file of the m file and any of its dependency
pl=dir([name_of_matlab_function '.fig']);
if length(pl)==
files_to_zip =[p1(1) .name;p0.fun];
else
files_to_zip =p0.fun;
end

zip([name_of_matlab_function '.zip'],files_to_zip)
end

end

3.2.6.2 nma math228b HW1l.m

function nma_math_228b_HW1

t£=0:0.1:100;
x=0.01:0.01:1;
sol=zeros(length(x),1);

for i=1:length(t)
for j=1:length(x)
s0l(j)= uh(x(j),t(1)) + wp&x(G)) ;
end
plot(x,sol);
title(sprintf ('t=)f',t(i)));
drawnow() ;
pause(.01);

end
end

function v=up(x)

v= 50*% x * (1-x) ;
end

function v=uh(x,t)
a=0.01;
sum=0; N=50;
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for n=1:N
sum=sum+( 400* an(n)*exp( -a * (n*pi)~2 *t ) * sin(n*pixx) );
end
v=sum;
end

function v=an(n)
v=C (-1)"n-1)/(n"3%pi~3);
end

3.2.6.3 nma_math228b_plot.m

function nma_math228b_plot ()
close all;

N=49;

h=1/(N+1);

p=1:N;

z=p*pi*(1/(N+1));

g= (Dxt/h~2)*(cos(z)-1);
g=abs((1+g) ./ (1-g));

plot(p,g)

title(sprintf('Magnification factor as function of wave number\nC-N scheme for h
xlabel('p, wave number');

ylabel('g(wave number)');

o

close all;

h=0.02;

t=0.001;

D=1;

r=t*D/(2*xh~2) ;

-pi/h:0.01:pi/h;

abs ((1+2*r*cos(zxh) -2*r) ./ (1-2*r*cos (zxh) +2%*r) ) ;

z
g

plot(zxh,g)

title(sprintf('Magnification factor, C-N scheme for h=0.02, t=0.001'))
xlabel ('zeta(radians)');

ylabel('g(zeta)');

x1im([-pi,pil)

ylim([0,1.2]);

set(gca, 'XTick',-pi:pi/2:pi)

set(gca, 'XTickLabel',{'-pi/h','-pi/2h','0"', " 'pi/2h', 'pi/h'})

close all;

h=0.02;

t=0.001;

D=1;

r=t*D/(2*¥h~2) ;

z=-pi/h:0.01:pi/h;

g= abs(1-(4*D*t/h~2)*sin(z*h/2).72);

plot(z*h,g)
title(sprintf('Magnification factor, FE scheme for h=0.02, t=0.001\ndelt*D/h~2=)
xlabel ('zeta(radians)');
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ylabel('g(zeta)');

xlim([-pi,pil)

ylim([0,1.2]);

set(gca, 'XTick',-pi:pi/2:pi)

%set(gca, 'XTickLabel',{'-pi/h','-pi/2h','0"','pi/2h', 'pi/h'})

end
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3.3 HW 2

3.3.1 Animation of FitzHugh-Nagumo equations

The following are animated GIFs showing the solution to problem 3, parts (b) and (c).
These will show only in the HTML version.

Assuming that f(v) = (a — v)(v - 1)v, the equations solved are the following

d

a—? =DAv+ f(v) —w+1
dw

2 =<lo-rw)

Click on image to see the animation run, it will open in new window.

FizHug-Nagumo equations simulation
Solution attime = 0.000, concentration=5000 0000

x

FizHug-MNagumo equations simulation
Solution at time = 0,000, concentration=78 5398
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3.3.2 Probleml

Math 228B
Homework 2
Due Tuesday, February 15th

1. In class, we showed that the two-dimensional Peaceman-Rachford ADI scheme is uncon-
ditionally stable and second-order accurate in time. This can be thought of as either an
approximate factorization or as a fractional step method. By adapting the fractional step
idea to three-dimensions we get the scheme

(I - bAth) ut = (I + biAtLy + bAtLZ> u"

3 3 3
bAt bAt bAt
I——L,\u*= T4+ —L,+—L, |«
( 3 y> U ( + 3 + 3 ) U
(I - bﬁth) u"t = (I + %“Lm + b;"@,) u**.

(a) Use von Neumann analysis to show that this scheme is conditionally stable. This is
an example of how certain desirable properties of a numerical scheme can be lost when
using fractional stepping.

(b) What temporal accuracy do you expect from this scheme? Explain.

Figure 3.37: Problem description

3.3.2.1 Part (a)

The diffusion PDE is given by
U, —DAu =0

Where D is the diffusion constant. The ADI scheme in 3D ﬁ is given by

DAt .\ DAt DAt ;
I_TLxu:I+TLy+TZu (1)
DAt - DAt DAt .
I- TLy u I+ TLX + TLZ u (2)
DAt DAt DAt
(1 - TLZ)u”“ =|I+ TLX + TLy u* (3)
2 1 0 0 0
1 21 0 0
0 1 -2 1 0
Where L,,L,, L, are each the 1D Laplacian given by hlz
0o 0o 0 1 -2 1
|0 0 0 0 1 -2

Assuming that the spatial frequencies in each of the three Cartesian directions (x,y,z)

are given by &,,&,, &, where % <& < % and by setting r = %, u = g*ei(£1x+£2y+égz) and
= plerréaytesz) oo g substituting these into Eq. (1) and dividing throughout by ellerréay+éss)

OPlease see the appendix of this problem at the end of the HW report showing how these equations came

about.
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gives the following
g*(l - r(e"glh -2+ ei‘glh)) =1+ r(e‘iézh -2+ ei52h) + r(e‘i53h -2+ eiéSh)
1-4r+ r(e‘iézh + ei52h) + r(e‘i53h + ei53h)
(1 +2r— r(eiflh + e‘ifilh))

_ 1 —4r+2rcos(h) + 2r cos(E3h)
B 1+ 2r—2rcos(&1h)

. 2 &h . 2 &sh
B 1 —4r(sm (7) + sin (7))

) 1 + 4rsin (5; ) W

*

g:

The last step above was obtained by the use of the relation cos A =1-2 sinz(g).

Applying the same method used above to Eq. (2), but now letting u* = g*ei(§1x+52y+53z) and

- 1(91x+52y+§3z) i(§1x+5zy+§32)

=g"e and dividing throughout by ¢ gives

g**(l - r(e‘i‘SZh -2+ ei‘fzh)) =1+ r(e‘i‘flh -2+ ei‘flh) + r(e‘i53h -2+ ei53h)
L 1-dr+ r(e‘i‘flh + ei‘flh) + r(e‘i53h + ei‘f?’h)
& 1+2r- r(ei‘fzh + e‘iffzh) §
_ 1—4r+2rcos(&h) + 2r cos(Ezh)
B 1+ 2r—2rcos(&h)
1- 4r(sm (él ) + sinz(@))
2 2 )) .
- g (5)
1+ 4rsin (%)

*

Again, applying the same method to Eq. (3), but now letting u™ = g**el(‘glﬁgzw‘“z) and
i(&1x+&py+32) Erx+Eay+Esz)

u™l = ge and dividing by ¢l gives

g(l - r(e‘i53h -2+ €i53h)) =1+ r(e‘i‘flh -2+ e"‘flh) + r(e‘igZh -2+ ei‘th)
1-4r+ r(e‘iélh + ei‘flh) + r(e‘igZh + ei‘th)
1- r(e‘i53h -2+ 6153’1)

_ 1—4r+2rcos(&h) + 2r cos(&h) ,
1+ 2r—2rcos(&3h)

. 2 &k . 2 &h
B 1- 4r(sm (T) + sin (7))g**

1+4r sinz(%)

3%

4

g:

(6)

Substituting (4) into (5) and substituting the resulting expression into (6) gives the overall
magnification factor for the ADI scheme:

Y e A ) i i ) O i o A )

1+4rsin2(52ih) 1+ 4rsin (é; ) 1+ 4rsin (E; )
(7)
Letting A = sin (5; ) B= sinz(ézih),c = sz( ) C in Eq. (7) results in
_(1-4r(A+B)\(1-4r(A+C)\(1-4r(B+C)
8ercacs) = ( 1+4rC )( 1+ 4rB 1+4rA )

The scheme is conditionally stable if |g(€1, &o, 53)| <1 for some value of r and |g(£1, &, 53)| >
1 for some other value of r (this is the same as using different values of At in place of r,

since r = D? and & and D would be kept constant).

Now the scheme can be shown to be conditionally stable by letting A =B =C =1 in Eq.
(8) and then by finding one value of » which makes the magnification factor to become
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less than one and then by looking for another value of » which makes the magnification
factor to becomes larger than one.

Therefore, when A = B =C =1, Eq. (8) becomes

1-8r\(1-8r\[1-8r
|g(§1'€2' é3)| - (1 + 4r)(1 + 4r)(1 + 4r) (BA)

Now, putting r = 2 in the above gives |g(&1, &, &3)| = 2.744 > 1 implying that the scheme is
unstable.

Putting r = 0.5 in Eq. (8A) gives |g(&, &, &)| = 0.125 < 1 implying that the scheme is stable.

Hence the scheme is conditionally stable, because by fixing & and D, it was possible to
find a time step At which made some mode become unstable. If one mode is unstable, the
overall scheme is also unstable. This result shows that the above given ADI scheme for 3D
is conditionally stable.

3.3.2.2 Part (b)

Expectation: Temporal accuracy is expected to be O(At) since at each 1/3 time step there
is one implicit step compared to two explicit steps. Starting from the main equations shown
in part (a)

implicit (backward Euler) explicit (2 forward Euler)
P
——

(I —rLyu* = (I +rL, + rLZ) u" (1)
(I - rLy)u** = ([ +rL, +rL)u* (2)
(I -rL)u™! = (I +rL, + rLy)u** (3)

There will be an O(At) error resulting from the application of Euler approximation to each
of the terms in each equation above. One of the implicit errors will cancel exactly with
one of the errors from the explicit part of the equation (due to sign difference), leaving an
extra O(At) error after each third step. Hence at the completion of one full time step, the
temporal error will be 30(Af) or O(At).

Explanation: The derivation below follows the method explained in class for the 2D ADI
case, but being applied to the 3D case. Starting by pre-multiplying Eq. (1) by the operator
(I +rL, +rL,) gives

(I + Ly + rL)(I = rLu* = (I + rLy + rL)(I + 1Ly + 1L, Ju”

But since (I + rL, + L) commute with (I —rL,), then the two terms in the LHS of the
above equation can be interchanged giving

now replace this from (2)

(I=rLy) (I+rLy+rLyu = (I +rLy + rL)(I + 1Ly, + rL,)u"

Replacing the term marked above by its LHS value from Eq. (2) yields
(L= rLy)(I = rLyJu™ = (I + rLg + rL,)(I + L, + rL, Ju"
Pre-multiplying the above by the operator (I +7rL, + rLy) gives
(T4 rLy + 1L, )(I = rL)(I = rLy Ju™ = (I + rLy + rLy J(I + rLy + rL,)(I + 1Ly + 1L, Ju”

But since (I +rL, + rLy) commutes with (I - er)(I - rLy) the above can be written as

replace this from (3)

(= rL)(I = Ly )(I + rLy + rLy Ju = (I + rLy + rLy )(I + rLy + rL,)(I + rLy + 1L, Ju"

"To show these operators commute, similar argument can be made as was done for the 2D case in class,
which is by saying that each operator L, L,, L. on its own commutes with the other 2, hence the result will
follow.
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Replacing the term marked above by its LHS value from Eq. (3) gives
(= rLy)(I = rLy (I = rL)u™Y = (I + rLy + 1Ly )(I + rLy + rL)(I + 1Ly + rL, Ju"

Expanding all terms by multiplying all operators and simplifying the result and using
L=L,+L,+L, gives the following

(1= 7L+ r2(LyL, + L,L,) + r*LyL, = PL,L, L, Ju"™* = (4)
(I+ 7L+ 7L +3r2L,Ly +3r2L,L, + 3r2L,L, + 3L, L, )u" + (H.O.T.)
Where H.O.T. are terms from operators of order 2 and higher. These terms produce errors
of order O(Atz), O(At3) and higher. Moving all these terms to the RHS simplifies Eq. (4)
to the following
(I - rLyuw™t = (I + 7L + rL)u" + O(A2) + O(A£) + ---
u™ — = L™ 4 2rLu™ + O(Atz) + O(At3) + oo

