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Chapter 1

Introduction

I took this course in winter 2011 to learn about numerical solutions of PDE’s.

1.1 course description from catalog

228A-228B-228C. Numerical Solution of Differential Equations (4-4-4) Lecture 3 hours; term
paper or discussion 1 hour. Prerequisite: course 128C. Numerical solutions of initial-value,
eigenvalue and boundary-value problems for ordinary differential equations. Numerical
solution of parabolic and hyperbolic partial differential equations. Offered in alternate
years.

1.2 class syllabus

See Dr Guy’s web page http://www.math.ucdavis.edu/~guy/teaching/228b/index.
html

1.3 Text book
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1.3. Text book CHAPTER 1. INTRODUCTION
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Chapter 2

my study notes

2.1 How to decide which fractional stepping to use?

Given a mixed PDE such as 𝑢𝑡 = 𝐴𝑢 + 𝐵𝑢 where 𝐴,𝐵 are constant matrices.

Let standard stepping be

𝑢∗ = 𝑁𝐴(𝑢𝑛, 𝑘)
𝑢𝑛+1 = 𝑁𝐵(𝑢∗, 𝑘)

Where 𝑁𝐴 and 𝑁𝐵 are numerical schemes to solve the problem 𝑢𝑡 = 𝐴𝑢 and 𝑢𝑡 = 𝐵𝑢
respectively. 𝑘 in the above is the time step.

Let Strang splitting be

𝑢∗ = 𝑁𝐴(𝑢𝑛, 𝑘/2)
𝑢∗∗ = 𝑁𝐵(𝑢∗, 𝑘)

𝑢𝑛+1 = 𝑁𝐴(𝑢∗∗, 𝑘/2)

Now, assuming that 𝑁𝐴 and 𝑁𝐵 are each second order accurate in time. Which of the
above two schemes should one select?

Algorithm

---- standard stepping
IF A,B commute THEN

standard stepping is second order in time
ELSE

standard stepping is first order in time
END IF

---- Strang
IF A,B commute THEN

strang gives second order accuracy in time
ELSE

strang also gives second order accuracy in time
END IF

Hence, from the above, the conclusion is that

IF A,B commute THEN
select standard stepping (simpler)

ELSE
select Strang (more accurate)

END IF

some notes from the net HTML

3

reference/notes.htm


2.1. How to decide which fractional … CHAPTER 2. MY STUDY NOTES
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HWs
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3.1. Table summary CHAPTER 3. HWS

3.1 Table summary

HW description

1 refinement study 1D for diffusion, successive errors, diffusion-advection

2 Using Von Nuemann analysis on Peaceman-Rachford ADI. Numerical
solution for diffusion pde using ADI scheme on 2D grid. Discrete con-
servation, refinment study on grid centered in 2D. Numerical solution
of FitzHugh-Nagumo equations. Different initial conditions.

3 refinement study 1D for advection, Lax-Wendroff, C-N for advection,
TVD, periodic boundary conditions.

4 Solve wave equation using Lax-Wendroff as system, cell centered grid.
Proof that TVD scheme is monotone preserving, Finite volume solution
for first order advection ode using different numerical flux functions.
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3.2. HW 1 CHAPTER 3. HWS

3.2 HW 1

Local contents
3.2.1 Problem1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.5 Screen shot of the GUI matlab application used for HW1 . . . . . . . . . . . 51
3.2.6 Matlab Source code developed for this HW . . . . . . . . . . . . . . . . . . . 52

7



3.2. HW 1 CHAPTER 3. HWS

3.2.1 Problem1
Math 228B
Homework 1
Due Thursday, 1/27

1. Consider the following PDE.

ut = 0.01 uxx + 1 − exp(−t), 0 < x < 1

u(0, t) = 0 u(1, t) = 0

u(x, 0) = 0

(a) Write a program to solve the problem using Crank-Nicolson up to time t = 1, and
perform a refinement study that demonstrates that the method is second-order accurate
in space and time.

(b) Solve the problem using a forward Euler method up to time t = 1. Demonstrate in a
refinement study that the method is first-order in time and second-order in space.

2.

ut = uxx, 0 < x < 1

u(0, t) = 1, u(1, t) = 0

u(x, 0) =

{

1 if x < 0.5

0 if x ≥ 0.5

(a) Use Crank-Nicolson with grid spacing h = 0.02 and time step 0.1 to solve the problem
up to time t = 1. Comment on your results. What is wrong with this solution?

(b) Give a mathematical argument to explain the unphysical behavior you observed in the
numerical solution.

(c) Experiment with smaller time steps. How small does the time step need to be to get
reasonable results?

(d) What happens to the numerical solution as ∆t → 0 with the ratio ∆t/h fixed? Explain.
Would this same behavior occur using backward Euler in place of Crank-Nicolson? Ex-
plain.

3. Derive a stability restriction on the time step for solving the diffusion equation using the
second-order accurate explicit Runge-Kutta method

y∗ = yn + ∆tf(yn)

yn+1 = yn +
∆t

2

(

f(yn) + f(y∗)
)

,

for time stepping. Does this scheme offer any practical advantage over Forward Euler for the
diffusion equation?

1

Figure 3.1: Problem description

The goal of a refinement study is to perform a numerical experiment to determine the
order of accuracy of a given finite difference scheme. The appendix of this problem contain
a review of the idea behind refinement study.

The problem asked us to determine the order of accuracy in time and in space. A program
implementing the above scheme was run a number of times, each time with a different
initial value for the space and time step. To verify order of accuracy for the C-N scheme,
the space and the time step were divided by 2 simultaneously before the start of each
run. To verify order of accuracy for the forward Euler scheme, the space step was divided
by 2 but the time was divided by 4. For both schemes , the program generated ratios of
successive errors between the numerical solutions at the end of each run (1 second long
run).

Convergence of this ratio to the value 4 implied the results we are asked to demonstrate.

In the following, the C-N and the forward Euler finite difference schemes are derived, then
the numerical results presented, followed by a conclusion.

3.2.1.1 Part (a)

The method of lines (MOL) was used to implement the C-N scheme to solve for the
numerical solution 𝑢. The equations are solved using Matlab’s 𝑢 = 𝐴\𝑏 where 𝐴 is a
sparse matrix (the system update matrix) constructed based on the C-N discretization. An
efficient algorithm to solve for 𝑢 in this scheme is Thomas algorithm version of Gaussian
elimination. It is understood that this will automatically be done by Matlab ”\” operator
when it recognizes that the 𝐴 matrix is a tridiagonal giving an 𝑂(𝑛) order for the solver
where 𝑛 is the number of unknowns.

Let the PDE be

𝑑 𝑢𝑡 − 𝐷𝑢𝑥𝑥 + 𝑎𝑢 = 𝑔(𝑥, 𝑡) (1)

𝑔(𝑥, 𝑡) is an internal source with initial conditions as 𝑢(𝑥, 𝑡) = 𝑢0(𝑥). The Dirichlet boundary
conditions are ⎧⎪⎪⎨

⎪⎪⎩
𝑢(0, 𝑡) = 𝛼(𝑡)
𝑢(𝐿, 𝑡) = 𝛽(𝑡)

and Neumann boundary conditions are
⎧⎪⎪⎨
⎪⎪⎩
𝑢𝑡(0, 𝑡) = 𝛼(𝑡)
𝑢𝑡(𝐿, 𝑡) = 𝛽(𝑡)

The terms 𝑑, 𝑎 above are constants, and 𝐷 is the diffusion constant. For the C-N scheme
(1) was discretized at point 𝑥𝑗 with space step as ℎ and with time step as 𝑘 resulting in

𝑑
𝑢𝑛+1𝑗 − 𝑢𝑛𝑗

𝑘
=
1
2
�𝑓𝑛𝑗 + 𝑓𝑛+1𝑗 �

8



3.2. HW 1 CHAPTER 3. HWS

Where 𝑓𝑛 is the RHS of the PDE at time 𝑡𝑛 = 𝑛𝑘, so the above becomes

𝑑
𝑢𝑛+1𝑗 − 𝑢𝑛𝑗

𝑘
=
1
2�
�𝐷𝑢𝑥𝑥 − 𝑎𝑢 + 𝑔𝑗�

𝑛
+ �𝐷𝑢𝑥𝑥 − 𝑎𝑢 + 𝑔𝑗�

𝑛+1
�

=
1
2�
𝐷
𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1

ℎ2
− 𝑎𝑢𝑛𝑗 + 𝑔𝑛𝑗 �+

⎛
⎜⎜⎜⎜⎝𝐷
𝑢𝑛+1𝑗−1 − 2𝑢𝑛+1𝑗 + 𝑢𝑛+1𝑗+1

ℎ2
− 𝑎𝑢𝑛+1 + 𝑔𝑛+1𝑗

⎞
⎟⎟⎟⎟⎠

=
𝐷
2ℎ2

�𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1� +
𝐷
2ℎ2

�𝑢𝑛+1𝑗−1 − 2𝑢𝑛+1𝑗 + 𝑢𝑛+1𝑗+1 �−

𝑎
2
�𝑢𝑛𝑗 + 𝑢𝑛+1𝑗 � +

1
2
�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

collecting all terms at time 𝑛 + 1 to the left gives

𝑢𝑛+1𝑗 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗−1 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗+1 = 𝑢𝑛𝑗 �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+𝑢𝑛𝑗−1
𝑘𝐷
2𝑑ℎ2

+𝑢𝑛𝑗+1
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

Let

𝑟1 = �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

𝑟2 =
𝑘𝐷
2𝑑ℎ2

𝑟3 = �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

𝑟4 =
𝑘
2𝑑

Then the above becomes

𝑟1𝑢𝑛+1𝑗 − 𝑟2𝑢𝑛+1𝑗−1 − 𝑟2𝑢𝑛+1𝑗+1 = 𝑟3𝑢𝑛𝑗 + 𝑟2𝑢𝑛𝑗−1 + 𝑟2𝑢𝑛𝑗+1 + 𝑟4�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 � (2)

The above algebraic equation (2) is the C-N finite difference scheme for (1) and is valid
for 𝑥𝑗 at the internal points. Considering the case of both ends having Dirichlet boundary
conditions, and using the following grid numbering1

1 2 3 4 ... N-1 N

L=1

Internal nodes

Figure 3.2: Problem grid format

Then (2) above is valid at the internal nodes numbered 𝑗 = 2⋯𝑁 − 1. Hence 𝑢𝑛1 will be
the left boundary point and 𝑢𝑛𝑁 will be the right boundary point. When the boundary

1This is slightly different from the standard numbering format we used before.
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3.2. HW 1 CHAPTER 3. HWS

conditions are Dirichlet, let 𝑢𝑛1 = 𝛼(𝑡𝑛) and 𝑢𝑛𝑁 = 𝛽(𝑡𝑛). Converting (2) to matrix form results
in

A

���������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 𝑟1 −𝑟2 0 0 0 0
0 −𝑟2 𝑟1 −𝑟2 0 0 0
0 0 −𝑟2 𝑟1 −𝑟2 0 0
0 0 0 0 ⋱ ⋮ 0
0 0 0 0 −𝑟2 𝑟1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

�������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁−2

𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

b

�����������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 𝑟3 𝑟2 0 0 0 0
0 𝑟2 𝑟3 𝑟2 0 0 0
0 0 𝑟2 𝑟3 𝑟2 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0
0 0 0 0 𝑟2 𝑟3 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
𝑢𝑛4
⋮

𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼𝑛+1

𝑟2�̃� + 𝑟4�̃�2
𝑟4�̃�3
𝑟4�̃�4
⋮

𝑟2 ̃𝛽 + 𝑟4�̃�𝑁−1
𝛽𝑛+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Where in (3) 𝛼(𝑡𝑛+1) + 𝛼(𝑡𝑛) ≡ �̃� and 𝛽(𝑡𝑛+1) + 𝛽(𝑡𝑛) ≡ ̃𝛽 and 𝑔𝑛 + 𝑔𝑛+1 ≡ �̃� .