. DAt
Since r = = the above becomes

it~ = DA DAYy O(A2) + O(AR) + -
3 3

Dividing the above equation by At gives

n+l _ . n D 2D
% = gLMrH’l + ?Lu” + O(At) + O(Atz) + .-

n+1

Now | adding %Lu and subtracting %Luwrl and | subtracting %Lu” and adding %Lu”

from the RHS of the above equation gives

u*l—_yn D D 2D D D D
_ 1 1 1 2
T = ELMI/H— + gLMTH— + ?Ll/tn - gLu” + gLT/ln — gLMrH— + O(At) + O(At ) + -
C-N
un+1 —yh

¥ %(Lum + L) + %(Lu" — Lum) + O(AH) + O(AL) + -

The C-N scheme is known to be O(At2 + hz). Multiplying the term %(Lu” - Lu”*l) by % in
the above yields

from C-N part

At

Uy = %Au + O(Atz) + O(hz) + ZL(un v

n+1 )
T) + O(At) + O(AR2) + ---

Taking the limits At — 0 results in

still O(A)

from C-N part

U = %Au +0(AR) + O(h2) +

At

- - 2
6 Pyaat O(A) + O(A#2) +

from C-N part

= %Au + O(Atz) + O(hz) + O(At) + O(Atz) +
—_—
= %Au + O(hz) + O(At) +O(At2) + e

Since in the above, the dominant temporal error term is O(At) the scheme is a first order in time accurate.
It is also a second order in space accurate.
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3.3.3 Problem 2

2. Consider

up = 0.1Auw on Q = (0,1) x (0,1)
%zOon@Q

u(z,y,0) = exp (—10((z — 0.4)2 + (y — 0.4)2))

(a) Write a program to solve this PDE using the Peaceman-Rachford
ADI scheme on a cell-centered grid. Use a direct solver for the
tridiagonal systems. In a cell-centered discretization the solution
is stored at the grid points (z;,y;) = (h(i — 0.5), h(j — 0.5)) for e le ]
i,j = 1...N and h = 1/N. This discretization is natural for
handling Neumann boundary conditions, and it is often used to
discretize conservation laws. At the grid points adjacent to the
boundary, the one-dimensional discrete Laplacian for homoge-
neous Neumann boundary conditions is

—u1 + u2

uzw(l'l) ~ h2

(b) Perform a refinement study to show that your numerical solution is second-order accurate
in space and time (refine time and space simultaneously using At = h) at time ¢ = 1.

(¢) Show that the spatial integral of the solution to the PDE does not change in time. That
is

d
— dV = 0.
7 Qu V=0

(d) Show that the solution to the discrete equations satisfies the discrete conservation prop-

erty
n __ 0
Z Ui = Z Ui
i,J i,3

for all n. Demonstrate this property with your code.

Figure 3.38: Problem description

The following diagram shows the discretization using cell-centered scheme for the case of
N = 4. The center of the cells moves closer to the physical boundaries of the unit square
as N becomes larger.
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Example for N=4

< 1 >
7y T T T /}
| | | h/2
@, | O | O | O |X—
------ SR EDe
Q i <F i O i CE solution domain extends fromx = &....1 - &
1 b-4-- T RN E I and fromy = 2....1 - 2.
| | |
o | 5 ou o x = 0.125---0.875
| C T y = 0.125.--0.875
B B e m e
e W, W e
oo T
A 4 | | |

S\

Physical solution
domain domain

Figure 3.39: Grid used

The physical domain is always the unit square x =0---1, y = 0--- 1, but the discrete solution
domain is the one at corners of the red grid above. A small example is used below to help
determine the layout of the operator used in the direct solver. The 2D ADI scheme for the
diffusion problem is

DAt DAt
(I — TLX)II* = (I + TLy)u" (1A)
DAt DAt
[- =L, Ju =1+ =—L, |
2 Y 2
-1 1 0 0
1 -2 1 0
110 1 -2 1

Where L, =L, = for the case of homogenous Neumann bound-

B ...

0o 0 0 1 -2 1
(0 0 0 0 1 -1
ary conditions. The solution given below uses an overall L operator which is used by the
direct solver. Another approach would have been to use the above L,, L, operator, and
iterate over each each row and column applying the direct solver each time.

The following derives the overall L operator used. Eq. (1A) can be written as

* * * n n n
. DAtuiy;—2ujtujg; o DAFU g~ 2uf g,

i 2 A 2
n+1 n+1 n+1 * * *
DAt U3 = 2™ +uiiy . DAtui ;= 2up+ g,
il =¥+
) 2 h2 1 2 hz

letting r = % and simplifying the above gives

ujj(l +2r) — Ui g ;= T j = u?j(l -2r) + TMZ]-_l + ru;-fjﬂ (1)
u?j“(l +2r) — ruﬁ]*_ 1- V”thrll = (1 =2r) +ruly 4 rufy, (2)

The above finite difference equations are applied at all the grid points, except for those for
the rows and columns at the boundaries. In order to determine the equations to use for
the boundary grid points, the approximation L, ~ _M;W is used. Similar one is used for

Ly. The result of using the above approximation is the following finite difference equations
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used for the boundary grid points
. DAt—uj+uig; - DAF—UG Uy
A N A R
O o ) W o o Ry
M T 2t T
Simplifying the above gives
ufj(l +7)— ru;l,j = ug-(l -7+ rul*f],rl (1A)
u?].“(l +r)—rultl = (1 =) +ru; (2A)

ij+1 = i+1,j

To help obtain L, a small example is used to help see the structure of the matrix. This
small example exhibits all the needed information to generate the pattern for L from. Using

n, =n, = 4, the grid becomes

h
4
U(L,4) uea4) | uE4 | usa
o o o o
3
U(L,3) ue3) | uE3) | uEes)
o o o o
;2
index U(1,2) U(2,2) u@s,2) u(4,2)
A o o o o
1
U VRl RVERD u@.1)
0 1 | 2 3 4
_—>

index

Figure 3.40: Updated Grid
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Eq. (1) and (1A) are now written for all the nodes resulting in the following 16 equations

ufy (L =r) +ruf,

uy (1 +7r)—rup

uy (1 +2r) - ru{/l - rugll = upy (1 =) +rujs,

uz (1 +2r) - Ty —TUyq us; (1 —=r)+rus,

Uy 1 +7)—ruz = ug (1 —7) +ruy,

ulp(L+7) —ruzy = wfp(1 - 2r) + ruj | +ruf,
uny(1+2r) —ruf 5 —ruz o = unp(1 = 2r) + rup 1 + 1up,
Uz (1 +2r) - TUpp = TUyy = us,(1—2r) + ”“g,l + rug3
upp(L+ 1) —ruzy = ujp(1 = 2r) + rujy + ruy 5
uyz(1+7) —rups = uf3(1 = 2r) + ruy , + ruy 4
Uy (1 +2r) - TUy3 = TUz5 = uss(1—2r) + 7’“3,2 + rugl4
uzs(1+2r) —ruy 5 —ruy 5 = uss(1 = 2r) + ruz, + ruz,
ugs(1+7) —ruzs = wgy(1 = 2r) + rug, + ruy 4
i (L +7r) = rup, = ufy(1 —r) +ruf;
ung(1+2r) —ruj 4 —ruz 4 = uyy (1 —7) +ruy,
uzg(1+2r) —ruy 4 —ruy 4 = ugy (1 —7) + rug,
wy (L +7) = ruzy = ufy (1 —7) + ruy,
In matrix form, the above gives Au* = b which is then used to solve for u*. The matrix A

is now written out. To save space and to allow the matrix to fit on the page, the following
terms are used

DAt
T
a=1l+r
p=1+2r
y=1l-r
6=1-2r
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A X
a -r 00 0 0 0 00 0 0 0 0 0 0 0luy
—+ B -r 00 0 0 0 0 0 0 0 0 0 0 O0uy
0O -+ f -r 0 0 0 0 0 0 0 0 0 0 0 Ofu
0 0 -ra 00 000 O0O0 0 0 0 0 Ofu,
0 00 0a -~ 000 O0O0 0 0 0 0 O0fu,
0 00 0 -rf -0 0 00 0 0 0 0 O0fu,
0 00 00 - B -0 00 0 0 0 0 O0fu,
0 0 000 0O -~ a 000 0 0 0 0 O0lu,.
00 0 0 0 0 0 O0 a -0 0 0 0 0 O0fuw]|
0 0 000 0 0 0 - g -0 0 0 0 0w,
00 00 0O O OO0 - B -0 0 0 0w,
00 000 0O 0O 0 0 0 - a 0 0 0 0Jus;
00 000 0O 0 O0O0 0 O0 0 a -r 0 O0fu,
0 0 000 0 0 0 0 0 0 0 —r B —r 0w,
00 00O O O OO0 O0 0 0 0 -1 g -r|lu,
(00000 00 0 0 0 0 0 0 0 0 —r auy
b
[y 000 00000000 O0O0 Ofuy
000077 000O0GO0OGO0O0 0 0fuf
00y 0007 00O00O0O0GO0O0 0 O0fuf
000y 000 000O0GO0O0 0 O0fuf
r 0006 0007 0000O0O0 Ofuf
0r 00060007 00000 0fu,
00r 0006000 000 0 O0ful,
000700060007 r 000 Ofuf 7
00007+ 000G6GO0O0O0O r 00 O0fuy
00000 TFO0O0O0®6O0 00 r 0 0|u,
0000O0O0TFO0O0O0GEOO0O0 0 r 0fuly
000000077 000600 0 rllu,
000000O0O0TXO0O0OTYO 0 O0fuy
0000O0O0O0O0O T 000 y 0 0fui,
0000000000 T 000 y Ofut,
00000000000 T 00 0 yul

A sparse direct solver can now be used to solve for u".

Starting the second ADI step to find u"*!, the process is similar to the one shown above,
but the equations are written column-wise instead of row-wise as was the case earlier. For
non-boundary grid points the following equation is used

n+1 n+1 n+l _ * *

And for the boundary grid points the following equation is used

1 1 * *
u?j+ 1+7r)- ruZ;:rl = ui]-(l -7)+ Tl j
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Applying the above to each grid point results in the the following 16 equations

WA+ ) =il = w1 —7) + rusy
upt (U +r) —rugst = sy (1 - 2r) + ruff + ruf
b (1 +r) — gt = wiy (1 - 2r) + Uy g+ 1y
WY+ 1) — vl = wyy (L —7) + ruy
Wi +2r) — ruf 5 = r 5 = iy (1 - 1) + rus,
wt(1 +2r) - rugjl - ruggl = 1y (1 = 2r) + ruj, +ruz,
uzp(1+2r) —ruzy —ruj 5 = uzy(1 = 2r) + rug, + 1y,
uy(L+2r) — 1y —ruy 3 = (1 — 1) + rug,
uys(L+2r) —rujp —ruj 4 = ufs(1— 1) + rup
ups (1 +2r) —ruyp — rup 4 = ups(1 = 2r) + ruj 5 + rug,
uzs(1+2r) —ruz, —ruy g = uzg(1 = 2r) + ruj 5 + ruj 5
ugs(L+2r) —ruy o, —ruy 4 = ugs(1 — 1) + ruzg
Uy (L +7) —rujs = ujy,(1 —r) +ruy,
usg(1+7) —russ = ugy(1 = 2r) + ruy 4 + ruz 4
uzg(1+7) —ruzs = ugy(1 = 2r) + rup 4 + ruy 4

Uy (1 +7) = ruys = uy, (1 —r) +rujs,

The above equations are now written as Au = b but the unknowns are listed column-wise
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in order to keep the tridiagonal form. The resulting matrix A is the following

A ,—3(“
a == 0 0 000 00 0 0 0 0 0 0 0fug?
—+ B -r 0 0 0 0 0 0 0 0 0 0 0 0 Ofuy
0O -+ B -r 0 0 0 0 0 0 0 0 0 0 0 Ofu?
0 0 -ra 0 0 0 0 0 0 0 0 0 0 0 Ofuf!
0 0 0 0a -~ 00 000 0 0 0 0 Ofug
0 00 0 -r B -0 00 0 0 0 0 0 Ofu
0 00 00 - B -0 00 0 0 0 0 Ofu?
0 0 000 O -~ a 0 O0O0 0 0 0 0 Ofui
0 00 00 0 0O a -0 20 0 0 0 Ofug"
0 0000 0 0 0 - B -0 0 0 0 Ofug
00 00 0 0 0 0 0 - B —r 0 0 0 OJuwt
00 00 0O 0O O OO0 O - a 0 0 0 Ofw
0 0000 0O 0 O0 0 0 0 0 a - 0 O[uye
00 0 0 0 000 0 0 0 0 —r B —r 0fu
00 0 0 0 0 O0 0 0 0 0 0 0 -r p —r|u
0 0 0000 0 0 0 0 0 0 0 0 —r auf
b
[y 000 700000000 GO0 0 Ofu]
0y 0007 0000O0O0GO0O0 0 0|up
00y 0007 0000 O0GO0O0 0 0fuf
000y 000000000 0 0fu,
00060007 000000 Offuy
0700060007 0000 0 0]uy
00 r 0006000+ 000 0 0fuy
000000600077 00 0 0|u, -
00007 000O6O0O0O0 T r 00 0fu
00000700060 O0O0 r 0 0fug
000000 TTO0O0O0®E6O00 0 r 0fuy
0000O0O0OTO0O0O0E6 00 0 r|u
000000O0O0TYO0O0O YO0 0 0fuy
000000O00O0O0TT 0O0O0 y 0 0|u
0000O0O0O0O0O0O0 T 000 y 0|uj,
00000000000 r 00 0 y|u

Now u"*! is solved for using a direct sparse solver. The above 2 steps are repeated for each

one time step. One can see that the A matrix is the same for both solving Au* = b and
Au™?! = b. Therefore, in the implementation only one A and one B matrix was allocated
initially and used for solving for u* and u"*!. Both matrices (A and B) are created as sparse
matrices to save storage. The A matrix represent the implicit part of the scheme, while the
B matrix for the explicit part.

Since the edges of the domain are insulated, no concentration will diffuse to the outside.
Therefore the result of diffusion will be that the concentration will diffuse internally and
will spread out. Therefore, at steady state as t — oo the solution is known and given by

h, h

u(x,y,oo): ffu(x,y,O)dxdy

hj2 h/2

The following plot shows the solution at f = 1 second with the steady state solution displayed
as the blue horizontal flat surface superimposed on the same plot. The steady state solution
is what would result if run time was made to be very long.
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Solution to problem 2, with D=0.1, time step=0.03125, space step = 0.03125, N=32

Figure 3.41: steady state solution

To verify that the numerical solution converges to the steady state solution, the plot below
was generate which represents the solution of the above problem taken at f = 4 seconds.
The gap in the diagram below is the difference between the steady state solution and the
solution at t = 4 seconds. This gap became smaller the longer the time to run is made
(keeping everything else fixed).
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_la/x
Fle Edit View Insert Tools Deskiop Window Help ]

solution at time = 4.000000

. -Numerical solution att=4

02

Steady state solution 0

Figure 3.42: steady state solution

3.3.3.1 Part(b)

Refinement study was carried out to show that the 2D ADI scheme is a second order
accurate in time and in space. The method used successive errors between numerical
solutions. The algorithm of the refinement study is given below at the end of this part of
the problem.

Recalling that In HW1, the spatial grid was divided by half each time. However, in this
problem, since cell centered grid is used, & and At were divided by 3 each time. This was
done so that the new grid will contain some grid locations that are still aligned in the same
physical location as the previous step. The error between both solutions is obtained by
taking the difference of only these points that are aligned. These points will be the grid
point of the coarse grid. The following diagram illustrate this for the case of n = 3 and
n=9

Showing relation between successive grids
Error is measured by comparing solution at only the points that are aligned
across both grid
] ] ] @ [©] (€]
o o o [} €] €]
o] (o] o @ (€] @
Initial grid, n=3 Second grid (in red), n=9

Figure 3.43: case of n =3 and n =9

The result of the refinement study shows second order accuracy as the error ratio came out to be 9.

Below is the result obtained. In addition to the ratio table, it can be seen that the slope of
the line in the log plot is 2, implying the scheme is second order accurate.
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Refinement study result, HW 2, problem 2, showing second order accuracy

# N delt h Ju| mean(u) le] ratio |u steady|
2 9 0.11111 0.111111 0.293146 0.290318 1.19490e-002 1.000000 0.289080
3 27 0.03704 0.037037 0.293146 0.289369 1.23779e-003 9.653448 0.289080
4 81 0.01235 0.012346 0.293146 0.289262 1.36668e-004 9.056912 0.289080
5 243 0.00412 0.004115 0.293146 0.289251 1.51752e-005 9.006018 0.289080
6 729 0.00137 0.001372 0.293146 0.289249 1.68601e-006 9.000673 0.289080
EDU>>
<} <Student Version> Figure 8 - O] x|
Hle Edit View Insert Tools Desktop Window Help ¥

NEde || RROB9EL-E0HaD
refinement study result,
log vs successive errors difference

3 — TS
FEH EFREE S
5

log(error norm)

Figure 3.44: refinement study plot

3.3.3.2 Refinement algorithm

The following is the general outline of the algorithm used in the refinement study. The
important part was to make sure when finding the error between the current and last
solution, is to use the same physical locations that are aligned between both grids, and to
use the coarse grid spacing when determining the grid norm of the error grid.

last_error =0
h =1/3
last_h =h
delt =h
last_u = Solve 2D_ADI(h,delt)
LOOP
h = h/3
delt = h

current_u = Solve_2D_ADI(h,delt)

-- now extract from current_u only locations that aligned with last_u grid
current_u_mapped = extracted_u(last_u)

error = last_h * norm(last_u - current_u_mapped,2)

ratio = last_error/error
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last_h = h
last_error = error

loop_counter++

IF loop_counter > some_maximum THEN -- normally 5,6 iterations is enough
EXIT LOOP
END IF
END LOOP

3.3.3.3 Part(c)

The spatial integral represents the total concentration in the domain. Since the boundary
are insulated, matter will only diffuse internally and no loss will occur to the outside. Hence,
from the conservation of mass principle, initial concentration will remain the same, but
will spread out to the mean in space. Therefore, it is known physically total concentration
will not change with time

d
Efu(x,y, t)dA =0
Q
The problem is asking to show this mathematically.

Since u; = DAu, then
d
I = ngu(x,y,t)dA

:DfAudA
Q

%u 22u
But Au = = Ent hence

1 1
1 %u  J%u
(5)1— ffa—xﬁa—yzdxdy
y=0x=0

To show that [ = 0, the above is written as
1/ 1
%u %u
_ f (. de)dy n f f 7 dy]dx 1)

/ d%u du du
[l | o
x2 ax ax

x=1 x=0

However %J is the normal derivative at the right boundary, and %J is the normal
x=0

x=1
derivative at the left boundaries. These are both zero due to the homogenous Neumann
boundary conditions given in the problem statement. therefore

L9

d°u
fﬁdx =0 (2)
x=0
Similar argument shows that
1
%u
f 57 =0 (3)
y=0
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Substituting Eqgs. (2) and (3) into (1) gives

Therefore p
E‘qu(x,y, t)dA =0

3.3.3.4 Part(d)
The finite difference equations for the 2D ADI scheme is given by

DAt DAt
(I - TLX)II* = (1 + TLy)u" (1)
DAt DAt
-0 Yot 1 20 ”

Summing the equations over all entries in the 2D solution domain gives

> 2(1 - %Lx)u* =Y, E(I + %Ly)u” (1A)
i joi
DAt DAt

2 2(1 - TLy)u”“ =) 2(1 + TLx)u* (2A)
joi i

In the above i represents the row number and j represents the column number of the
solution grid u. The above two equations can be rewritten as

DAt DAt
DRTRIS ML DI
i i jot ;o
DAt DAt

2 X - N X L = 3 D+ = 3 DL =
joi ]t b b

Looking at the term Z Zj Lyu from Eq. (1B) and rewriting this as follows
i

i i

2xes-3{2e)

L, operator applied to i'row
—_—~
=X [Z Lx”z‘f]
i j

* 2 . . th .
In other words, Z]. Luj; is the result of applying L, to each entry in the i row, then summing
the result.

Therefore, L, is applied to entry u*(i,1) then to entry u*(i,2) and so on, until the last entry
in the row which is u*(i, n).

How to find the result of applying L, on each row? Given that L, for 1D with homogenous
Neumann boundary conditions is

-1 1 0 0 0 O
1 -2 1 0
110 1 -2 1
Lx:ﬁ.
0 1 -2 1
0 0 1 -1
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Then applying the operator to each entry in the i row gives the following

j=1 j=2 j=3 4 5 6 7 oo n-2 n-1 j=n
—Ujp  FUpp
+uy  2up  Fup
+up 2up Uy
+u;z 2uy Fugs
(ZJqu§]: +uyy  2up Fug
]

s 2 Fily

TUin-3 _2”1‘,71—2 TUin-1
iy 2Ujpog iy
+ui,n—1 _ui,n
In the above, L, was applied directly on the i row. The first line above shows the column

index j which goes from 1--- n. The following diagram is made to help illustrate the above
process, showing how L, and L, are applied to the solution in the u matrix.

— J(column index) — J(g;leh\nindex)

' vool9

|
| (row index) I (row index |
|

ApPly Lonarowt | 500 —em=-0 )

~

|
!
!

O-—=--000

|
|
|
|

y y
T

! L2

X -
X Apply Ly on a column

Graphical illustration applying 1D laplacian for ADI scheme

Figure 3.45: Illustrating the above process

One can see now that thesum is zero due to terms cancellation. The sum is zero in this
case due to the homogenous Neumann boundary conditions which caused the first and
last entries to cancel out.

Using the same procedure, then applying L, to each column of " will also result in zero
sum, since the north and south boundaries also have homogenous Neumann boundary
conditions. Since boundary conditions do not change going from u* to u"*!, the same result
is obtained when applying L, operator to each column of u"*!. From the above discussion,
it is found that

ZZLxu;jzo
g
ZZLyu;}:o
] 1

ZZLyu?j”:O
i
ZZLxu;j:O
i

Substituting the above 4 equations back into Egs. (1B),(2B) gives

DIDILEDIIL ac)
joi

]
DRI (2C)
joi i
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Substituting Eq. (1C) into (2C) gives
D" 1= juyg"
i i

Since the above is valid for any n (boundary conditions do not change with time) then
setting n = 0 in the above results in

2w = 2
ij ij
Similarly, setting 7 =1 results in
2= 2
ij ij
and so on all the way any 7 value. Hence in general the following result is obtained
S-S
ij ij
By repeated back substitution on the RHS, the following is obtained
v = )
ij ij
Therefore, the discrete conservation property is satisfied.
3.3.3.4.1 \Verification in code To verify part(d) in the code, a table was generated

during one run, where Zij w;; was calculated at the end of each time step using the Matlab
command sum(sum(u)), and this value was printed at each time step. The result shows

that this value is | constant | implying the discrete conservation property is satisfied. Here

is the result below

current_time  sum(U(current_time)

0.00000 1897.85094
0.01235 1897.85094
0.02469 1897.85094
0.03704 1897.85094
0.04938 1897.85094
0.06173 1897.85094
0.07407 1897.85094
0.08642 1897.85094
0.09877 1897.85094
0.11111 1897.85094
0.92593 1897.85094
0.93827 1897.85094
0.95062 1897.85094
0.96296 1897.85094
0.97531 1897.85094
0.98765 1897.85094
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3.3.4 Problem 3

(a)

for all n. Demonstrate this property with your code.

3. The FitzHugh-Nagumo equations

%:DAU+(G*U)(U*1)U71U+I
ow
E—e(v—yw).

are used in electrophysiology to model the cross membrane electrical potential (voltage) in
cardiac tissue and in neurons. Assuming that the spatial coupling is local and passive results
the term which looks like the diffusion of voltage. The state variables are the voltage v and
the recovery variable w.

Write a program to solve the FitzHugh-Nagumo equations on the unit square with
homogeneous Neumann boundary conditions for v (meaning electrically insulated). Use
a fractional step method to handle the diffusion and reactions separately. Use an ADI
method for the diffusion solve. Describe what ODE solver you used for the reactions
and what fractional stepping your chose.

Use the following parameters a = 0.1, v = 2, e = 0.005, I =0, D = 5-107°, for h = 0.01
and initial conditions

v(z,y,0) = exp (—100(372 + y2))
w(z,y,0) = 0.0.

Note that v = 0, w = 0 is a stable steady state of the system. Call this the rest state.
For these initial conditions the voltage has been raised above rest in the bottom corner
of the domain. Generate a numerical solution up to time ¢t = 300. What time step did
you use and why? Visualize the voltage and describe the solution.