Equation (3) is in the form 𝐴𝑢𝑛+1 = 𝑏. And 𝑢𝑛+1 is solved for using 𝐴\𝑏. Notice that (3) is
in the same form shown in class notes, which is

�𝐼 −
𝐷𝑘
2
𝐿�𝑢𝑛+1 = �𝐼 +

𝐷𝑘
2
𝐿�𝑢𝑛 + 𝑘𝑓𝑛+

1
2 (4)

Where the update matrix 𝐵 = �𝐼 − 𝐷𝑘
2 𝐿�

−1
�𝐼 + 𝐷𝑘

2 𝐿�. 𝐿 is the standard Laplace operator for

1𝐷 problem given by ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 1 −2 1
0 0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that (3) compared to (4), has additional terms included in the RHS in order to
support the general form the parabolic PDE. Equation (4) represents the diffusion pde
𝑢𝑡 − 𝐷𝑢𝑥𝑥 = 0.

𝑢𝑛𝑗 when 𝑛 = 0 is obtained from initial conditions. The first step solves for 𝑢1𝑗 which is then
used in the second second step to solve for 𝑢2𝑗 and so on, until the maximum time to solve
for is reached. Since Dirichlet boundary conditions are used, 𝑢𝑛1 (the solution at the left
edge) and 𝑢𝑛𝑁, the solution at the right edge are always known. The above system is solved
only for the internal nodes. Next section shows the numerical results.

3.2.1.1.1 Result for part(a) The above scheme was implemented with a GUI added
to make it easier to use these algorithms. The following plot shows the numerical solution
at 𝑡 = 1.

10



3.2. HW 1 CHAPTER 3. HWS

Figure 3.3: shows the numerical solution at 𝑡 = 1

The following is the ratio error table. This table shows that the ratio converged to 4.

# delt h ratio
2 0.2500000 0.2500000 1.0000e+000
3 0.1250000 0.1250000 2.9347e+000
4 0.0625000 0.0625000 3.6798e+000
5 0.0312500 0.0312500 4.2132e+000
6 0.0156250 0.0156250 4.1209e+000
7 0.0078125 0.0078125 4.0354e+000
8 0.0039063 0.0039063 4.0092e+000

The following is the loglog plot of the above result. The x-axis represents ℎ and the y-axis
the difference in errors (absolute). The slope of the line is seen to be 2 implying a second
order accuracy.

11



3.2. HW 1 CHAPTER 3. HWS

Figure 3.4: log log plot

Conclusion Since the ratio is 4 and since the time step and the space step were halved in
each run, this implies C-N is second order in time and space.

3.2.1.2 Part(b)

Starting with the same PDE as in part (a)

𝑑 𝑢𝑡 − 𝐷𝑢𝑥𝑥 + 𝑎𝑢 = 𝑔(𝑥, 𝑡) (1)

All terms and boundary conditions and the solution domain are as shown in part (a).

For the forward Euler scheme (1) was discretized at point 𝑥𝑗 with space step as ℎ and with
time step as 𝑘 as follows

𝑑
𝑢𝑛+1𝑗 − 𝑢𝑛𝑗

𝑘
= 𝑓𝑛𝑗

= 𝐷
𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1

ℎ2
− 𝑎𝑢𝑛𝑗 + 𝑔𝑛𝑗

Hence

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 +
𝑘𝐷
𝑑ℎ2

�𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1� −
𝑎𝑘
𝑑
𝑢𝑛𝑗 +

𝑘
𝑑
𝑔𝑛𝑗

=
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 �1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗+1 +
𝑘
𝑑
𝑔𝑛𝑗

Let 𝑟1 = �1 − 2
𝑘𝐷
𝑑ℎ2 −

𝑎𝑘
𝑑
�, 𝑟2 =

𝑘𝐷
𝑑ℎ2 ,,𝑟3 =

𝑘
𝑑 , the above becomes

𝑢𝑛+1𝑗 = 𝑟2𝑢𝑛𝑗−1 + 𝑟1𝑢𝑛𝑗 + 𝑟2𝑢𝑛𝑗+1 + 𝑟3𝑔𝑛𝑗 (2)

The above algebraic equation (2) is the forward Euler finite difference scheme for (1) and
is valid for 𝑥𝑗 at the internal points.

Therefore, the stencil for the forward Euler scheme for the 1D parabolic PDE is

12
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u
n
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n+1

j

j

J-1 J+1

kD

dh 2

1  2
k D

d h 2
 ak

d

kD

dh 2

d ut  Duxx  au  0

The stencil for forward Euler finite difference scheme to solve 

the 1-D parabolic PDE with dirichlet boundary conditions

k

h

Figure 3.5: stencile for forward Euler

Considering the case of both ends having Dirichlet boundary conditions, and using the
same numbering as in part (a) then (2) is valid at the internal nodes 𝑗 = 2⋯𝑁 − 1.

𝑢𝑛1 will be the left boundary point and 𝑢𝑛𝑁 will be the right boundary point. Let 𝑢𝑛1 = 𝛼(𝑡𝑛)
and 𝑢𝑛𝑁 = 𝛽(𝑡𝑛). Converting (2) to matrix form results in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

𝑢𝑛+14

⋮
𝑢𝑛+1𝑁−2

𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 𝑟1 𝑟2 0 0 0 0 0
0 𝑟2 𝑟1 𝑟2 0 0 0 0
0 0 𝑟2 𝑟1 𝑟2 0 0 0
0 0 0 0 ⋱ 0 0 0
0 0 0 0 𝑟2 𝑟1 𝑟2 0
0 0 0 0 0 𝑟2 𝑟1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
𝑢𝑛4
⋮

𝑢𝑛𝑁−2
𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼𝑛+1

𝑟2𝛼𝑛 + 𝑟3𝑔𝑛2
𝑟3𝑔𝑛3
𝑟3𝑔𝑛4
⋮

𝑟3𝑔𝑛𝑁−2
𝑟2𝛽𝑛 + 𝑟3𝑔𝑛𝑁−1

𝛽𝑛+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And now 𝑢𝑛+1 is found by direct matrix/vector multiplication as shown above. No matrix
inversion is required in this case since this is an explicit method.

Looking at the stencil above, an idea is now suggested to determine stability directly from
the stencil diagram. By imposing that the weight on each edge in the directed graph not
exceed unity, and that the total algebraic sum of the weight of the edge also not exceed
unity. This includes any combination of edges involved. If this is always the case, then 𝑢𝑛+1𝑗
will always have an amplitude ≤ 𝑢𝑛𝑗 since the weights are never more than 1 no matter what
combinations are used. This idea is applied to this problem with 𝑢𝑡+𝐷𝑢𝑥𝑥 = 0 , hence 𝑎 = 0
and 𝑑 = 1. This gives that following conditions on the edges shown in the stencil diagram
above

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 𝑘𝐷
ℎ2 ≤ 1 Condition on 𝑗 − 1 or 𝑗 + 1 separately

(2) 2 𝑘𝐷ℎ2 ≤ 1 Condition on 𝑗 − 1 and 𝑗 + 1 added together

(3) �1 − 2 𝑘 𝐷ℎ2 � ≤ 1 Condition on the 𝑗 edge

(4) � 𝑘𝐷ℎ2 + 1 − 2
𝑘 𝐷
ℎ2 � ≤ 1 Condition on the 𝑗 edge with either 𝑗 − 1 or 𝑗 + 1

(5) �2 𝑘𝐷ℎ2 + 1 − 2
𝑘 𝐷
ℎ2 � ≤ 1 Condition that all edges sum to less than 1

13
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Condition (1) is weaker than (2), hence not considered. Condition (3) results in 𝑘𝐷
ℎ2 ≤ 1

which is the same as (1). Condition (4) gives �1 − 𝑘 𝐷
ℎ2 � ≤ 1 or

𝑘 𝐷
ℎ2 ≤ 2 which is also weaker

than (2). Condition (5) gives 1 ≤ 1 hence no information is obtained from it. Therefore,
condition (2) remains, and that condition says that 𝑘𝐷ℎ2 ≤

1
2 , which is the strongest condition.

Hence, this is the absolute condition for stability for forward Euler. This agrees with the
method to determine this using Von Neumann analysis.

3.2.1.2.1 Result for part(b) The forward Euler results are below. The space step was
divided by 2 and the time step was divided by 4.

# delt h ratio
2 0.0625000 0.2500000 1.0000e+000
3 0.0156250 0.1250000 3.0842e+000
4 0.0039063 0.0625000 3.7567e+000
5 0.0009766 0.0312500 4.1506e+000
6 0.0002441 0.0156250 4.0794e+000
7 0.0000610 0.0078125 4.0447e+000
8 0.0000153 0.0039063 3.9909e+000

The following is the corresponding loglog plot

Figure 3.6: corresponding loglog plot

Conclusion Since the ratio is 4 and since the time step was divided by 4 and the space
step by 2, this implies forward Euler is first order in time and second order in space.