Use the same parameters from part (b), but use the initial conditions
v(z,y,0) =1-2z
w(z,y,0) = 0.05y,

and run the simulation until time ¢t = 600. Show the voltage at several points in time
(pseudocolor plot, or contour plot, or surface plot z = V(x,y,t)) and describe the
solution.

The dynamics of excitable media is a fascinating subject from both the mathematical
and physiological perspectives. The electrical patterns that you simulated in part (c)
are related to cardiac arrhythmias. For more information see the book Mathematical
Physiology by Keener and Sneyd.

Just for fun, (there is no need to turn this in or even do it) try to find an input current
I(z,y,t) in the form of a short pulse (e.g. I(z,y,t) = f(z,y)exp (—r(t — tf,))) so that
the normal electrical wave from part (b) degenerates into an arrhythmia like that from
part (c). Then try to find a pulse of current that will eliminate the arrhythmia. This
second task may be easier. What to the doctors on TV do?

Figure 3.46: Problem statement

3.3.4.1 Part(a)

The equations to solve are the following

d

&_?; =DAv+@-0v)(v-1)v-—w+I
dw

2 =)

The first PDE % = DAv + (a —v)(v-1)v — w + I was solved by the splitting method by

solving the diffusion equation% = DAv using ADI method separately and then by solving

the reaction (non-linear) equation » (a-v)(v-1)v —w + I along with 2—2] = e(v - yw)

ot

separately. The following is a coupled first order non-linear differential equations system
(the reaction ODE is nonlinear in votage v)
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d
d—?:(a—v)(v—l)v—w+l
dw

Eze(v—yw)

The above system was solved using Runge-Kutta order 4. The following diagram illustrates

the time line for one full splitting step.

1

Reaction (RK-4) Diffusion (ADI) Diffusion (ADI) Reaction (RK-4)

t th tn+1
I
|
%;)
|

S SR

[

|

[

[
»"
>0

|

At At

S S

n_

|

[

[

|
0

[

|

At At

Splitting method time-line for solving the diffusion-reaction PDE on 2D

Figure 3.47: time line for one full splitting step

ADI was described in problem 2, and the same function was reused for this problem for
the diffusion solver. For solving the reaction system of equations, RK4 was implemented

as follows. define
fo,w)y=@-v)(v-1Nv-w+I

and also define
(v, w) = e(v - yw)

Therefore, the RK4 solver for the above system becomes

1
vl =0t + 6(’”1 + 21y + 2ms + 1my)

1
w”” =w" + g(kl + 2k2 + 2k3 + k4)

Where
my = Atf(v, w)
1 1
My = Atf(v + Eml,w + Ekl)
1 1
ms = Atf(v + Emz,w + Ekz)
my = Atf(v +ms, w + k3)
And

ki = Atg(v, w)

1 1
kz = Atg('U + Eml,w + Ekl)

2
ky = Atg(v + m3, w + k3)

1 1
k3 = Atg(v + =My, W+ Ekz)
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Another point regarding the splitting method. It was required to decide which splitting method to use.

Should a simple splitting, Strang splitting or the 2-step splitting method which was de-
scribed in class be used? To make sure the second order accuracy of ADI 2D in time is
preserved, simple splitting was not used (unless the operators commute, this would have
caused the scheme to become first order accurate in time). Instead, the two step splitting
method was used, as it was found to be simpler than Strang method to implement.

3.3.4.2 Part(b)

The program written in part(a) was run using the parameters given. The time step used
was set to be the same as the space step. This time step is recommended for the ADI
The diffusion solver as it is a second order accurate in time and space. This is the fast
system (the stiff part of the system), hence making the time step larger than the space
step would not give accurate results, even though it will remain a stable scheme. Keeping
the time step the same as the space step seemed to be a good choice, as it kept the
time resolution and the space resolution the same. The same time step was then used for

the reaction solver, as was required by the splitting method to keep each step the same

length.

The following shows the visualization of the voltage solution for up to 300 seconds as
required using the surf() command.
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Figure 3.48: visualization of the voltage solution for up to 300 seconds

The solution v(t) started from a peak value at one corner of the square. Shortly after, at
about 50 seconds, a wave started to form, the wave front became large and it spread out
and advanced with time. When the pulse reached the boundary on the other corner, it
started to diffuse and by t = 300 seconds, the pulse has completely disappeared.

3.3.4.3 Part(c)

The following is the result of the simulation for this part.
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Figure 3.50: Up to 300 seconds

In this simulation, the pulse that appeared after about 50 second, quickly became a spiral,
and did not appear to diffuse as was the case in part (d). At the end of the simulation, the
pulse was continuing to spiral in the same rotation direction it started with. The above
phenomena seem to be termed an arrhythmia pulse.

One common theme between part(c) and part (b), is the formation of a wave like motion
that traveles across the domain. The difference was in the shape of the pulse, the direction
it moves to and the amount of diffusion that occured.

3.3.5 Appendix

3.3.51 Problem 1 appendix

3.3.5.1.1 Derivation of ADI equations for 2D and 3D for the diffusion problem
Given u; = Au (D is assumed 1), then in 2D forward Euler (explicit) gives

uptt - (8214 N azu)”
k Ixz  Jy? i
While C-N method gives

uft —ul (82u .\ 82u)n+1 . (82u .\ 32u)n
“x  2l\oe2 T o2 92 R

k 2|\ dx?  dy i ax*>  dy i
However, in ADI, the time step itself is divided by half, and in the first half step, one of
the spatial second derivatives is implicit while and the other spatial second derivative is
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explicit. In the second half step, these are reversed.

implicit explicit
—_—~
—N—

1
n+= 1
2 +5
ujj —u?j_ gzu”z+ 22u\"
k/2 ox2 ) 2 ).
if if
explicit implicit
,  —

n+s 1
uZH _uij 2 92u n+y 92u n+1
—_ +

W) 912
k/2 dx i Iy i
. 92u u,-_lrj—Zuij+u,-+1,j 9%u ui,j_l—Zu,-j+ui,]-+1
ertlnga_xZ_LX_h—Z da_]/z_Ly_h—Z
n+ n+s +3 n+s
2 n 2 2 2 n n n
Wi © o Ugy = 2Up T g N Ujiq = 2uj + Ui
k/2 h? h?
1/l+1 1’l+1 1/l+1 i’l+1
n+1 2 2 2 2 n+l n+l n+l
s = 2uy; C AU N uii = 2ug gy
k/2 h? h?
Moving all implicit terms to the LHS and rearranging results in
n+s s .
1 2 _ 2 2 n _n,n n
iy kUig =2y S gy g~ 20+ Uy
Y7o 2 Ty 2
1
n+l _ ~ n+l n+1 1 sy 5 Mty nty
a1 kUi 2up™ +ug _ kwig— 2 © Uy
A 2 Ty 2

Hence, in operator form the above becomes

k n+% k ,
k k H
(1 - 5Ly)u;ﬂj“ - (1 + 5Lx)uz.+2

1
n
ii

, the above 2 equations become

+_
In the class notes, uj; was used to represent u; * but they are the same. The above is the
ADI scheme for 2D. The 3D equations are now derived. Since three different directions

exist now, the time step is divided into 3. This results in

implicit

L A explicit explicit
n+3 n s n n
U 7 = Uy 0%u 3+ 22u N 02u
A3 \ox2) . 2] \0dz2).
) 0 Yy
explicit implicit explicit
1
n+s n+x 1 2 1
3 3 +3 +3 +
ul] _ul] &21,[ "3 + 821/[ "3 + 821/[ "3
A3 \ox?). 2. 9722 | .
y y y
explicit explicit implicit
n+1 n+§ n+2 n+2 n+1
1/[1] - ul] 32u 3 N 0-)214 3 N azu
At3 \ox?). ay? ). 2% ) .
y y y

Similar to what done in the 2D case, the above are rearranged resulting in

DAt \ .1 DAt DAt
- 220 s = (1 220+ 220 e
3 3 Y 3
DAt 2 DAt DAt 1
(I — TLy)un+3 =1+ TLx + TLZ un+3
DAt DAt DAt 2
(I - TLZ)u”” =1+ TLX + TLy un+3

(1)

(2)

(3)
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3.3.6 Matlab Source code developed for this HW
3.3.61 nma math228b_HW2_prob2.m

function nma_math228b_HW2_prob2

% This function implements refinement study for HW2
% problem 2, Math 228B, Winter 2011, UC Davis

o

2

% By Nasser M. Abbasi

% set up initialization for the error table, such as headings
% and formating

close all;

% for formating of error table

titles = {'#','N','delt','h',"'|ul', 'mean(u)',"'lel"','ratio'};
fms = {'d','d",'.5£','.5f','.5f','.5f'," . de', " .5f'};

wid = 13;

fileID = 1;

% use 8 runs, and allocate the table to store the error and ratios
N=5;
table=zeros(N,8); % #, t, h, |ul,|u-u_last|, ratio, N, mean(u), |exact|

% Initialize space and time steps.
grid_size = 9;

hl = figure();

D =0.1; Ydiffusion constant
time_to_run = 1; % 1 second

for n = 1:N
% Simulatiously divide space step and time step.

grid_size = grid_size * 3;
h = 1/grid_size;
k = h;

[u,u_steady_state] = solve_2D_diffusion(grid_size,h,k,D,time_to_run);

% the numerical solution now is stored in u. Make

% a new entry in the error table for this iteration.
table(n,1) = n;

table(n,7) = grid_size;

table(n,8) = mean(mean(u));

table(n,2) = k;
table(n,3) h;

table(n,4) = h*norm(u(:),2); 7 use grid 2-norm

if n>1
table(n,5) = abs(table(n-1,4)-table(n,4)); %e
%table(n,5) = h*norm( u-u_steady_state,2); %e

if n==2

table(n,6)=1;
else

table(n,6) = table(n-1,5)/table(n,5); %e ratio
end

[(hd,bdy]=nma_format_matrix(titles,
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[table(2:n,1) table(2:n,7) table(2:n,2) table(2:n,3) table(2:n,4) tabl

wid,fms,fileID,true );

clf (hl);

set (0, 'CurrentFigure' ,hl);
ax = axes();

set(hl, 'CurrentAxes',ax);
cla('reset');

text(.1,.60,bdy, 'FontSize',10);
set(ax, 'YTick',[1);

set(ax, 'XTick', [1);

text(.1,.9,hd, 'FontSize',10);
title('result of refinement study');
drawnow() ;

end
end

% The refinment study is completed. Generate plots and error table

h2 = figure(Q);

ax2 = axes();

set (0, 'CurrentFigure',h2);
set(h2, 'CurrentAxes',ax2);
cla('reset');

set (0, 'defaultaxesfontsize',8) ;

loglog(table(2:end,3) ,table(2:end,5),'-d"');

xlabel('log(h)', 'FontSize',8);

title({'refinement study result, ';'log vs successive errors difference'l},...
'FontSize',8);

ylabel('log(error norm)','FontSize',8);

grid on;

end

function [u,u_steady_statel=solve_2D_diffusion(...
grid_size, ...
h,... 7% space step size
k,... % time step size
D,... % diffusion constant
max_t... 7/, maximum time to run solver for

)

n = grid_size-2; %internal nodes

ic = @(X,Y) exp( -10%((X-0.4).72 + (Y-0.4).72 )); % initial data
[X,Y] = meshgrid(h/2:h:1-h/2,1-h/2:-h:h/2); 7, coordinates

u_mean = quad2d(ic,h/2,1-(h/2),h/2,1-(L/2));

%u_mean = quad2d(ic,0,1,0,1);

hic= @(X,Y) -exp( -(X-0.25).72 - (Y-0.6).72 );

% create sparse matrices for A and B (implicit and explicit) see HW report
A = 1ap2D_diffusion_ADI_A(n,D,k,h);
A_RHS = lap2D_diffusion_ ADI_A RHS(n,D,k,h);

u=ic(X,Y); % initial U
u_steady_state = zeros(size(u));
u_steady_state(:,:)=u_mean;

u_max = max(max(u));
u_min = min(min(u));
hi = figure();
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current_t = O;
done false;

while not(done)

% solve for Ux

tmp = reshape(flipud(u(2:end-1,2:end-1))',n"2,1);
sol = A\(A_RHS*tmp) ;

u(2:end-1,2:end-1) = flipud(reshape(sol,n,n)');

%update the boundaries
u = update_BC(u);

% solve for U_n+1

tmp = reshape(flipud(u(2:end-1,2:end-1)),n"2,1);
sol = A\(A_RHS*tmp);

u(2:end-1,2:end-1) = flipud(reshape(sol,n,n));

u = update_BC(u);
set (0, 'CurrentFigure' ,hl);

surf (X,Y,u);
colormap cool;

title(sprintf('solution at time = %1.3f, D=Y,.3f, N=Yd\nsteady state=),1.4f, hs

current_t,D,grid_size,u_mean,h));

hold on;
mesh(X,Y,u_steady_state);
zlim([u_min u_max]);
drawnow() ;

hold off;

%update current time and check if reached end of time
current_t = current_t + k;
if current_t > max_t
done = true;
end

end
close(hl);
end

function A=lap2D_diffusion_ADI_AC(...

n, ... %size of matrix (1D size)
D, ... %diffusion constant

k, ... %time step

h) %space_step

r = Dxk/(2¥h72);

e = ones(n,1);

B = [-r*e (1+2*r)*e -r*e];
Lx = spdiags(B,[-1 0 1],n,n);
Ix = speye(n);

A = kron(Ix,Lx);

% adjust A, see HW report
pos = 1:n:n"2;

for i = 1:length(pos)
A(pos (i) ,pos(i))=1+r;
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end
pos = n:n:n"2;

for i=1:length(pos)
A(pos(i),pos(i))=1+r;

end
end
S —
function A=lap2D_diffusion_ADI_A_RHS(...
n, ... %size of matrix (1D)
D, ... %diffusion constant
k, ... %time step
h) hspace_step
r = Dxk/(2xh"2);

e = ones(n~2,1);
B [r*e (1-T)*e r*e];
A = spdiags(B,[-n 0 n],n"2,n"2);

%adjust matrix, see HW report

pos = n+l:n"2-n;

for i=1:length(pos)
A(pos(i),pos(i))=1-2xr;

end

end

function u = update_BC(u)

u(1,2:end-1) u(2,2:end-1);
u(end,2:end-1) = u(end-1,2:end-1);
u(2:end-1,1) = u(2:end-1,2);
u(2:end-1,end) = u(2:end-1,end-1);

u(1,1) = u(1,2);

u(end, 1) = u(end-1,1);

u(end,end) = u(end,end-1);

u(1l,end) = u(l,end-1);
end
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34 HW3

3.4.1 Problem1

Math 228B
Homework 3
Due Thursday, 3/03/11

1. Write programs to solve the advection equation
ug + auy, =0,

on [0,1] with periodic boundary conditions using upwinding and Lax-Wendroff. For smooth
solutions we expect upwinding to be first-order accurate and Lax-Wendroff to be second-order
accurate, but it is not clear what accuracy to expect for nonsmooth solutions.

(a) Let a =1 and solve the problem up to time ¢ = 1. Perform a refinement study for both
upwinding and Lax-Wendroff with At = 0.8h with a smooth initial condition. Compute
the rate of convergence in the 1-norm, 2-norm, and max-norm. Note that the exact
solution at time ¢ = 1 is the initial condition, and so computing the error is easy.

(b) Repeat the previous problem with the discontinuous initial condition

(2,0) 1 ifla—1/2]<1/4
u(x,0) =
0 otherwise

Figure 3.51: Problem description

3.4.1.1 Part (a)
The advection PDE in 1D is given by
Uy +au, =0

Where a represents the speed of flow, which can be positive or negative. The Lax-Wendroff
finite difference scheme for the above PDE is given by

ittt = g — a—k(u’? —ul ) + ﬁ(u” - 2u! 4+ uf )
j Y AN A S 2 Uil j T

where k is the time step and # is the space step. The upwind finite difference scheme for
a >0 is given by

1 ak
= uf - (o =)
The relation between 4,k and & is given by
ak

courant number = v = "
Both schemes above are stable for [v| < 1. The problem asked to use v = 0.8 and a =1,
giving k = 0.8h.

A program was written to implement these schemes for both smooth and discontinues
initial conditions. The exact solution was computed from u = uy(x — at) where uy(x) is the
initial data. sin(47tx) was used for smooth initial conditions.

The boundary conditions are periodic. This means that the first grid point if physically
the same as the last grid point as would be the case by viewing the domain as a closed
ring. The following diagram illustrates the numbering used.
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Periodic boundary conditions

unknowns e .

Figure 3.52: Grid used

Error norm calculation

The total error at a grid point j is given by

ej= U-u(x)

Where U; is the numerical solution at the j" grid point and u(x]-) is the exact solution
evaluated at the same grid point location. e is a vector of length N where N is the number
of grid points.

To measure the size of the error vector e, a grid norm is used in place of the standard
vector norm. The following are the definitions of the norms used.

1. max-norm (also called infinity norm) ||e

= maxk

N
2. 1-norm ||eh||1 = hz;le]"
j=

h / Q2
3. 2-norm ||e ||2 = hz;|e]-|
]:

3.4.1.2 Results of refinement study for Lax-Wendroff

The result of the refinement study for smooth data for Lax-Wendroff shows that the error
ratio converged to 4, and since the space step was divided by 2 at each run, this indicates
a second order accuracy in time and space

The following diagram shows the results obtained. All norms gave the same order of
accuracy. In the diagram below, the first ratio column represent the error ratio found using
norm-2, while the second ratio column represents the norm-1 result, and the third ratio
column is for the max-norm. The log plot is generated only for 2-norm. The following
parameters were used: # = 0.01, maximum time = 1 second, At = 0.8, and initial conditions
u(x,0) = sin(4mx) with periodic boundary conditions.
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Lax-Wendroff, run# 8. time=1.000000, time step=0.003125, step number=320
T

M delt
3 0.400000
5 0200000
9 0100000
17 0.050000
33 0.025000
65  0.012500

128 0.006250
257  0.003125

0.500000
0.250000
0.125000
0.062500
0.031250
0.015625
0.007813
0.003906

result of refinement study

e, ratio

2

0.00000 0.00000
0.00000 0.00000
0.64652 0.00000
0.29746 2.17349
0.08261 3.60054
0.02078 3.97528
0.00817 4.01647

B,

0.0000
0.0000
0.5866
0.2757
0.0759
0.0189
0.0047

0.00129 0.0012

ratio

0.00000

0.00000

0.00000

212787
3.63264

4.01565
41

e
m

0.0000
0.0000
0.5744
0.4016
0.1130
0.0239
0.0073

402266 0.0018

ratio

0.00000
0.00000
0.00000
217740
3.55323
381215

refinement study result

Figure 3.53:

refinement study part a LAX

Result of refinement study for Upwind

The result of the refinement study for smooth data for upwind showed that the error ratio
converged to 2 indicating a first order accuracy in time and space. The following diagram

shows the results obtained. All norms gave the same order of accuracy.
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upwind, run# 8, time=1.000000, time step=0.003125, step number=320

. : ; ! ; : ;
| P eRERE T e R R Pooeeeoeee ATy
B AR, T Raegsegs emess T e e R e gapngie arosond
D R R N el Bt o " oo P
05 |- mne b eoonn Y RRSEEEE L ; E
| e FEERRNEREE """"" RS S PR PR AR
| | | | | | | | |
0 0.1 02 03 04 05 05 0.7 0.8 0.9 1
result of refinement study
M delt h &, ratio e, ratio e, ratio
3 0400000 0500000 0.00000 0.00000  0.0000  0.00000  0.0000  0.00000
§ 0200000 0250000 0.00000 0.00000  0.0000 0.00000  0.0000  0.00000
9 0100000 0125000 0.63967  0.00000 05289  0.00000 09275  0.00000
17 0050000 0062500 050310 127147 04720 112066  0.6986  1.32754
33 0025000 0031250 032075 152571 03006 157017 04756  1.46900
65 0012500 0015625 019104 172603 01733 173471 02736  1.73810
129 0.006250 0.007813  0.10315 12 0.0932 185626 0.1468
257 0003125 0003906 0.05363 (1.92321) 0.0484 (192847 % 0.0761 {1.92083

refinement study result,

==

Inoifhi

3.41.3 Part (b)

Figure 3.54: refinement study upwind

The refinement study made in part (a) was repeated using the following initial conditions

11 1
u(x,0) = 1 |x—§|<:1
0 otherwise

Which is a rectangular pulse of the following shape

10 F——

025 05 075

|
|
0 1.0

Initial conditions for problem 1, part (b)

Figure 3.55: initial data

The following diagram shows the results obtained.

Results of refinement study for Lax-Wendroff
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Lax-Wendroff, run# 9, time=1.000000, time step=0.001563. step number=640

'
'
'
'
'
1
v
'
'
'
'
'
+
'
'
'

o y """""""""""""" : !
- i | |
02 03 04 05 06 0T 08 0.9 1
result of refinement study
M delt h gy ratio e, ratio &, ratio

3 0.400000  0.500000 0.00000 0.00000 0.0000 0.00000 0.0000 0.00000

5  0.200000  0.250000 0.25853 0.00000 0.2754 0.00000 0.2776 0.00000

9 0100000  0.125000 0.11761 219817 0.1014 271596 0.1986 1.39786

17 0.050000  0.062500 0.13983 0.84110 0.1135 0.89332 0.2934 0.67695
33 0.025000  0.031250 0.12367 1.13068 0.0831 1.36675 0.3686 0.79596
65  0.012500  0.015625 0.10924 1.13205 0.0571 1.45387 0.4347 0.84796
129 0.006250  0.007813 0.09424 1.15918 0.0397 1.43926 0.4876 0.89158
257  0.003125  0.00389086 0.079584 1.18042 0.0272 1.45881 0.5285 0.92251

512 0001563 0001953 006674 119624  0.0136 05509  0.94399

refinement study result,

P Ry

— diznlaw made |Og[h}

Figure 3.56: refinement study part b LAX

The following table is a summary of the results of the above refinement study for Lax-
wendroff

Norm ratio | order of accuracy p = log 2(rat‘io)
|
1-norm 1.5 5
2-norm 1.2 i
max-norm 1 0

The maximum norm being zero order says that the largest error in absolute terms does

not decrease. Hence for discontinues data, convergence will not occur in the max-norm,
no matter how small % is made.

Results of refinement study for upwind

The following diagram shows the results obtained
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upwind, run# 9, time=1.000000, time step=0.001563, step number=640

0.4 0.5 0.6
result of refinement study
M delt h &, ratio e ratia & ratio

3 0400000  0.500000 0.00000 0.00000 0.0000 0.00000 0.0000 0.00000

5 0200000  0.250000 0.37171 0.00000 0.3840 0.00000 0.4540 0.00000

9 0100000  0.125000 0.29414 1.26371 0.2699 1.42284 0.4727 0.98154

17 0.050000  0.062500 0.22129 1.32919 0.1709 1.57939 0.4794 0.98599
33 0025000 0.031250 017718 1.24902 0.1148 1.43883 0.4849 0.98882
65 0.012500 0.015625 0.14803 1.19691 0.0807 1.42255 0.4591 0.99138
128 0.006250 0007813 0.12589 1.17688 0.0578 1.39612 0.4922 0.99366

257 0003125 0.003906 010754 1.17064 0.0416 .389480 0.4945 099543
513 00018263 0001953 0.09177 1.17182 0.0299 1.39089 0.4961 0.99675

refinement study result,

S log(h)

Figure 3.57: refinement study part b UPWIND

The following table is a summary of the results of the above refinement study for upwind.
The results are similar to Lax-Wendroff.

Norm ratio | order of accuracy p = log, (ratio)
I-norm 1.4 0.485
2-norm 1.2 i

max-norm 1 0

It is noticed that Lax-Wendroff is more accurate scheme than upwind, but only if the initial
data is smooth. For discontinuous initial conditions, Lax-wendroff loses its advantage over
upwind, and both schemes gave similar order of accuracy.
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3.4.2 Problem 2

2. Consider three-point explicit schemes for the linear advection equation in the real line of the

form
u}”'l:u?fC(u]fu )+D(]+1 ?)
Show that
S|t =t < 3 g -] 1)
j ]

if C>0,D>0,and C+ D < 1. When the numerical solution of a scheme satisfies (1)
the scheme is total variation diminishing or TVD. Put upwinding and Lax-Wendroff into the
above form, and show that upwinding is TVD when it is stable and that Lax-Wendroff is not
TVD. Give an interpretation for the meaning of TVD and explain how this relates to the
numerical solutions from problem 1b.