The appendix of this problem show the steady state analytical solution to the above PDE
derived using Laplace transform method.

14
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3.2.1.3 Problem 1 appendix

3.2.1.3.1 Review of refinement study process The idea behind refinement study is
reviewed briefly. Assume the goal is to find the order of accuracy of a finite difference
scheme with respect to the space step. The finite difference formula is first derived, and
the exact solution is substituted into this formula. Terms that contain 𝑢(𝑥 ± ℎ), are replaced
by Taylor series approximation. The result is simplified, and the error term is found. An
small example is given to illustrate the idea.

To find the order of accuracy in space using forward Euler finite difference approximation
to a derivative

𝑢′(𝑥) =
𝑢(𝑥 + ℎ) − 𝑢(𝑥)

ℎ
Each term for 𝑢 in the RHS above is replaced by its exact value, using Taylor series
expansion where needed, resulting in

𝑢′(𝑥) =
�𝑢(𝑥) + ℎ𝑢′(𝑥) + ℎ2

2 𝑢
′′(𝑥) + ℎ3

3! 𝑢
′′′(𝑥) +⋯� − 𝑢(𝑥)

ℎ

= 𝑢′(𝑥) +

𝑒𝑟𝑟𝑜𝑟

�������������������������������ℎ
2
𝑢′′(𝑥) +

ℎ2

3!
𝑢′′′(𝑥) +⋯ (1)

The error term is hence. It is the amount that the RHS differs from the LHS. The leading
error term in (1) (the dominant term) is ℎ

2𝑢
′′(𝑥), but since 𝑥 is a known value (the above is

being evaluated at each grid point, hence 𝑥 is known), then 𝑢′′(𝑥) is some constant, and
the leading error term in (1) is of the form 𝐶ℎ, where 𝐶 is some constant. This is the same
as saying that the error is of order ℎ.

The above method can be used to find the order of the error in approximation when the
exact solution is know. In problem (1), the exact solution is not given and was difficult
to obtain. Hence, instead of finding the order of accuracy using the above method, it was
found using a numerical experiment (refinement study).

In the refinement study the error itself is determined, and from the error profile (as ℎ is
changed), the order is determined. But this error is the error between successive numerical
solutions.

Once the numerical error is found (after running the refinement study), then one method
to find 𝑝 (order of the error ) is to take the logarithm resulting in

𝑒𝑟𝑟𝑜𝑟 = 𝐶ℎ𝑝

log(𝑒𝑟𝑟𝑜𝑟) = 𝑝 log(ℎ) + log𝐶
= 𝑝 log(ℎ) + constant

and this represents an equation of the line 𝑌 = 𝑝𝑋 + 𝑘, where 𝑝 is the line slope which is
the same as the order of accuracy. Hence, by generating different ℎ values, and for each ℎ
determine the corresponding error, then 𝑝 is found by measuring at the slope of line from
the plot generated. If the slope is 𝑝 = 1, then it is first order accuracy, and if the slope is
𝑝 = 2, it is second order.

The above is a graphical method. Another method is as follows: Starting with some ℎ value,
the error 𝑒𝑛−1 is found, then ℎ is divided by half and the error, now called 𝑒𝑛 is found again.
The ratio 𝑒𝑛−1

𝑒𝑛
is found. If 𝑝 happened to be 2, then the ratio will come out to be 4. This is

because 𝑒𝑛−1
𝑒𝑛

= (ℎ𝑛−1)
𝑝

� ℎ𝑛−12 �
𝑝 = 2𝑝 and so if 𝑝 = 2, then the ratio will be 4. If 𝑝 = 1, then the ratio

will be 2.

In the above description, errors are found using differences between successive solutions
as follows

𝑒𝑛−1 = |𝑈𝑛+1 − 𝑈𝑛|
𝑒𝑛 = |𝑈𝑛 − 𝑈𝑛−1|

The norm used to measure 𝑈, the approximate solution, is the Euclidean norm modified
for the space grid

‖𝑈‖ = √ℎ ‖𝑈‖2
15
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3.2.1.3.2 Steady state analytical solution to the PDE The following shows the steps
used to determine the steady state solution for

𝑢𝑡 = 𝑎𝑢𝑥𝑥 + 𝑓(𝑡) (1)

where 𝑎 = 1
100 and 𝑓(𝑡) = 1 − 𝑒

−𝑡 with initial conditions 𝑢(0, 𝑡) = 0 and boundary conditions
𝑢(0, 𝑡) = 0 and 𝑢(1, 𝑡) = 0.

The above is an inhomogeneous PDE (the source term 1 − 𝑒−𝑡). The boundary conditions
are homogeneous, and with zero initial conditions.

Since this is an inhomogeneous PDE, separation of variables can not be used. But the
steady state solution (the particular solution) can be found using an integral transform
approach. Integral transformation is first applied to the PDE, resulting in an ODE which
is then solved in the new transformed space, and the solution in time domain is found by
inverse transforming back.

Since the spatial domain in this problem is a bounded interval (from 0 to 1), Fourier
transformation will not be used because the spatial domain is bounded and does not match
the Fourier transformation domain (from −∞ to +∞), however, Laplace transformation
(for 𝑡 > 0) can be used as it matches the time domain of the problem.

Therefore, taking the Laplace transform of (1) w.r.t time gives

−𝑢(𝑥, 0) + 𝑠𝑈(𝑥, 𝑠) = 𝑎
𝑑2𝑈(𝑥, 𝑠)
𝑑𝑥2

+
1
𝑠
−

1
1 + 𝑠

But 𝑢(𝑥, 0) = 0, hence the resulting ODE is

𝑎
𝑑2𝑈(𝑥, 𝑠)
𝑑𝑥2

− 𝑠𝑈(𝑥, 𝑠) =
1

1 + 𝑠
−
1
𝑠

With the boundary conditions 𝑈(0, 𝑠) = 0 and 𝑈(1, 𝑠) = 0 obtained from the spatial domain.
The above ODE is a second order, linear ODE, a inhomogeneous ODE that can be solved
for 𝑈(𝑥, 𝑠), which results in the following (for the case 𝑎 = 1

100 )

𝑈(𝑥, 𝑠) =
−𝑒−10𝑥√𝑠 �𝑒10𝑥√𝑠−1 − 1��𝑒10𝑥√𝑠 − 𝑒10√𝑠 �

𝑠2(1 + 𝑠)�1 + 𝑒10√𝑠 �

The steady state solution can now be found using the limit theorem for Laplace transform,
giving

𝑢(𝑥,∞) = lim
𝑠−>0

𝑠𝑈(𝑥, 𝑠) (1)

= 50𝑥(1 − 𝑥) (3.1)

Here is a plot of the particular solution

x=0:0.01:1; plot(x,50*x.*(1-x))

Figure 3.7: steady state plot. PDE solution

16



3.2. HW 1 CHAPTER 3. HWS

3.2.1.3.3 Derivation of forward Euler for periodic boundary conditions From
part(b) above,

𝑢𝑛+1𝑗 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 �1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗+1 +
𝑘
𝑑
𝑔𝑛𝑗

Periodic boundary conditions implies 𝑢(0, 𝑡) = 𝑢(1, 𝑡), Hence 𝑢𝑗−1 when 𝑗 is the first note on
the left is the same as node 𝑁 − 1. And 𝑢𝑗+1 when 𝑗 is the last node on the right is the same
as node 𝑗 = 2. As shown in the diagram below

1 2 3 4 ... N-1 N

N+1

unknowns

Periodic boundary conditions

0

Figure 3.8: Grid format

Then

𝑢𝑛+11 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛1�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛2

And

𝑢𝑛+1𝑁 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛𝑁�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛2

Let 𝑟1 = �1 − 2
𝑘𝐷
𝑑ℎ2 −

𝑎𝑘
𝑑
�, 𝑟2 =

𝑘𝐷
𝑑ℎ2 , 𝑟3 =

𝑘
𝑑 , Hence the system can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

𝑢𝑛+14

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1 𝑟2 0 0 0 𝑟2 0
𝑟2 𝑟1 𝑟2 0 0 0 0
0 𝑟2 𝑟1 𝑟2 0 0 0
0 0 𝑟2 𝑟1 𝑟2 0 0
0 0 0 0 ⋱ 0 0
0 0 0 0 𝑟2 𝑟1 𝑟2
0 𝑟2 0 0 0 𝑟2 𝑟1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
𝑢𝑛4
⋮

𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑟3𝑔𝑛2
𝑟3𝑔𝑛3
𝑟3𝑔𝑛4
⋮

𝑟3𝑔𝑛𝑁−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.1.3.4 Derivation of forward Euler for Neumann boundary conditions both ends
Using this numbering
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1 2 3 4 ... N-1 N

L=1

Internal nodes

Figure 3.9: Grid format

Assume that 𝑢𝑡 = 𝛼 at node 1 and 𝑢𝑡 = 𝛽 at node 𝑁 (these are the Neumann boundary
conditions).

Add a ghost node 0 to the left of node 1, and approximating 𝛼(𝑡) gives

𝛼 =
𝑢0 − 𝑢2
2ℎ

hence

𝑢0 = 2ℎ𝛼 + 𝑢2 (1)

But the PDE for node 1 is

𝑢𝑛+11 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛0 + 𝑢𝑛1�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛2 (2)

Substitute (1) into (2) gives

𝑢𝑛+11 =
𝑘𝐷
𝑑ℎ2

(2ℎ𝛼 + 𝑢2) + 𝑢𝑛1�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛2

= 𝑢𝑛1�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+ 𝑢𝑛2�2
𝑘𝐷
𝑑ℎ2 �

+ 2ℎ𝛼
𝑘𝐷
𝑑ℎ2

Similarly for the right end. Add a ghost node𝑁+1 to the right of node𝑁, and approximating
𝛽(𝑡) gives

𝛽 =
𝑢𝑁−1 − 𝑢𝑁+1

2ℎ

hence

𝑢𝑁+1 = 2ℎ𝛽 + 𝑢𝑁−1 (3)

But the PDE for node N is

𝑢𝑛+1𝑁 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛𝑁�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁+1 (4)

Substitute (3) into (4) gives

𝑢𝑛+11 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛𝑁�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

�2ℎ𝛽 + 𝑢𝑁−1�

= 2
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛𝑁�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+ 2ℎ𝛽
𝑘𝐷
𝑑ℎ2
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Nodes 𝑗 = 2⋯𝑁 − 1 remain the same as before. In other words

𝑢𝑛+1𝑗 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 �1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗+1 +
𝑘
𝑑
𝑔𝑛𝑗

Let 𝑟1 = �1 − 2
𝑘𝐷
𝑑ℎ2 −

𝑎𝑘
𝑑
�, 𝑟2 =

𝑘𝐷
𝑑ℎ2 ,,𝑟3 =

𝑘
𝑑 , Hence the system becomes (now nodes 1 and 𝑁 are

unknowns and added)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

𝑢𝑛+14

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1 2𝑟2 0 0 0 0 0
𝑟2 𝑟1 𝑟2 0 0 0 0
0 𝑟2 𝑟1 𝑟2 0 0 0
0 0 𝑟2 ⋱ 𝑟2 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 0 𝑟2 𝑟1 𝑟2
0 0 0 0 0 2𝑟2 𝑟1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
𝑢𝑛4
⋮

𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ℎ𝛼𝑛 𝑟2
𝑟3𝑔𝑛2
𝑟3𝑔𝑛3
𝑟3𝑔𝑛4
⋮

𝑟3𝑔𝑛𝑁−1
2ℎ𝛽𝑛 𝑟2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.1.3.5 Derivation of forward Euler for Neumann on left and Dirichlet on right
Using this numbering

1 2 3 4 ... N-1 N

L=1

Internal nodes

Figure 3.10: Grid format

Assume that 𝑢𝑁 = 𝛽 at node 𝑁 and 𝑢𝑡 = 𝛼 at node 1 (these are the Dirichlet and Neumann
boundary conditions).