Figure 3.58: Problem statement

Given
1_
= = Cluf = uly) + D(uyy — )
Writing the above in the following form
ul*' = Culy + (1 (C + D))l + Dull,
1/[]_1
=[c a-c+D) D] u
u]’.1+1
ujy
=A u}ﬂ (1)
u?+1

Doing the same for u]’“ll results in

ujy
i = Aluly (2)
uy
Using the above gives
j=oo o | (4 Ui s
2 u;-”l u;?fll = E Al ul |-Alul,
e U I
j=o | W1 M2
= A u]n—u]’?_l
1 L -
—oo0
= Y|y —uy ) + @~ C-D)(uf —uly) + D(ufyy 1)
j=—oo

Using the relation that )|A + B| < })(|A| + |BJ), the above becomes

j=00

n+1 n+1|< E'Cu e ’7_2)|+] |(1 c_ D)(u _u | ElD

j_—oo j=—00 j=—00 j=—00

Given that that C > 0,D > 0 and that (1 - C - D) > 0, where the last case follows from
(C + D) <1, therefore C,D and (1 - C — D) can be taken from outside the absolute sign in
the above expression leading to

n+l n+1 n_ . n
|<CZ|11 wj — U

]——OO ]——00 J=—00 J=—

_Oo
_yn
U
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Collecting terms with the same coefficient gives

j:oo ] 0o j:oo
n+1 n+1 n n n n
E ui™ | <C Uiy —u,| - uji —uiy (3)
]':—oo j=—00 ] —00
j:OO
+Df (J+1 2|”_”11|]
=—00
]:00
(1 = )|
, ] j-1
J=—

The first 2 expressions above in the RHS vanish, leading to the result required. To show
this, Consider the first expression from the RHS above, and expanding it on the real line
gives

]':oo j:oo
n n n n —

=—00 j:—oo
( + |(u’_12 - u’_l3)| + |u’11 - u’12| + |u8 - u’_’1| + |u’11 - u8| + |ug - u’f| + |ug - u§| + |uflZ - u§| + )—
( + |u’_12 - u’_’3| + |ufl - uﬁ2| + |u8 - u’11| + |u’f - u8| + |u§’ - u’f| + |u’§ - u§| + |uZ - u§| + )

The above result shows that all terms cancel out. Each term in the first line above, has a
corresponding term in the second line, but with a negative sign. Therefore

j:OO
C(E |u]’7_1 u‘_| Z|u —u ] (4)
J=—

Similarly the following term vanish as well

]':oo j:oo
n o _m\| - n_yn || =
, (”J’+1 uj ) , (”J ”J—l)l

j=e0 j==eo

D

ey = ] o o = ] o ] =g o = ] )=

(o o)

( + |ufz —ufg| + |uf1 —uf2| + |u8 —u’fl| + |u’f - u8| + |u§ —uﬂ + |u’§ —u§| + |uflZ —u’§| + )

=0 4)
Substituting Eqgs. (4) and (5) into (3) gives
j=00
Z n+l _ E|u_u]1|
j=—co =

Which is the result we are asked to show.

3.4.21 Second part

Lax-Wendroff is given by

22
1 ak a‘k
u]"1+ —u]”—ﬁ(uj+1—u;7_1)+ﬁ( - 2u +u]+1)
_ o a*k? o (ak  a?k? o (2> ak 1
SO\ T ) e\ ) Pl T W
Eq. (1) needs to be put in the following form u]”” =uj - C(u]n ) + D( Ujsq u]”) or
u;m = u!(1-C~D)+Culy + Duf} (2)
Comparing Egs. (1) and (2) leads to
a’k?
1 - C - D = 1 - h_2
a2k?
C+D= 2
ak a’k?
TR
3 a’k?  ak 1 a’k?  ak 3)
2nr 2n 2\ K2 h
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For the scheme to be TVD it is required that C > 0 and D > 0. Lax-Wendroff is stable
272

when |u|£ < 1. Therefore this implies that ”h—s < |a|£.Hence the constant D in Eq. (3)

above will become negative. Therefore one of the conditions of TVD has been violated.

Hence Lax-Wendroff is not TVD. Now consider upwind.

Consider the case a > 0. Upwind scheme is given by

ak
n+l _ . n _ n_ ,.n
Ll]- = Ll]- 7 (u]- u]-_l)

ak ak
= u;l(l = E) + FM;Z_l (4—)

By comparing coefficients between Eqs. (4) and (2) results in

l-c.p=1_"%
R
cip="k
T
_ak
T
D=0 (5)

But when 4 > 0, upwind is stable when 0 < %k < 1. Therefore C > 0 and all the TVD
conditions above are now satisfied, Hence upwind is TVD for a > 0.

Now consider when a < 0, The upwind scheme is now given by

ak
n+l . n_""(,n _ n
wi =4 h@m )

ak ak
214(14-7;)4—(—7;)uﬂ1 (6)

By comparing coefficients between Eqs. (6) and (2) results in

3 ak
1_C_D_1+E
ak
C+D:_ﬁ
C=0
ak
D:_Z (%)

since a < 0, then upwind is now stable when -1 < % < 0. Therefore D > 0 in the above,
and C + D > 0 as well, and hence all the TVD conditions are satisfied, therefore upwind is
TVD for a <0 as well. Therefore upwind is TVD.

Interpretation of TVD: A scheme with this property implies that the numerical solution,

starting with initial data that is monotone, will remain monotone as the solution is advanced
in time. This implies that no new local extrema will be created and values of local minimum
are nondecreasing while values of local maximum are nonincreasing. In part (b), when
initial data was discontinuous, it was observed that Lax-wendroff produced wiggles where
non-existed before, meaning that new local maximum and new local minimum were created
in that region. This agrees with the finding here that Lax-Wendroff is not TVD.

On the other hand, with upwind, no new wiggles were created near the discontinuity, and
the numerical solution remained monotone. This agrees with the finding here that upwind
is TVD scheme. A scheme which is TVD is also stable, since the TVD property will
prevent any ’blow up’ in the solution due to the above properties of being TVD scheme.
TVD scheme is stable, but limited to first order accuracy. To obtain more accuracy and
use a second order, the price to pay is that the scheme becomes non TVD.
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3.4.3 Problem 3

3. For solving the heat equation we frequently use Crank-Nicolson. For the linear advection
equation, Crank-Nicolson is
v

4

v
Wt 4 —(uj —ujg) + (u;lill - u?irll) =0.

J iy
(a) Show that Crank-Nicolson is unconditionally stable for the advection equation.

(b) Use von Neumann analysis to show that for a periodic domain |[u"||s = [|u°|]2 for all
n. This scheme is said to be nondissipative. This seems reasonable because this is a
property of the PDE.

(c) Solve the advection equation on the periodic domain [0, 1] with the initial condition from
problem 1b. Show the solution and comment on your results.

Figure 3.59: Problem statement

3.4.3.1 Part (a)
The PDE for linear advection equation is given by
up+au, =0
The Crank Nicholson finite difference scheme for the above is

v v
n+1 n n n n+1 n+l) —

ak . . . . .1
Where v = —, k is the time step and } is the space step. Applying Von Neumann stability
analysis, let ‘
Wt = g(E)e
and let ‘
uf = '™
Substituting the above 2 equations into Eq. (1) gives

g(&)e™ — i + Z(eicxfeich - eicxfe‘ich) + E(g(é)eicx/eid’ -8 (é)eicxfe‘ich) =0
Dividing throughout by ¢ gives
v, : % , ,
8(&) =1+ (e e ) + 2g(&)(e ¥ — ) =0

Solving for ¢(£) and applying Euler relation to convert exponential to trigonometry func-
tions gives

g(é)(l + E sin Ch) =1- ; sinCh

2
1- g sin Ch
) =—2——
1+ 5 sin Ch
Hence
|1 Vo 2 v, 2
5 —i-sin Ch| 1+ —sin“Ch
_ 2 _ 4
(@) = ) 2 2 .,
|1 iy sinCh| 1+ = sin® O
Hence

[g(&)] =1
Since |g(&)| < 1 the scheme is unconditionally stablﬁThe stability of this scheme does not
depend on CFL criteria, in other words, there is no dependency on At or / for the stability.
In addition, it is seen that the amplitude of each Fourier mode remain constant at each
time increment. High wave numbered modes as well as small wave numbered modes will
remain in the numerical solution with same energy content. There is no dissipation in the

numerical solution.

8May be we should call this as marginally stable? Since there is no attenuation and also there is no
magnification.
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3.4.3.2 part (b)

The following relation, which is valid due to the periodic boundary conditions being used,

will be utilized in the proof below

Zu]’? = 2“}1—1 = 2u}1+1
] J J

The above relation can be more easily seen by viewing the domain as a ring, where the
first grid point is physically the same as the last grid point. Therefore the location of where
the sum starts is not important, since the same number of grid points will always be added
as long as the sum is over the whole range. The following diagram illustrate this point.

n
2.y
j

conditions used in the proof

> \\\ // J:]_ N
/ J=1 ~ / N
/ \ /
/ \ /
/ \ !
1 ! | =0
I _ J=2 —
J=21 =Q \ J=4
\ :]_4 \
\ A \
\\ // \\ Y
\ N J=3 s
\\ J=3 /// A \\» ////

Showing graphically a property of periodic boundary

Figure 3.60: Grid layout

Now, the proof will start. Starting from the C-N scheme given by
w17 +1 +1) — v

e Jl ) =

And squaring each side, and summing over all j gives

(1)

n+l 1_/ n+tl _  n+l 2: ’7—1—/
Z ui™ + 4(u]+1 “]—1) Z u-
] ]
Expanding
2
Do)+ g gt =)+ () (ot - ) =
J

) - Sur (- ) + 5

]

N
(”J+1 ”]—1)

%
4

2 2
n n
)@ﬂ‘%ﬁ

2
Moving all terms from LHS to RHS except for Z(u}”l) the above becomes

]

¥ () = B (o) - 2y

] ]

o () ot =) - o =)

Using Von Neumann, let u;-”l

]

n n n+l(, n+l n+1
(0 = 1) + 0 (! = ey

)

|g|u]’-’ in the above, where ¢ is the magnification factor

which was found from part (a) to be independent of £. The above becomes

() -

2
() T ) ot =)'

S0 - S =) + el s = )|
]
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Since |g| =1 as was found in part(a), then the last term in the RHS above will vanish
resulting in

2( ) vt - )
Ej]( )+V[Eu]u]1 N u]+1] (1)

Due to the periodic boundar conditions Zu] uiy = E uj,1, Therefore Eq. (1) reduces
j

to

() = () @)

But by definition

2_ %2
lully = Yu
]

Hence Eq. (2) can be written as

2 = o2

or

], = el (3)

Similarly [[u"|, = ||u”‘1||2 == | 0 » therefore Eq. (3) becomes

=, = [

3.4.3.3 Part(c)

The C-N scheme was implemented for the 1D advection PDE. The source code is shown
in the appendix. The following diagram shows the result for the initial conditions as given
in part (b). The result for C-N is shown next to the solution produced by Lax-Wendroff in
order to compare the results

9Side note: Initially I thought I might have to use the Schawrz inequality [u - 9| < [Jul[[|o]l, to write

\/2 \/2

And due to periodic boundary conditions, obtain E(u]”) = E(uj’-ﬂrl) , and so Eu]’-“u;-ﬂrl < E(u]’?)z But this
i j j j

turned out not to be required.
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) <Student Version: : 1D advection solver, By Nasser M. Abbasi, feb 26,2011
% & @ Y
— select algorithms 1o run
v Lax-Wendroff
™ upwind
[~ Lax-Friedrichs
™ Leapfrog (CTCS)
[ Beam-Warming

[v Crank-Micolson
I” Frcs (Forward Euler, Central Space)

I” reserved_for_future_use
— selact initial data
" user defined function

sin(4"pi"X)

& unit rectangular function : i ) :
with [ 05 | | -4 i i ; i i i i i i
rarte at 0 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
starts & I
0.25 Crank-Micolson,|time=1.000000, time step=0.008000, step number=125, ||u|=0.703688
height I 1 T
—tun parameters———————
length I 1
grid gpacing I 0.01
speed (a) I 1
Courant nurmber I 0.8

run-time specification

& maximum time (sec) 1
" number of steps 1

— refinement stucly
|7 [~ do refinement study

number of runs 9

display moc
RUN RESET ( % stationary axes moving object " moving axes stationary object ‘

Figure 3.61: C-N result

C-N shows more wiggles near the boundaries than Lax-Wendroff. Both are not TVD
schemes, so starting with non-smooth initial data, it was expected to see wiggles in both
cases.

C-N scheme showed more wiggles and they appeared earlier in time as well, even though
the solution was stable all the time, since these did not grow when the running time was
made longer (It was shown in part(a) that the scheme is unconditionally stable). Norm-2
of the solution was displayed all the time and it remained the same value through the
run-time, even as wiggles appeared in the solution. This was the case for both schemes
shown.

This result shows that 2-norm of the numerical solution is stable as the 2-norm of the
numerical solution did not grow with time. The scheme is non-dissipative at all, and
high frequency modes did not attenuate, leading the solution observed. Using such non-
dissipative schemes on non-smooth data does not appear to be a good idea. The following
diagram below is another illustration to compare Lax-Wendroff with C-N with & = 0.005,
showing the numerical solution at ¢ = 0.04 seconds.
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) <Student Version> : 1D advection solver, By Nasser M. Abbasi, feb 26,2011 o= |i|
":\ = _é {ﬂ'? o
R R LaxWendrof, time=0.040000, time step=0.004000, step number=10, [lul|=0.704379

¥ Lax-Wendroff 14 T T ! ! ! ! T T T

™ upwind : ' : : : : ! ! '

I™ Lax-Friedrichs
I~ Leapfrog (CTCS)
™ Beam-Warming
¥ Crank-Nicolson

" Fres {Forward Euler, Central Space)

" resenved_for future_use

— selectinitial data
 user defined function

sin{4*pi*X)

% unit rectangular function

width 0.5 ,0_40

starts at

i I i i i i \ i i
01 02 03 04 05 0.6 07 0.8 09 1

Crank-Nicolson, time=0.040000. time step=0.004000, step number=10. |[ul|=0.70533

-
oL BN g

0.2
1
— fUn pararnsters :
length I 1
grid spacing IW
speed (a) |17
Courant number IT

run-time specification

" maximum time {sec} 2
& number of steps 10

— refinemert study

" do refinement study

number of runs | 5

display moce
RUN RESET ’7 1+ stationary axes moving object ~ moving axes stationary object ‘

Figure 3.62: compare Lax-Wendroff with C-N with i = 0.005

The top diagram shows Lax-Wendroff, and the bottom one shows C-N. Notice that wiggles
are larger in amplitude for C-N since its magnification factor is constant at 1, resulting in
no attenuation at all in the large spatial frequency present in the initial data.
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3.5 HW 4

3.5.1 Problem 1

Math 228B
Homework 4
Due Thursday, 3/17/11.

1. In one spatial dimension the linearized equations of acoustics (sound waves) are
Pt + Kuz =0
pPut + Pz = 07
where u is the velocity and p is the pressure, p is the density, and K is the bulk modulus of

compressibility.

(a) Show that this system is hyperbolic and find the wave speeds.

(b) Write a program to solve this system using Lax-Wendroff in original variables on (0, 1)
using a cell centered grid z; = (j —1/2)h for j = 1...N. Write the code to use ghost
cells, so that different boundary conditions can be changed by simply changing the values
in the ghost cells.

Set the ghost cells at the left by

and set the ghost cells on the right by

\V]

1
PN+1 = 5 <p7v +uy Kp)

u _1 PN +uly |-
N+1 9 \/m N
Run simulations with different initial conditions. Explain what happens at the left and

right boundaries.

(c) Give a physical interpretation and a mathematical explanation of these boundary con-
ditions.

Figure 3.63: Problem description

3.5.11 part(a)

The definitions and physical units of the variables used in the PDE’s are given below. In
the following table, L stands for length, T for time, M for mass and N for force.

term | meaning dimensions SI units

acoustic air pressure in medium N or MEL or M N/Meter?

p p LZ T2 LZ LT2

u | acoustic perturbation velocity L/T Meter/Second

c speed of sound in medium L/T Meter/Second

K | bulk modulus or modulus of bulk % kg per meter per second?
elasticity for gaﬂ

p | air density M/L3 kg/meter®

To show that the system is hyperbolic, the PDE’s are written in matrix form

pt+Kux=0
pu;+p, =0
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Therefore

A
—_——

()b ol -0

q +Aq, =0

If the eigenvalues of A are real and distinct, implying the existence of linearly independent
eigenvectors for A, then the system is called strictly hyperboli@ The eigenvalues of A are
found by solving the following equation

Det(A - AI) = 0
(~D)(1) = R)(1/p) =0
2=k

p

k
Mg =#£4[=
\/;

The quantity Kis positive and real because p is density (which is a real positive number)

and k is bulk modulus of compressibility which is also real positive number.

Therefore both eigenvalues of A are real and distinct. Hence the system is strictly hyperbolic.
The system is diagonalizable as well, since the transpose of A is a diagonal matrix, but
this property was not needed to show the system is hyperbolic. The speed of sound in the

medium is given by \/é . Hence a sound wave will travel in one direction at speed\/é and

another sound wave will travel in the same speed but in the opposite direction.

3.5.1.2 Part (b)

The following diagram illustrates the grid numbering used in the numerical solution

The numbering system used for HW4, problem 1, part(b) to solve Lax-Wendroff on cell centered grid

Ghost e Ghost cell
cell0 | Cell 1 | Cell 2 | | | Cell N | N+1
...... .O----. .---O---.--
P(0) | P(1) | P(2) | | | P(N) | P(N+1)
u(0) u() u@) U(N) U(N+1)

Figure 3.64: Grid used

The Lax-Wendroff scheme for the linear system q; + Aq, = 0 is given by

n n At n A H
@ +1=q' - A(qh - ql) + 55 4%(q) - 29 + @)

K
1/p

Where A = is a constant matrix.

1 Another method to show that the system is hyperbolic, is to show that A is real and symmetric, because
this implies that A is diagonalizable. In this case, the system is called symmetric hyperbolic.
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In this problem, the solution at time 7 is

n
Z_ (Pl _ [P
: ]

)

The following are the boundary conditions used

(-2

. (p]" 1 [Pz”v + uﬁz«/@]
N

Q@

2| I 4 up;

N

To find the time step At, Courant number r = 0.8 was use and At found by using the
CFL condition

+1

r= g/\|
h
Solving for At gives
A=
Al

The solution was implemented in Matlab and the result is given below. For each run,
a number of plots are shown to illustrate the solution at different time instances. The
following table describes the simulations done. Three different initial conditions are used
with two different runs for each initial condition. The first run used the boundary conditions
given in this problem, and the second run used different boundary conditions which caused
the sound wave to reflect when it reached both the left and the right boundaries, and not
just the left boundary. Therefore a total of 6 simulations were made, the first three used
the following boundary conditions

no_ n
Po = P1
n _ n

1
PN+ = E(pnN + uﬁ]‘/@)

1 px
u?\l+1:§( A +unN)

Vkp

And the second three simulations used the following boundary conditions

n o __ n

Po = P1
ug = —uf

n — n

Pn+1 = PN
n — n
UNi1 = TUN

The images below show the three initial conditions for the pressure p(x,0). The initial
velocity u(x, 0) was set to zero for all simulations. The following section shows the simulation
plots for each one of the 6 simulations. All snapshots were taken at the same time for each
run in order to compare the results. All runs were made with the following parameters:

h = 0.005 meter
At = 0.1278 ms
Courant number = 0.8

maximum run time = 0.005 sec

Animations of these runs are available above (in HTML version only).

12For stability, the Courant number must be less than 1.
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sin(107tx) from x = 0.4 to x =

sin(207tx) from x = 0.4 to x =

triangle function

0.6 0.6

P(x1) at time zero, h=0.0050, delt=0.00001278

P(x.t) at time zero, h=0.0050, delt=0.00001278

P(x1) at time zero, h=0.0050, delt=0.00001278
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Simulation using first initial data and reflect from left end only

This simulation used p(x,0) = sin(107x) from x = 0.4 to x = 0.6. The pressure wave starts
in the middle, and immediately starts to split into two smaller waves, each one became
half the amplitude of the original wave. Each smaller wave traveled in opposite directions.
The wave that reached the left boundary was reflected back while the wave that reached
the right boundary was absorbed into the boundary. After the left wave reflected back and
eventually reached the right boundary, it was also absorbed. This resulted in the original
wave disappearing. As the left wave reflected from the left end, it also flipped upside down,
such that the leading half of the wave remained with positive amplitude and the trailing
half remained with the negative amplitude.
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Figure 3.65: test typ0 BC 1

Simulation using second initial data and reflect from left end only

These images show the simulation result using p(x,0) = sin(207x) from x = 0.4 to x = 0.6.
Each frame is taken at the same time as the first simulation. The same result can be seen

as described in the first simulation.
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Figure 3.66: test typ2 BC 1

Simulation using third initial data and reflect from left end only

This simulation uses the triangle pulse as the initial data. Each frame is taken at the same
time as the first simulation. The same result can be seen as was described in the first

simulation.
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Figure 3.67: test type 4 BC 1

Simulation using first initial data and reflecting from both ends

The following 3 simulations are a repeat of the first 3, but using boundary conditions
that caused the pressure wave to reflect from both the left and the right boundaries. This
resulted in the wave reflecting back and forth all the time. When both waves met again at
the middle, the original wave form was reconstructed for a very short time but in an upside
down form compared to its original form, and then the whole cycle was repeated. When
the waves met again for the second time in the middle, the original wave was reconstructed
again, but this time with the same shape it was at the initial time. This process continued
again. Since there was no diffusion term present in the PDE, this cycle repeated for the
duration of the simulation and no energy was lost. The times of each frame is the same as
was used in all the previous simulations.
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Figure 3.68: test type 0 BC 2

Simulation using second initial data and reflect from both ends

This simulation used p(x, 0) = sin(207x) from x = 0.4 to x = 0.6, but using boundary condi-
tions that caused the pressure wave to reflect from both the left and the right boundaries.
The same observation can be made as with the previous simulation.
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Figure 3.69: test type 2 BC 2

Simulation using third initial data and reflect from both ends

This simulation used a triangle pressure wave as its initial data but using boundary condi-
tions that caused the pressure wave to reflect from both the left and the right boundaries.
The same observation can be made as with the previous simulation.
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Figure 3.70: test type 4 BC 2

3.5.1.3 Part(c)
The boundary conditions given in the problem are
Po =1
= -]
1
PRiaa = 5 (PR + uivko )

Wi = 2| 2 g,
S W

At the left most cell (cell 0), the acoustic perturbation velocity u is negative its value on
the inside cell, therefore the average value of u right at the left edge (start of the physical

domain) will be zero, as shown by the following diagram
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Average u =0 at cell edge

)
) )
)
Y
)

! s celt | celz |
L_—o--F—0 o
' Left \\ | |
ghost .
cell .
.

Linear interpolation of u
between last actual cell
and ghost cell

Figure 3.71: problem 1 left cell

Physically, this represent a barrier or a wall where perturbation velocity is zero at the wall
resulting in deflection. Having zero velocity at the edge means that the momentum of
the wave is zero at the left boundary. Since momentum is conserved, then it must have
a direction which is opposite to what it was in the previous time step. This is similar to
a ball hitting a perfectly elastic wall. For the pressure boundary conditions, having the
acoustic pressure in the left most cell and the ghost cell being the same means that the
pressure drop or gradient is zero between these two cells. Therefore, no sound will be
transmitted through the boundary since sound is transmitted only due to presence of a
pressure gradient between adjacent spatial points in the medium.

On the right side, when taking the average between the right-most cell and the ghost cell
at the right results in

3 1 py
Upight_edge = ZunN + 4 \/E

3 1
Pright_edge = ZP]”V + 1”?\/\/@

Therefore, the perturbation velocity u at the right edge is no longer zero, but it has the
same sign as the velocity at the right most cell. Physically this means the acoustic wave will
continue to have momentum in the same direction and will not reflect. For the pressure,
there exists now a pressure gradient, therefore sound will travel across the right boundary.
Physically, this boundary can be thought of as a sound absorbing wall. (For example, a
wall treated with special paint or covering).

3.5.2 Problem 2

2. A scheme is monotone preserving if the solution, !, is monotone in j for all n whenever the

initial condition, u?, is monotone in j. Show that if a scheme is TVD, then it is monotone
preserving. Assume that the domain is the whole real line, that the solution satisfies the

asymptotic boundary conditions lirin u;l = U+, and that the initial condition has bounded
j—+oo

variation.

Figure 3.72: Problem statement

Given a sequence u]o which is monotone in j, we need to show that when a TVD scheme is
applied to this sequence, the resulting sequence u;’ is also monotone at any n. This is the
same as saying that a TVD is monotone preserving.