The unknowns in this case are nodes 1⋯𝑁−1, since 𝑢𝑁 is known from Dirichlet boundary
conditions. Add a ghost node 0 to the left of node 1, and approximating 𝛼 gives

𝛼 =
𝑢0 − 𝑢2
2ℎ

hence

𝑢0 = 2ℎ𝛼 + 𝑢2 (3)

But the PDE for node 1 is

𝑢𝑛+11 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛0 + 𝑢𝑛1�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛2 (4)

Substitute (3) into (4) gives
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𝑢𝑛+11 =
𝑘𝐷
𝑑ℎ2

(2ℎ𝛼 + 𝑢2) + 𝑢𝑛1�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛2

= 𝑢𝑛1�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+ �2
𝑘𝐷
𝑑ℎ2 �

𝑢𝑛2 + 2 ℎ 𝛼
𝑘𝐷
𝑑ℎ2

Nodes 𝑗 = 2⋯𝑁 − 1 remain the same as before. In other words

𝑢𝑛+1𝑗 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 �1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗+1 +
𝑘
𝑑
𝑔𝑛𝑗

Let 𝑟1 = �1 − 2
𝑘𝐷
𝑑ℎ2 −

𝑎𝑘
𝑑
�, 𝑟2 =

𝑘𝐷
𝑑ℎ2 , 𝑟3 =

𝑘
𝑑 , Hence the system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1 2𝑟2 0 0 0 0 0
𝑟2 𝑟1 𝑟2 0 0 0 0
0 𝑟2 𝑟1 𝑟2 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮ 0
0 0 0 𝑟2 𝑟1 𝑟2 0
0 0 0 0 𝑟2 𝑟1 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
⋮

𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 ℎ 𝛼𝑛𝑟2
𝑟3𝑔𝑛2
𝑟3𝑔𝑛3
𝑟3𝑔𝑛4
⋮

𝑟3𝑔𝑛𝑁−1 + 𝑟2𝛽𝑛

𝛽𝑛+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.1.3.6 Derivation of forward Euler for Neumann on right and Dirichlet on left
Using this numbering

1 2 3 4 ... N-1 N

L=1

Internal nodes

Figure 3.11: Grid format

Assume that 𝑢0 = 𝛼 at node 1 and 𝑢𝑡 = 𝛽 at node 𝑁 (these are the Dirichlet and Neumann
boundary conditions).

The unknowns in this case are nodes 2⋯𝑁, since 𝑢1 is known from Dirichlet boundary
conditions. Add a ghost node 𝑁 + 1 to the right of node 𝑁, and approximating 𝛽(𝑡) gives

𝛽 =
𝑢𝑁−1 − 𝑢𝑁+1

2ℎ

hence

𝑢𝑁+1 = 2ℎ𝛽 + 𝑢𝑁−1 (3)

But the PDE for node N is

𝑢𝑛+1𝑁 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛𝑁�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁+1 (4)
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Substitute (3) into (4) gives

𝑢𝑛+1𝑁 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛𝑁�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

�2ℎ𝛽 + 𝑢𝑁−1�

= 2
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑁−1 + 𝑢𝑛𝑁�1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+ 2ℎ𝛽
𝑘𝐷
𝑑ℎ2

Nodes 𝑗 = 2⋯𝑁 − 1 remain the same as before. In other words

𝑢𝑛+1𝑗 =
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 �1 − 2
𝑘 𝐷
𝑑 ℎ2

−
𝑎𝑘
𝑑 �

+
𝑘𝐷
𝑑ℎ2

𝑢𝑛𝑗+1 +
𝑘
𝑑
𝑔𝑛𝑗

Let 𝑟1 = �1 − 2
𝑘𝐷
𝑑ℎ2 −

𝑎𝑘
𝑑
�, 𝑟2 =

𝑘𝐷
𝑑ℎ2 ,,𝑟3 =

𝑘
𝑑 , Hence the system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

𝑢𝑛+14

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 𝑟1 𝑟2 0 0 0 0
0 𝑟2 𝑟1 𝑟2 0 0 0
0 0 𝑟2 𝑟1 𝑟2 0 0
0 ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 0 𝑟2 𝑟1 𝑟2
0 0 0 0 0 2𝑟2 𝑟1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
𝑢𝑛4
⋮

𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼𝑛+1

𝑟2𝛼𝑛 + 𝑟3𝑔𝑛2
𝑟3𝑔𝑛2
𝑟3𝑔𝑛3
𝑟3𝑔𝑛4
⋮

𝑟3𝑔𝑛𝑁−1
2ℎ𝛽𝑛 𝑟2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.1.3.7 Derivation of C-N for periodic boundary conditions From part(a) above,

𝑢𝑛+1𝑗 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎Δ𝑡
2𝑑 �

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗−1 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗+1 = 𝑢𝑛𝑗 �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+𝑢𝑛𝑗−1
𝑘𝐷
2𝑑ℎ2

+𝑢𝑛𝑗+1
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

Periodic boundary conditions implies 𝑢(0, 𝑡) = 𝑢(1, 𝑡), Hence there is an extra one unknown
(in addition to the internal nodes). Either 𝑢(0, 𝑡) or 𝑢(1, 𝑡) can be selected since they have
the same value. When selecting the right end node, then 𝑢𝑁+1 becomes an unknown to be
added to the internal nodes. Using the following diagram

1 2 3 4 ... N-1 N

N+1

unknowns

Periodic boundary conditions

0

Figure 3.12: Grid format

Then for node 2

𝑢𝑛+12 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎Δ𝑡
2𝑑 �

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+11 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+13 = 𝑢𝑛2�1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+ 𝑢𝑛1
𝑘𝐷
2𝑑ℎ2

+ 𝑢𝑛3
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛2 + 𝑔𝑛+12 �

𝑢𝑛+12 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎Δ𝑡
2𝑑 �

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑁 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+13 = 𝑢𝑛2�1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+ 𝑢𝑛𝑁
𝑘𝐷
2𝑑ℎ2

+ 𝑢𝑛3
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛2 + 𝑔𝑛+12 �
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And for node N

𝑢𝑛+1𝑁 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎Δ𝑡
2𝑑 �

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑁−1 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑁+1 = 𝑢𝑛𝑁�1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+ 𝑢𝑛𝑁−1
𝑘𝐷
2𝑑ℎ2

+ 𝑢𝑛𝑁+1
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛𝑁 + 𝑔𝑛+1𝑁 �

𝑢𝑛+1𝑁 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎Δ𝑡
2𝑑 �

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑁−1 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+12 = 𝑢𝑛𝑁�1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+ 𝑢𝑛𝑁−1
𝑘𝐷
2𝑑ℎ2

+ 𝑢𝑛2
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛𝑁 + 𝑔𝑛+1𝑁 �

Let

𝑟1 = �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

𝑟2 =
𝑘𝐷
2𝑑ℎ2

𝑟3 = �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

𝑟4 =
𝑘
2𝑑

𝑔𝑛 + 𝑔𝑛+1 ≡ �̃�

Converting to matrix form gives

A

�������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1 −𝑟2 0 0 −𝑟2
−𝑟2 𝑟1 −𝑟2 0 0
0 −𝑟2 𝑟1 0 0
0 0 0 ⋱ ⋮
−𝑟2 0 0 −𝑟2 𝑟1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

�������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

b

�����������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟3 𝑟2 0 0 𝑟2
𝑟2 𝑟3 𝑟2 0 0
0 𝑟2 𝑟3 𝑟2 0
0 0 0 ⋱ ⋮
𝑟2 0 0 𝑟2 𝑟3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛2
𝑢𝑛3
𝑢𝑛4
⋮
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟4�̃�2
𝑟4�̃�3
𝑟4�̃�4
⋮

𝑟4�̃�𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

𝑢𝑛+11 = 𝑢𝑛+1𝑁

3.2.1.3.8 Derivation of C-N for Neumann boundary conditions both ends Using
this numbering

1 2 3 4 ... N-1 N

L=1

Internal nodes

Figure 3.13: Grid format

Assuming that 𝑢𝑡 = 𝛼 at node 1 and 𝑢𝑡 = 𝛽 at node 𝑁 (these are the Neumann boundary
conditions). Add a ghost node 0 to the left of node 1, and approximating 𝛼 gives

𝛼 =
𝑢0 − 𝑢2
2ℎ

hence

𝑢0 = 2ℎ𝛼 + 𝑢2 (1)
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But the PDE for node 1 is

𝑟1𝑢𝑛+11 − 𝑟2𝑢𝑛+10 − 𝑟2𝑢𝑛+12 = 𝑟3𝑢𝑛1 + 𝑟2𝑢𝑛0 + 𝑟2𝑢𝑛2 (2)

substitute (1) into (2)

𝑟1𝑢𝑛+11 − 𝑟2�2ℎ𝛼𝑛+1 + 𝑢𝑛+12 � − 𝑟2𝑢𝑛+12 = 𝑟3𝑢𝑛1 + 𝑟2�2ℎ𝛼𝑛 + 𝑢𝑛2� + 𝑟2𝑢𝑛2
𝑟1𝑢𝑛+11 − 2𝑟2𝑢𝑛+12 = 𝑟3𝑢𝑛1 + 2𝑟2𝑢𝑛2 + 2𝑟2ℎ𝛼𝑛 + 2𝑟2ℎ𝛼𝑛+1

Similarly for the right end. Add a ghost node𝑁+1 to the right of node𝑁, and approximating
𝛽(𝑡) gives

𝛽 =
𝑢𝑁−1 − 𝑢𝑁+1

2ℎ

hence

𝑢𝑁+1 = 2ℎ𝛽 + 𝑢𝑁−1 (3)

But the PDE for node N is

𝑟1𝑢𝑛+1𝑁 − 𝑟2𝑢𝑛+1𝑁−1 − 𝑟2𝑢𝑛+1𝑁+1 = 𝑟3𝑢𝑛𝑁 + 𝑟2𝑢𝑛𝑁−1 + 𝑟2𝑢𝑛𝑁+1 (4)

substitute (3) into (4)

𝑟1𝑢𝑛+1𝑁 − 𝑟2𝑢𝑛+1𝑁−1 − 𝑟2�2ℎ𝛽𝑛+1 + 𝑢𝑛+1𝑁−1� = 𝑟3𝑢𝑛𝑁 + 𝑟2𝑢𝑛𝑁−1 + 𝑟2�2ℎ𝛽 + 𝑢𝑛𝑁−1�

𝑟1𝑢𝑛+1𝑁 − 2𝑟2𝑢𝑛+1𝑁−1 = 𝑟3𝑢𝑛𝑁 + 2𝑟2𝑢𝑛𝑁−1 + 2𝑟2ℎ𝛽 + 2𝑟2ℎ𝛽𝑛+1

Nodes 𝑗 = 2⋯𝑁 − 1 remain the same as before. In other words

𝑢𝑛+1𝑗 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗−1 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗+1 = 𝑢𝑛𝑗 �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+𝑢𝑛𝑗−1
𝑘𝐷
2𝑑ℎ2

+𝑢𝑛𝑗+1
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

Let

𝑟1 = �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

𝑟2 =
𝑘𝐷
2𝑑ℎ2

𝑟3 = �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

𝑟4 =
𝑘
2𝑑

gives

𝑟1𝑢𝑛+1𝑗 − 𝑟2𝑢𝑛+1𝑗−1 − 𝑟2𝑢𝑛+1𝑗+1 = 𝑟3𝑢𝑛𝑗 + 𝑟2𝑢𝑛𝑗−1 + 𝑟2𝑢𝑛𝑗+1 + 𝑟4�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

Then the above becomes
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A

�������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1 −2𝑟2 0 0 0 0
−𝑟2 𝑟1 −𝑟2 0 0 0
0 −𝑟2 𝑟1 −𝑟2 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 −𝑟2 𝑟1 −𝑟2
0 0 0 0 −2𝑟2 𝑟1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

�������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

b

�������������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟3 2𝑟2 0 0 0 0
𝑟2 𝑟3 𝑟2 0 0 0
0 𝑟2 𝑟3 𝑟2 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 𝑟2 𝑟3 𝑟2
0 0 0 0 2𝑟2 𝑟3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
⋮

𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝑟2ℎ𝛼𝑛 + 2𝑟2ℎ𝛼𝑛+1

𝑟4�𝑔𝑛2 + 𝑔𝑛+12 �
𝑟4�𝑔𝑛3 + 𝑔𝑛+13 �

⋮
𝑟4�𝑔𝑛𝑁−1 + 𝑔𝑛+1𝑁−1�
2𝑟2ℎ𝛽 + 2𝑟2ℎ𝛽𝑛+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.1.3.9 Derivation of C-N for Neumann on left and Dirichlet on right Using this
numbering

1 2 3 4 ... N-1 N

L=1

Internal nodes

Figure 3.14: Grid format

Assume that 𝑢𝑡 = 𝛼 at node 1 and 𝑢𝑁 = 𝛽 at node 𝑁 (these are the Neumann and Dirichlet
boundary conditions). Add a ghost node 0 to the left of node 1, and approximating 𝛼 gives

𝛼 =
𝑢0 − 𝑢2
2ℎ

hence

𝑢0 = 2ℎ𝛼 + 𝑢2 (1)

But the PDE for node 1 is

𝑟1𝑢𝑛+11 − 𝑟2𝑢𝑛+10 − 𝑟2𝑢𝑛+12 = 𝑟3𝑢𝑛1 + 𝑟2𝑢𝑛0 + 𝑟2𝑢𝑛2 (2)

substitute (1) into (2)

𝑟1𝑢𝑛+11 − 𝑟2�2ℎ𝛼𝑛+1 + 𝑢𝑛+12 � − 𝑟2𝑢𝑛+12 = 𝑟3𝑢𝑛1 + 𝑟2�2ℎ𝛼𝑛 + 𝑢𝑛2� + 𝑟2𝑢𝑛2
𝑟1𝑢𝑛+11 − 2𝑟2𝑢𝑛+12 = 𝑟3𝑢𝑛1 + 2𝑟2𝑢𝑛2 + 2𝑟2ℎ𝛼𝑛 + 2𝑟2ℎ𝛼𝑛+1

Nodes 𝑗 = 2⋯𝑁 − 1 remain the same as before. In other words

𝑢𝑛+1𝑗 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗−1 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗+1 = 𝑢𝑛𝑗 �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+𝑢𝑛𝑗−1
𝑘𝐷
2𝑑ℎ2

+𝑢𝑛𝑗+1
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �
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Let

𝑟1 = �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

𝑟2 =
𝑘𝐷
2𝑑ℎ2

𝑟3 = �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

𝑟4 =
𝑘
2𝑑

gives

𝑟1𝑢𝑛+1𝑗 − 𝑟2𝑢𝑛+1𝑗−1 − 𝑟2𝑢𝑛+1𝑗+1 = 𝑟3𝑢𝑛𝑗 + 𝑟2𝑢𝑛𝑗−1 + 𝑟2𝑢𝑛𝑗+1 + 𝑟4�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

Then the system becomes

A

���������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1 −2𝑟2 0 0 0 0 0
−𝑟2 𝑟1 −𝑟2 0 0 0 0
0 −𝑟2 𝑟1 −𝑟2 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0
0 0 0 −𝑟2 𝑟1 −𝑟2 0
0 0 0 0 −𝑟2 𝑟1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

�������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁−2

𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

b

�������������������������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟3 2𝑟2 0 0 0 0 0
𝑟2 𝑟3 𝑟2 0 0 0 0
0 𝑟2 𝑟3 𝑟2 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0
0 0 0 𝑟2 𝑟3 𝑟2 0
0 0 0 0 2𝑟2 𝑟3 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
⋮

𝑢𝑛𝑁−2
𝑢𝑛𝑁−1
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝑟2ℎ𝛼𝑛 + 2𝑟2ℎ𝛼𝑛+1

𝑟4�𝑔𝑛2 + 𝑔𝑛+12 �
𝑟4�𝑔𝑛3 + 𝑔𝑛+13 �

⋮
𝑟4�𝑔𝑛𝑁−2 + 𝑔𝑛+1𝑁−2�

𝑟4�𝑔𝑛𝑁−1 + 𝑔𝑛+1𝑁−1� + 𝑟2𝛽𝑛

𝛽𝑛+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.1.3.10 Derivation of C-N for Neumann on right and Dirichlet on left Using
this numbering

1 2 3 4 ... N-1 N

L=1

Internal nodes

Figure 3.15: Grid format

Assume that 𝑢1 = 𝛼 at node 1 and 𝑢𝑡 = 𝛽 at node 𝑁 (these are the Dirichlet and Neumann
boundary conditions). Add a ghost node 𝑁 + 1 to the right of node 𝑁, and approximating
𝛽 gives

𝛽 =
𝑢𝑁−1 − 𝑢𝑁+1

2ℎ

hence

𝑢𝑁+1 = 2ℎ𝛽 + 𝑢𝑁−1 (1)

But the PDE for node N is
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𝑟1𝑢𝑛+1𝑁 − 𝑟2𝑢𝑛+1𝑁−1 − 𝑟2𝑢𝑛+1𝑁+1 = 𝑟3𝑢𝑛𝑁 + 𝑟2𝑢𝑛𝑁−1 + 𝑟2𝑢𝑛𝑁+1 (2)

substitute (1) into (2)

𝑟1𝑢𝑛+1𝑁 − 𝑟2𝑢𝑛+1𝑁−1 − 𝑟2�2ℎ𝛽𝑛+1 + 𝑢𝑛+1𝑁−1� = 𝑟3𝑢𝑛𝑁 + 𝑟2𝑢𝑛𝑁−1 + 𝑟2�2ℎ𝛽𝑛 + 𝑢𝑛𝑁−1�

𝑟1𝑢𝑛+1𝑁 − 2𝑟2𝑢𝑛+1𝑁−1 = 𝑟3𝑢𝑛𝑁 + 2𝑟2𝑢𝑛𝑁−1 + 2𝑟2ℎ𝛽𝑛 + 2𝑟2ℎ𝛽𝑛+1

Nodes 𝑗 = 2⋯𝑁 − 1 remain the same as before. In other words

𝑢𝑛+1𝑗 �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

−
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗−1 −
𝑘𝐷
2𝑑ℎ2

𝑢𝑛+1𝑗+1 = 𝑢𝑛𝑗 �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

+𝑢𝑛𝑗−1
𝑘𝐷
2𝑑ℎ2

+𝑢𝑛𝑗+1
𝑘𝐷
2𝑑ℎ2

+
𝑘
2𝑑
�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

Let

𝑟1 = �1 +
𝑘𝐷
𝑑ℎ2

+
𝑎𝑘
2𝑑�

𝑟2 =
𝑘𝐷
2𝑑ℎ2

𝑟3 = �1 −
𝑘𝐷
𝑑ℎ2

−
𝑎𝑘
2𝑑�

𝑟4 =
𝑘
2𝑑

gives

𝑟1𝑢𝑛+1𝑗 − 𝑟2𝑢𝑛+1𝑗−1 − 𝑟2𝑢𝑛+1𝑗+1 = 𝑟3𝑢𝑛𝑗 + 𝑟2𝑢𝑛𝑗−1 + 𝑟2𝑢𝑛𝑗+1 + 𝑟4�𝑔𝑛𝑗 + 𝑔𝑛+1𝑗 �

Then the system becomes

A

���������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 𝑟1 −𝑟2 0 0 0 0
0 −𝑟2 𝑟1 −𝑟2 0 0 0
0 0 −𝑟2 𝑟1 −𝑟2 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0
0 0 0 0 −𝑟2 𝑟1 −𝑟2
0 0 0 0 0 −2𝑟2 𝑟1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

�������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

𝑢𝑛+14

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

b

�������������������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 𝑟3 𝑟2 0 0 0 0
0 𝑟2 𝑟3 𝑟2 0 0 0
0 0 𝑟2 𝑟3 𝑟2 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0
0 0 0 0 𝑟2 𝑟3 𝑟2
0 0 0 0 0 2𝑟2 𝑟3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
⋮
⋮

𝑢𝑛𝑁−2
𝑢𝑛𝑁−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼𝑛+1

𝑟4�𝑔𝑛2 + 𝑔𝑛+12 � + 𝑟2𝛼𝑛

𝑟4�𝑔𝑛3 + 𝑔𝑛+13 �
𝑟4�𝑔𝑛4 + 𝑔𝑛+14 �

⋮
𝑟4�𝑔𝑛𝑁−2 + 𝑔𝑛+1𝑁−2�
2𝑟2ℎ𝛽𝑛 + 2𝑟2ℎ𝛽𝑛+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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3.2.2 Problem 2

Math 228B
Homework 1
Due Thursday, 1/27

1. Consider the following PDE.

ut = 0.01 uxx + 1 − exp(−t), 0 < x < 1

u(0, t) = 0 u(1, t) = 0

u(x, 0) = 0

(a) Write a program to solve the problem using Crank-Nicolson up to time t = 1, and
perform a refinement study that demonstrates that the method is second-order accurate
in space and time.

(b) Solve the problem using a forward Euler method up to time t = 1. Demonstrate in a
refinement study that the method is first-order in time and second-order in space.

2.

ut = uxx, 0 < x < 1

u(0, t) = 1, u(1, t) = 0

u(x, 0) =

{

1 if x < 0.5

0 if x ≥ 0.5

(a) Use Crank-Nicolson with grid spacing h = 0.02 and time step 0.1 to solve the problem
up to time t = 1. Comment on your results. What is wrong with this solution?

(b) Give a mathematical argument to explain the unphysical behavior you observed in the
numerical solution.

(c) Experiment with smaller time steps. How small does the time step need to be to get
reasonable results?

(d) What happens to the numerical solution as ∆t → 0 with the ratio ∆t/h fixed? Explain.
Would this same behavior occur using backward Euler in place of Crank-Nicolson? Ex-
plain.

3. Derive a stability restriction on the time step for solving the diffusion equation using the
second-order accurate explicit Runge-Kutta method

y∗ = yn + ∆tf(yn)

yn+1 = yn +
∆t

2

(

f(yn) + f(y∗)
)

,

for time stepping. Does this scheme offer any practical advantage over Forward Euler for the
diffusion equation?

1

Figure 3.16: Problem statement

3.2.2.1 Part(a)

The C-N scheme was programmed in Matlab and then run on the above problem. The
following shows the result

Figure 3.17: C-N scheme solution result

In the above plot, the red line represents initial conditions (the step function shifted to the
right by 0.5) and the blue line represents the final numerical solution at time 𝑡 = 1 second.

27



3.2. HW 1 CHAPTER 3. HWS

The following plot is a closer look at the grid near 𝑥 = 1
2 showing the initial conditions

U(j+1)

U(j-1) U(j)

U(j+1)

1

0

Solution at time t=0

jj-1 j+1 j+2

Figure 3.18: the grid near 𝑥 = 1
2 showing the initial conditions

It is clear the numerical solution is not accurate as it does not match what is expected to
occur physically which is for initial data to diffuse. The initial data contained high spatial
frequency that should have been smoothed out rapidly. The final numerical solution is not
smooth and contain high spatial frequency components which should have been attenuated
by the time the run is completed.

The exact solution in the Fourier space is �̂�(𝜉, 𝑡) = �̂�(𝜉, 0)𝑒−𝐷𝜉2𝑡, where �̂�(𝜉, 0) is the spectrum
or Fourier coefficients of the initial condition 𝑢(𝑥, 0). This shows that modes with large
spatial frequency (large wave number 𝜉) will attenuate the fastest due to the negative
exponential decay effect. But this was not observed in the above numerical solution.

C-N is a stable scheme (A-stable), but can be inaccurate if the time step used is large relative
to the space step or if initial conditions contain large spatial frequency components. In
C-N, the time step needs to be about the same order of value as the space step for the
scheme to give accurate numerical results. (This is because in C-N, the order of accuracy
of space and time are the same, as was found in problem 1).

Therefore, it appears that C-N scheme does not handle discontinuities in initial conditions
well as this result shows.

In the next part, the amplification factor for C-N is determined, and a mathematical
explanation for the above result is given.

3.2.2.2 Part(b)

The C-N scheme for 𝑢𝑡 = 𝐷𝑢𝑥𝑥 is given by

−𝑟𝑢𝑛+1𝑗−1 + 𝑢𝑛+1𝑗 (1 + 2𝑟) − 𝑟𝑢𝑛+1𝑗+1 = 𝑟𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 (1 − 2𝑟) + 𝑟𝑢𝑛𝑗+1 (1)

Where 𝑟 = Δ𝑡𝐷
2ℎ2 . Von Neumann analysis is used to determine the magnification factor2.

Assume 𝑢𝑛𝑗 = 𝑒
𝑖𝜉𝑥𝑗, and 𝑢𝑛+1𝑗 = 𝑔(𝜉)𝑒𝑖𝜉𝑥𝑗 then (1) becomes3

−𝑟�𝑔 𝑒𝑖𝜉𝑥𝑗𝑒−𝑖𝜉ℎ� + 𝑔 𝑒𝑖𝜉𝑥𝑗(1 + 2𝑟) − 𝑟�𝑔 𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ� = 𝑟�𝑒𝑖𝜉𝑥𝑗𝑒−𝑖𝜉ℎ� + 𝑒𝑖𝜉𝑥𝑗(1 − 2𝑟) + 𝑟𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ

𝑔(−2𝑟 cos(𝜉ℎ) + 1 + 2𝑟) = 2𝑟 cos(𝜉ℎ) + 1 − 2𝑟

𝑔(𝜉) =
1 + 2𝑟 cos(𝜉ℎ) − 2𝑟
1 − 2𝑟 cos(𝜉ℎ) + 2𝑟

2The magnification factor is the term 𝑔(𝜉) in the expression relating �̂�𝑛+1 to �̂�𝑛 in the expression �̂�𝑛+1 = 𝑔(𝜉)
�̂�𝑛

3It is possible to derive the amplification factor using direct application of fourier transform, but the
procedure is longer. The final result will be the same. The appendix of this problem contain this derivation.
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Hence, the magnification factor is

𝑔(𝜉) =
1 + 𝐷Δ𝑡

ℎ2
(cos(𝜉ℎ) − 1)

1 − 𝐷Δ𝑡
ℎ2
(cos(𝜉ℎ) − 1)

Let 𝜉 be written as 𝜉𝑝 in the above in order to examine 𝑔 in terms of specific wave number
𝜉𝑝 (which has units of radians per unit length). The above becomes

𝑔�𝜉𝑝� =
1 + 𝐷Δ𝑡

ℎ2
�cos�𝜉𝑝ℎ� − 1�

1 − 𝐷Δ𝑡
ℎ2
�cos�𝜉𝑝ℎ� − 1�

(2)

But 𝜉𝑝 = 𝑝𝜋 and 𝑝 = 1⋯𝑁, with ℎ = 1
𝑁+1where the line was discretized using the standard

grid convention

0 1 2 3 ... N N+1

L=1

Internal nodes

Figure 3.19: Grid format

Therefore cos�𝜉𝑝ℎ� = cos�𝑝𝜋ℎ� = cos� 𝑝𝜋
𝑁+1

�. The largest frequency occurs when 𝑝 = 𝑁,
because then ℎ is smallest, and the smallest frequency occurs when 𝑝 = 1. Hence, there
are a total of 𝑁 Fourier modes when representing initial data as Fourier series. Now the
magnification factor in (2) becomes

𝑔�𝜉𝑝� =
1 + 𝐷Δ𝑡

ℎ2
�cos�𝑝𝜋ℎ� − 1�

1 − 𝐷Δ𝑡
ℎ2
�cos�𝑝𝜋ℎ� − 1�

(3)

But since �cos�𝑝𝜋ℎ�� ≤ 1, then 𝑔�𝜉𝑝� is less than 1 in magnitude for any 𝑝, implying that C-N

is stable. To determine the magnitude of 𝑔�𝜉𝑝� when the mode has the largest frequency,

let 𝑝𝜋ℎ = 𝑁
𝑁+1𝜋 ≈ 𝜋 in (3), resulting in

𝑔(𝜉𝑁) =
1 − 2𝐷Δ𝑡ℎ2

1 + 2𝐷Δ𝑡ℎ2

(4)

When the time step Δ𝑡 ≫ ℎ, then 𝐷Δ𝑡
ℎ2 ≫ 1, and in the limit �𝑔(𝜉𝑁)� → 1. This shows that large

frequency modes will decay very slowly because 𝑔�𝜉𝑝� is now close to 1. No attenuation
will occur between each application of the update matrix or between each time step.

The above explains the result seen in part (a). Large frequency components did not decay
fast as was expected, because the time step used was much larger than the space step. The
problem asked us to use Δ𝑡 = 0.1 and ℎ = 0.01, which gives 𝐷Δ𝑡

ℎ2 = 0.1
0.012 = 1000 and hence

𝑔(𝜉𝑁) → � 1−20001+2000 � → 0.9999, and since this is almost one, then large frequency modes did not
attenuate with each time step. The amplification factor needs to be small for attenuation
to occur fast.
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The following is a plot of 𝑔�𝜉𝑝� showing how the amplification factor changes as function
of 𝑝 for the case of Δ𝑡 = 0.1 and ℎ = 0.01, and 𝐷 = 1. It shows what was found above, that
at large frequency where 𝑝 is close to 𝑁 will have a correspondingly large

Figure 3.20: corrected plot of amplification factor

To determine what value of 𝐷Δ𝑡
ℎ2 is required to make the large frequency mode decay right

away, let 𝐷Δ𝑡
ℎ2 = 1

2 in (4), this gives 𝑔(𝜉𝑁) = 0, which implies that large frequency mode will

be knocked out right away. Here is a plot of 𝑔(𝜉𝑁) =
1−2𝐷Δ𝑡

ℎ2

1+2𝐷Δ𝑡
ℎ2

as a function of 𝐷Δ𝑡
ℎ2 showing

that when 𝐷Δ𝑡
ℎ2 = 0 then the magnification factor is minimum. This is only for mode 𝑝 = 𝑁.