We are given that the sequence u;' has the fixed boundary conditions at j = +oco for any n.
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A monotone sequence can be either monotone increasing or monotone decreasing but
not both. A monotone increasing sequence u is one where u; < u;,; for any j and for any
k > j. A monotone decreasing sequence is one where u; > u;,; for any j and for any k > j.
In the following discussion, a monotone sequence is taken to mean either an increasing or
a decreasing sequence.

The following diagram illustrates this point. In this diagram the scheme is viewed as a
system or an operator which transforms a sequence to a new sequence. We need to show
that this transformation is monotone preserving when the operator is the TVD scheme.

Monotone increasing Monotone increasing
Monotone preserving
L] ‘ =T : [ [
0 n
Uj Uj (for any n)
Monotone decreasing Monotone decreasing
Monotone preserving
I ‘ :> scheme :> I ‘ ‘
__‘|||__| N
0 n
u j u j (oranyn)

Figure 3.73: TVD 1 scheme

Since u;-) (the initial sequence) can be assumed to be monotone, then the total variation of

u](-) is known, which is

Tv(u].o) = U, — U_o|

The total variation is defined as the sum of the total amount the sequence change (in
absolute values). In other words, the TV of the initial sequence is

TV(i) = Xl -l

]
= |u+oo - u—ool

TV(u?) = |U,o — U_s| is valid since #° is monotone. We could not have said this if u°
was not monotone. The following diagram helps illustrate why this is the case, showing a
monotone sequence, and showing that adding all the differences between successive values
in the sequence is the same as the difference between the left-most value and the right-most
values (in absolute values).
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U.eo

J1 J J+1

TVW®) = > [uf —ufl, | = Ui — U]
i

Figure 3.74: TVD 2 scheme

The above is similar to walking up a staircase. If we are told that each step could only
go up (or remain flat), then the total height of the overall staircase is the total variation,
which is the sum of the height difference between each 2 successive steps.

We know that a TVD scheme, by definition, is one in which satisfies the following relation
for any n

TV(u") < TV(u°) 1)

0

We now need to show, that when #"° is monotone, then u” will also be monotone when

applied to a TVD scheme.

The proof will be by contradiction. The idea is to assume that the scheme is TVD, hence
Eq. (1) is true, and then to assume that the scheme, when applied to an initial monotone
sequence #° has resulted in a sequence u" which is no longer monotone. Then we show
that this result is a contradiction to the assumption, meaning that 4" must be monotone.

The following proof below is for a monotone increasing sequence 1, but the same idea of
the proof can be used for a monotone decreasing sequence.

Proof

Let the scheme be TVD, therefore TV(uO) < TV(u"), and let a monotone increasing se-

quence be u]Q with a total variation TV(uO) = A, where A is some constant that does not
change with n. In this problem this constant is given as |U, o, — U_q|-

Let result of applying the TVD scheme to u](-) be the sequence u}'. Now, assume that u;' is
no longer a monotone increasing sequence. Since 1 is not monotone sequence, it must
contain at least one local minimum and/or one local maximum. To illustrate this in a
diagram, assume uf had one local minimum. The same idea would apply if we assumed a
local maximum.

U

J1 J J+1

These 2 distances are
being added to the total
variation of the initial
sequence

Figure 3.75: TVD 3 scheme
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Since u" has a local minimum, then the total variation of 1 is now larger than the total
variation of what it would had been if it did not have this local minimum. In the above
diagram, u is shown as being monotone increasing, except for the one local minimum

]
which appeared as a result of applying the TVD scheme.

Due to the presence of this local minimum, the total variation has become larger than
U, o — U_gl|. The extra amount added to TV(uO) is seen as 2 u;ﬂ - u]'7_1 , as this is the distance

needed to be traversed in going down the local minimum and climbing back up the same
level before meeting this local minimum.

Therefore, having a local minimum (or a local maximum) in a sequence increases its
total variation. Therefore TV(u") > TV(uO). However, we started by assuming that the

scheme is TVD, which means that TV(u") < TV(uO), so this result is a contradiction to our
assumption.

Therefore u}q can not be a non monotone sequence, hence it must be a monotone sequence.
This completes the proof.

3.5.3 Problem 3

3. Write a program to solve the linear advection equation,
ur + aug, =0,

on the unit interval using a finite volume method of the form

At
n+1 n
uith =i === (Fiyajp = Fioap)
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The PDE

Use the numerical flux function

alt

I 5j71/27

lal
Fjoap=F2+5 |1~

)

up auj_1 ifa>0
FiZi2 = : if
au; if a <0,

where F]ufl /2 is the upwinding flux,

and d;_1 /o is the limited difference. Let Au;_;/5 = u; —u;—1 denote the jump in u across the
edge at x;_1/. The limited difference is
5]'71/2 =¢ (93'71/2) Au]’—l/Q:

where
AUJup —1/2

Aujfl/Q ’

j—1 ifa>0
Jup =19, . .
j+1 ifa<0

Oj172=

and

Note that you will need two ghost cells on each end of the domain. Write your program so
that you may choose from the different limiter functions listed below.

Upwinding ¢(0)=0

Lax-Wendroff ~ ¢(f) =1

Beam-Warming ¢(6) =6

minmod ¢(6) = minmod(1, 9)

superbee ¢(0) = max(0, min(1, 20), min(2, 9))

MC ¢(0) = max(0, min((1 + 0)/2, 2, 20))
0+160

van Leer o(0) = T :9}

The first three are linear methods that we have already studied, and the last four are high-
resolution methods.

Solve the advection equation with a = 1 with periodic boundary conditions for the different
initial conditions listed below until time ¢ = 5 at Courant number 0.9.

(a) Wave packet: u(z,0) = cos(16mz) exp(—50(z — 0.5)?).
(b) Smooth, low frequency: u(z,0) = sin(27z) sin(4rx).

1 ifjlz—1/2|<1/4
(c) Step function: u(z,0) if |2 / <Y .

0 otherwise

Compare the results with the exact solution, and comment on the solutions generated by
the different methods. How do the different high-resolution methods perform in the different
tests? What high-resolution method would you choose to use in practice?

Figure 3.76: Problem statement

Uy +au, =0

was solved using finite volume method using the 7 flux limiter functions listed in the problem
statement above. The following tables summarize the observations made after running
the simulations using each of these limiter functions. Each method was given a letter
grade based on how close it was to the exact solution and how well the numerical solution
appeared. Numerical solutions that showed ripples around the region of discontinuous data
(corners) or showed more spatial lag relative to the exact solution, or had large amount
of diffusion were graded lower than those which did not show any of these result.
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3.5.3.1 part (a) wave packet as initial conditions

0.8 |

02

04 f--mn

+ | —&— numerical
exact

. Rt oo T = PR e

B |
g DI1 DIZ 0‘3 0?4 Ufﬁ D‘E []‘7 []IS 0?9 1I
x (meter)
Figure 3.77: Initial conditions
method comment grade
Upwinding Very large diffusion seen at wave crest and trough, but no shift (lag). F

Some diffusion at wave crest and trough, in addition to significant shift
Lax-Wendroff o _ & _ & B-

to the left direction relative to exact solution.

Beam-Warming | Similar to Lax-Wendroff, but shift was to the right relative to exact solution. B
minmod Diffusion was present at wave crest and trough, but no shifting. C
superbee No shifting and very small amount of diffusion at crest and trough. B+

MC Similar to superbee, but a little more diffusion at crest and trough. B
Van Leer Similar to MC limited, but much more diffusion at crest and trough. B-

Among the high resolution limiter functions, superbee had the best numerical result.

3.5.3.2 part(b) smooth low frequency

solution

01 02 03 04 05 06 07 08 09 1
% (meter)
Figure 3.78: Initial conditions for part b
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method comment grade
Upwinding No shifting, but large amount of diffusion at crest and trough of the wave. C
Lax-Wendroff | No shifting and no diffusion. A
Beam-Warming | Very similar to Lax-Wendroff. A
minmod No shifting, but small amount of diffusion was present near crest and trough. B
No shift and no diffusion, but at crest and trough, solution appeared to be
superbee ) A-
less smooth than with Lax-Wendroff.
MC Similar to Lax-Wendroff, a little better than Superbee around A
crest and trough.
Van Leer No diffusion and no shifting

Among the high resolution methods, MC and Van Lee had the best results. Among the

non high resolutions method, Lax-Wendroff and Beam-Warming were the best.

3.5.3.3 Part (c) step function

solution
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Figure 3.79: Initial conditions for part C

method comment grade
Upwinding No ripples, solution followed the general form of the step function C
but there was large amount of diffusion near the corners.
LaxWendroff Large ripples around the corners on the left of the step function. C
Less diffusion than upwinding.

Beam-Warming | The ripples are larger and have a larger extent than Lax-Wendroff. C-
minmod No ripples and little diffusion. An improved version of upwinding. C+
superbee The best scheme for the‘ step function. N.o rif?ples, very closely A

followed the exact solution. Very small diffusion was seen.
MC Similar to superbee, but more diffusion. B
Van Leer Similar to MC limited. B+

Among the high resolution methods, superbee was the best. Among the non high resolu-

tions method, Lax-Wendroff and Beam-Warming are best.
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3.5.3.4 Conclusion

Among the high resolutions methods, I would choose superbee. It handled discontinues
data the best and did well for smooth data, even though MC and Van Leer did a little
better on the low frequency data, superbee had less diffusion in the wave packet data. So,
overall, and in particular since it handled discontinues data better than any other flux
limiter function, it is the method I would choose in practice.

Among the non high resolution methods, Lax-Wendroff and Beam-Warming were very
similar. Upwinding did not do well. All the non high resolution methods did relatively
worst in the step function test compared to the high resolution methods, as they were

not able to handle solution near the discontinues regions as well as the high resolution
methods did.

Numerical solutions using all the above methods have been animated and available to run
at my course web page. All the animations run for 5 seconds each.

3.5.4 References

1. Robert Guy, Lecture notes, Math 228B, Numerical Methods for PDEs. Winter 2011,
UC Davis, CA

2. R.J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems. STAM, 2007.

3. R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-
sity Press; August 26, 2002.
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3.6 HW 4 animations

These are HW4 animations.

3.6.1 Problem 1 results, Animation of acoustic wave equation
solution using Lax-Wendroff

The following are animated GIFs showing the finite difference numerical solution to prob-
lem 1 as described in the above HW. The scheme used is Lax-Wendroff.

Clicking on an image will start the animation in a new window.

These simulations only show the pressure wave, p(x,t) and not the acoustic perturbation
velocity u(x, t).

3.6.1.1 pressure Wave reflecting off both the left and the right boundary

This solution was run with boundary conditions which caused the sound wave to reflect
from both boundaries. This is what would happen inside a room with reflective walls such
as concerete or wood.

3.6.1.2 pressure Wave which reflects off the left boundary only and absorbed at
the right boundary

This solution was run with boundary conditions which caused the sound wave to reflect
from only the left boundary but absorbed into the right boundary. This is what would
happen inside a room with one wall treated with material to absorbe the sound waves
reaching it.

3.6.2 Problem 3 results, solving the advection 1-D using finite
volume method

The following are animations of the numerical solution to u; + au, = 0. The solution used
the finite volume method using 7 different numerical flux limiter functions to compare
performance.

These 7 methods are defined in the problem statement in the report above.
The methods are
1. Upwinding
. Lax-Wendroff

. Beam-Warming

2
3
4. minmod (high resolution)
5. superbee (high resolution)
6

. MC limited (high resolution)

7. Van Leer (high resolution)

The following tables show the results of the simulations. 4 tables are given. Each table
is for a different initial conditions. In all of these results, the maximum run time was 5
seconds. In order to reduce the size of the animation file, not every frame was captured
from the simulation run.

Courant number used was 0.9, the advection speed was set at 2 =1 and grid spacing was
h = 0.005 meters. The domain is [0,1] using cell centered grid.

These animations will run only once and stop at 5 seconds. To run it again, simply reload
the web page using the browser reload button, this will cause the animation to start from
the beginning again.
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3.6.21 Results for wave packet as initial conditions

The wave packet is defined as u(x,0) = cos(16mx)exp(—50(x — 0.5)?)

3.6.2.2 Results for smooth low frequency initial conditions

The wave packet is defined as u(x, 0) = sin(27mx)sin(4mnx)

3.6.2.3 Results for step function

A step function from x = 0.25 to x = 0.75.

3.6.2.4 Results for mixed step function and smooth function

The initial condition used for this test is u(x,0) = (X > 0.1)(X < 0.3) + exp(=200(X - 0.75)?)

This test just combines the step function with the low frequency smooth test done above.

Hence, the same comments will apply as above.
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