Figure 3.21: for mode 𝑝 = 𝑁

Conclusion If initial data contained large difference in value over very short distances (in
other words, large spatial frequencies) such as given in this problem, producing disconti-
nuity in data and its space derivative, and when the time step is large compared to the
space step, then the numerical solution produced by C-N will not be accurate since large
frequency modes will not attenuate.
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To compensate for large frequency present in initial data, the ratio𝐷Δ𝑡ℎ2 needs to be made
close to 0.5 as possible. It might be better not to use C-N at all in such case and look for a
scheme which does not have this problem.

notice that condition that 𝐷Δ𝑡
ℎ2 = 1

2 found above, is the same value for the upper limit for
the absolute stability condition for the forward Euler discretization scheme for the 1D
diffusion problem.
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3.2.2.3 Part(c)

The time step was reduced and the program was run for 1 second. When the time step
was reduced all the way to Δ𝑡 = 0.01 then the final solution appeared smooth every where
and in particular at 𝑥 = 0.5. The following diagram illustrates this.

0.025 sec0.05 sec 0.0125 sec 0.01 sec 0.001 sec

Figure 3.22: Final solution at 𝑥 = 0.5

When using time step of 0.01 sec, 100 steps are used. From the last part it was found

that 𝑔(𝜉𝑁) =
1−2𝐷Δ𝑡

ℎ2

1+2𝐷Δ𝑡
ℎ2

, hence �𝑔� = �
1−2 0.01

0.022

1+2 0.01
0.022

� = 0.960 78, and therefore �𝑔�100 → 0.960 78100 ≈ 0

showing that by the 100𝑡ℎ iteration, the large mode frequency have completely smoothed
out as verified by the above plots.

In the plot below, the magnification factor �𝑔(𝜉)� is shown for 𝑡 = 0.01 and ℎ = 0.02 showing
that at 𝑝 = 50 , 𝑔(𝜉) = 0.960 78. Compare this value with the one used in part(b) which was
0.999.

Figure 3.23: Comparing with the one used in part(b) which was 0.999.

To obtain smooth solution immediately after one time step, the required time step to
accomplish this, can be determined from the condition for optimal amplification factor
found in the last part which is given by 𝐷Δ𝑡

ℎ2 = 1
2 . From this relation, and when ℎ = 0.02

and 𝐷 = 1, the time step will be Δ𝑡 = 0.0002. This value of time step produces a smooth
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solution immediately (one step). This was confirmed, and here is the numerical solution,
after only one time step, using Δ𝑡 = 0.0002, ℎ = 0.02 and 𝐷 = 1

Smooth 
solution 
appears 

immediately

Figure 3.24: numerical solution, after only one time step, using Δ𝑡 = 0.0002, ℎ = 0.02 and
𝐷 = 1

It is also possible to determine which Δ𝑡 achieves a given specific attenuation of the high
mode. Suppose it is required to attenuate the high mode to 0.001 of its initial amplitude at
the end of 1 second run. Therefore, this means that

�𝑔(𝜉𝑁)�
1
Δ𝑡 = 0.001

�
�
1 − 2𝐷Δ𝑡ℎ2

1 + 2𝐷Δ𝑡ℎ2

�
�

1
Δ𝑡

= 0.001

Taking logs, and using ℎ = 0.02 and 𝐷 = 1 results in

1
Δ𝑡

log�
1 − 5000Δ𝑡
1 + 5000Δ𝑡�

= −3

log(1 − 5000Δ𝑡) − log(1 + 5000Δ𝑡) = −3Δ𝑡

The above is not a linear equation, but can be numerically solved for the root Δ𝑡. For
the above example, Δ𝑡 came out to be 0.00761 seconds. This means that when using Δ𝑡
= 0.00761 sec, ℎ = 0.02, and 𝐷 = 1 , then the largest frequency harmonic will have its
amplitude attenuated to 0.01% of its original value after 1 second run.

3.2.2.4 Part(d)

Making the time step smaller and smaller, while keeping the ratio Δ𝑡
ℎ fixed, produces the

following result (all runs are for one second). In this example, the ratio was kept at 5.
The following sequence of ratios are used � 0.10.02 ,

0.01
0.002 ,

0.001
0.0002 ,

0.0001
0.00002� to generate the following

solution after one second run
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Det=0.1, 

h=0.02

Det=0.01, 

h=0.002

Det=0.001, 

h=0.0002

Det=0.0001, 

h=0.00002

Figure 3.25: solution after one second run

Now, recall from part (b) that the magnification factor for the largest Fourier mode was
given by

𝑔(𝜉𝑁) =
1 − 2𝐷Δ𝑡ℎ2

1 + 2𝐷Δ𝑡ℎ2

When Δ𝑡
ℎ is held constant, say 𝐶, then the above becomes

𝑔(𝜉𝑁) =
1 − 𝐶ℎ−1

1 + 𝐶ℎ−1

In the limit, as ℎ → 0 then 𝑔(𝜉𝑁) → 1, which implies, as was found in part(b), that large
Fourier modes (high 𝑝 values) will not be attenuated. This is confirmed by the plots above.

3.2.2.4.1 Using backward Euler in place of C-N When using backward Euler. The
finite difference scheme for 𝑢𝑡 = 𝐷𝑢𝑥𝑥 becomes

𝑢𝑛+1𝑗 − 𝑢𝑛𝑗
Δ𝑡

= 𝑓�𝑢𝑛+1� (1)

= 𝐷
𝑢𝑛+1𝑗−1 − 2𝑢𝑛+1𝑗 + 𝑢𝑛+1𝑗+1

ℎ2

Applying Von Neumann analysis, let 𝑢𝑛𝑗 = 𝑒
𝑖𝜉𝑥𝑗, and 𝑢𝑛+1𝑗 = 𝑔(𝜉)𝑒𝑖𝜉𝑥𝑗, then (1) becomes

𝑔 𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ − 𝑒𝑖𝜉𝑥𝑗 =
𝐷Δ𝑡
ℎ2

𝑔�𝑒𝑖𝜉𝑥𝑗𝑒−𝑖𝜉ℎ − 2𝑒𝑖𝜉𝑥𝑗 + 𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ�

𝑔 𝑒𝑖𝜉ℎ − 1 =
𝐷Δ𝑡
ℎ2

𝑔�𝑒−𝑖𝜉ℎ − 2 + 𝑒𝑖𝜉ℎ�

𝑔�𝑒𝑖𝜉ℎ −
𝐷Δ𝑡
ℎ2

(2 cos(𝜉ℎ) − 2)� = 1

𝑔(𝜉) =
1

�𝑒𝑖𝜉ℎ − 𝐷Δ𝑡
ℎ2
(2 cos(𝜉ℎ) − 2)�

Therefore
𝑔�𝜉𝑝� =

1

�𝑒𝑖𝜉𝑝ℎ − 𝐷Δ𝑡
ℎ2
�2 cos�𝜉𝑝ℎ� − 2��

But 𝜉𝑝 = 𝑝𝜋 and 𝑝 = 1⋯𝑁, and to evaluate what happens to 𝑔�𝜉𝑝� at the largest spatial
frequencies, let 𝜉𝑝 = 𝑁𝜋 and the above becomes

𝑔(𝜉𝑁) =
1

�𝑒𝑖𝑁𝜋ℎ − 𝐷Δ𝑡
ℎ2
�2 cos� 𝑁

𝑁+1𝜋� − 2��
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But 𝑁
𝑁+1 ≈ 1 and 𝑒

𝑖𝑁𝜋ℎ ≈ 𝑒𝑖𝜋 = cos(𝜋) + 𝑖 sin𝜋 = −1, then the above becomes

𝑔(𝜉𝑁) =
1

�−1 − 𝐷Δ𝑡
ℎ2
(2 cos𝜋 − 2)�

Therefore
𝑔(𝜉𝑁) =

1
4𝐷Δ𝑡ℎ2 − 1

When Δ𝑡 ≫ ℎ then �𝑔(𝜉𝑁)� →
1
1−1 → 0 which implies that large frequency modes will be

knocked out fast. This is opposite to the situation observed using C-N. Hence backward
Euler does not have the same problem with large spatial frequencies in initial data. But
notice that when 𝐷Δ𝑡

ℎ2 = 1
2 , now 𝑔(𝜉𝑁) =

1
2−1 = 1, which means that large frequency mode

will not decay or decay very slowly, This is also opposite of what was found for C-N.

3.2.2.5 Appendix for problem 2

3.2.2.5.1 Derivation of part (b) by direct application of DFT (the harder way)
The C-N scheme for 𝑢𝑡 = 𝐷𝑢𝑥𝑥 given by

−𝑟𝑢𝑛+1𝑗−1 + 𝑢𝑛+1𝑗 (1 + 2𝑟) − 𝑟𝑢𝑛+1𝑗+1 = 𝑟𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 (1 − 2𝑟) + 𝑟𝑢𝑛𝑗+1 (2)

Assuming the problem is on the whole real line, then

𝑢𝑛𝑗 =
1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛(𝜉)𝑒𝑖𝜉𝑥𝑗𝑑𝜉 (1A)

and

𝑢𝑛+1𝑗 =
1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛+1(𝜉)𝑒𝑖𝜉𝑥𝑗𝑑𝜉 (1B)

Where �̂�𝑛(𝜉) is the discrete Fourier transform (DFT) of 𝑢𝑛𝑗 . In what follows, �̂�𝑛 is written
instead of �̂�𝑛(𝜉) to make it easier to read the equations. The C-N finite difference scheme
for 𝑢𝑡 = 𝐷𝑢𝑥𝑥 is given by

−𝑟𝑢𝑛+1𝑗−1 + 𝑢𝑛+1𝑗 (1 + 2𝑟) − 𝑟𝑢𝑛+1𝑗+1 = 𝑟𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 (1 − 2𝑟) + 𝑟𝑢𝑛𝑗+1 (2)

Where 𝑟 = Δ𝑡𝐷
2ℎ2 . Substitute (1A) and (1B) into (2), but leaving 𝑢𝑛+1𝑗 as is gives

−𝑟

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛+1𝑒𝑖𝜉�𝑥𝑗−ℎ� 𝑑𝜉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑢𝑛+1𝑗 (1 + 2𝑟) − 𝑟

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛+1𝑒𝑖𝜉�𝑥𝑗+ℎ�𝑑𝜉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

𝑟

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛𝑒𝑖𝜉�𝑥𝑗−ℎ�𝑑𝜉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ (1 − 2𝑟)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛𝑒𝑖𝜉𝑥𝑗𝑑𝜉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑟

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛𝑒𝑖𝜉�𝑥𝑗+ℎ�𝑑𝜉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

−𝑟

√2𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛+1𝑒𝑖𝜉𝑥𝑗 �𝑒𝑖𝜉ℎ + 𝑒−𝑖𝜉ℎ�𝑑𝜉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑢𝑛+1𝑗 (1 + 2𝑟) =

1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�𝑟 �̂�𝑛 𝑒𝑖𝜉𝑥𝑗 𝑒−𝑖𝜉ℎ + �̂�𝑛 𝑒𝑖𝜉𝑥𝑗 − 2 𝑟 �̂�𝑛 𝑒𝑖𝜉𝑥𝑗 + 𝑟 �̂�𝑛 𝑒𝑖𝜉𝑥𝑗 𝑒𝑖𝜉ℎ�𝑑𝜉
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Simplify

𝑢𝑛+1𝑗 (1 + 2𝑟) =
𝑟

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛+1𝑒𝑖𝜉𝑥𝑗 �𝑒𝑖𝜉ℎ + 𝑒−𝑖𝜉ℎ�𝑑𝜉 +
1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛𝑒𝑖𝜉𝑥𝑗�𝑟�𝑒𝑖𝜉ℎ + 𝑒−𝑖𝜉ℎ� + 1 − 2𝑟�𝑑𝜉

=
1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛+1 2𝑟 cos(𝜉ℎ)𝑒𝑖𝜉𝑥𝑗𝑑𝜉 +
1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

�̂�𝑛(2𝑟(cos(𝜉ℎ) − 1) + 1)𝑒𝑖𝜉𝑥𝑗𝑑𝜉

=
1

√2𝜋

𝜋
ℎ

�
−𝜋
ℎ

��̂�𝑛(2𝑟(cos(𝜉ℎ) − 1) + 1) + 2𝑟 cos(𝜉ℎ)�̂�𝑛+1�𝑒𝑖𝜉𝑥𝑗𝑑𝜉

Hence

𝐷𝐹𝑇�𝑢𝑛+1𝑗 (1 + 2𝑟)� = ��̂�𝑛(2𝑟(cos(𝜉ℎ) − 1) + 1) + 2𝑟 cos(𝜉ℎ)�̂�𝑛+1�

𝐷𝐹𝑇�𝑢𝑛+1𝑗 � =
1

(1 + 2𝑟)
��̂�𝑛(2𝑟(cos(𝜉ℎ) − 1) + 1) + 2𝑟 cos(𝜉ℎ)�̂�𝑛+1�

This implies that

�̂�𝑛+1 =
1

(1 + 2𝑟)
��̂�𝑛(2𝑟(cos(𝜉ℎ) − 1) + 1) + 2𝑟 cos(𝜉ℎ)�̂�𝑛+1�

Solving for �̂�𝑛+1 gives

�̂�𝑛+1 −
2𝑟 cos(𝜉ℎ)�̂�𝑛+1

(1 + 2𝑟)
=

1
(1 + 2𝑟)

�̂�𝑛(2𝑟(cos(𝜉ℎ) − 1) + 1)

�̂�𝑛+1�
(1 + 2𝑟) − 2𝑟 cos(𝜉ℎ)

(1 + 2𝑟) � =
�̂�𝑛(2𝑟(cos(𝜉ℎ) − 1) + 1)

(1 + 2𝑟)

Hence

�̂�𝑛+1 =
(2𝑟(cos(𝜉ℎ) − 1) + 1)
(1 + 2𝑟) − 2𝑟 cos(𝜉ℎ)

�̂�𝑛

=
1 + 2𝑟 cos(𝜉ℎ) − 2𝑟
1 − 2𝑟 cos(𝜉ℎ) + 2𝑟

�̂�𝑛

Therefore �̂�𝑛+1 = 𝑔(𝜉)�̂�𝑛, where 𝑔(𝜉) = 1+2𝑟 cos(𝜉ℎ)−2𝑟
1−2𝑟 cos(𝜉ℎ)+2𝑟 , and since 𝑟 = Δ𝑡𝐷

2ℎ2 , then

𝑔(𝜉) =
1 + 𝐷Δ𝑡

ℎ2
�cos�𝑝𝜋ℎ� − 1�

1 − 𝐷Δ𝑡
ℎ2
�cos�𝑝𝜋ℎ� − 1�

where 𝜉𝑝 = 𝑝𝜋, is the wave number.

3.2.2.5.2 Another derivation for the magnification factor The magnification factor
𝑔(𝜉) found above is the same as the eigenvalue of the update matrix of the C-N scheme.
From

�𝐼 −
𝐷Δ𝑡
2
𝐿�𝑢𝑛+1 = �𝐼 +

𝐷Δ𝑡
2
𝐿�𝑢𝑛

or

𝑢𝑛+1 = �𝐼 −
𝐷Δ𝑡
2
𝐿�

−1

�𝐼 +
𝐷Δ𝑡
2
𝐿�𝑢𝑛

Where 𝐿 is the 1D Laplacian grid operator which has eigenvalues 𝜆𝑝 =
2
ℎ2
�cos�𝑝𝜋ℎ� − 1�,

hence, let 𝜇𝑝 be the eigenvalue of 𝐵 above, then
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𝜇𝑝 =
1 + 𝐷Δ𝑡

2 𝜆𝑝
1 − 𝐷Δ𝑡

2 𝜆𝑝

=
1 + 𝐷Δ𝑡

2
2
ℎ2
�cos�𝑝𝜋ℎ� − 1�

1 − 𝐷Δ𝑡
2

2
ℎ2
�cos�𝑝𝜋ℎ� − 1�

=
1 + 𝐷Δ𝑡

ℎ2
�cos�𝑝𝜋ℎ� − 1�

1 − 𝐷Δ𝑡
ℎ2
�cos�𝑝𝜋ℎ� − 1�

Which is what was found in part(b)
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3.2.3 Problem 3

Math 228B
Homework 1
Due Thursday, 1/27

1. Consider the following PDE.

ut = 0.01 uxx + 1 − exp(−t), 0 < x < 1

u(0, t) = 0 u(1, t) = 0

u(x, 0) = 0

(a) Write a program to solve the problem using Crank-Nicolson up to time t = 1, and
perform a refinement study that demonstrates that the method is second-order accurate
in space and time.

(b) Solve the problem using a forward Euler method up to time t = 1. Demonstrate in a
refinement study that the method is first-order in time and second-order in space.

2.

ut = uxx, 0 < x < 1

u(0, t) = 1, u(1, t) = 0

u(x, 0) =

{

1 if x < 0.5

0 if x ≥ 0.5

(a) Use Crank-Nicolson with grid spacing h = 0.02 and time step 0.1 to solve the problem
up to time t = 1. Comment on your results. What is wrong with this solution?

(b) Give a mathematical argument to explain the unphysical behavior you observed in the
numerical solution.

(c) Experiment with smaller time steps. How small does the time step need to be to get
reasonable results?

(d) What happens to the numerical solution as ∆t → 0 with the ratio ∆t/h fixed? Explain.
Would this same behavior occur using backward Euler in place of Crank-Nicolson? Ex-
plain.

3. Derive a stability restriction on the time step for solving the diffusion equation using the
second-order accurate explicit Runge-Kutta method

y∗ = yn + ∆tf(yn)

yn+1 = yn +
∆t

2

(

f(yn) + f(y∗)
)

,

for time stepping. Does this scheme offer any practical advantage over Forward Euler for the
diffusion equation?

1
Figure 3.26: Problem statement

The finite difference scheme for the diffusion problem is shown the appendix of this
problem.

To obtain the absolute stability restriction, let

𝑦𝑛+1 − 𝑦𝑛 =
Δ𝑡
2
�𝑓�𝑦𝑛� + 𝑓�𝑦∗��

𝑦𝑛+1 = 𝑦𝑛 +
Δ𝑡
2
�𝜆𝑦𝑛 + 𝜆𝑦∗�

= 𝑦𝑛 +
Δ𝑡
2
�𝜆𝑦𝑛 + 𝜆�𝑦𝑛 + Δ𝑡𝜆𝑦𝑛��

= 𝑦𝑛 +
Δ𝑡
2
𝜆𝑦𝑛 +

Δ𝑡
2
𝜆�𝑦𝑛 + Δ𝑡𝜆𝑦𝑛�

= 𝑦𝑛 +
Δ𝑡
2
𝜆𝑦𝑛 +

Δ𝑡
2
𝜆𝑦𝑛 +

(𝜆Δ𝑡)2

2
𝑦𝑛

=
⎛
⎜⎜⎜⎝1 + Δ𝑡𝜆 +

(𝜆Δ𝑡)2

2

⎞
⎟⎟⎟⎠𝑦𝑛

Assuming Δ𝑡𝜆 = 𝑧

𝑦𝑛 + 1 = �1 + 𝑧 +
1
2
𝑧2�𝑦𝑛

Hence 𝑅(𝑧) = 1 + 𝑧 + 1
2𝑧
2 and for absolute stability it is required that |𝑅(𝑧)| ≤ 1 which leads

to

−1 ≤ 1 + 𝑧 +
1
2
𝑧2 ≤ 1

−2 ≤ 𝑧 +
1
2
𝑧2 ≤ 0

A plot of 𝑧 + 1
2𝑧
2 shows that −2 ≤ 𝑧 ≤ 0

Figure 3.27: absolute stability region
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The above gives the interval of absolute stability for the eigenvalues. To obtain the region
of absolute stability, assume 𝜆 can be complex in general (complex eigenvalue), which
results in a disk of radius 1 centered at -1. This is the same region of stability as Forward
Euler.

-2 -1

Absolute stability region 
for eigenvalues for the R-K 

scheme in problem 3

Figure 3.28: region of absolute stability

Notice that since 𝑅(0) = 1 and 𝑑𝑅(𝑧)
𝑑𝑧 = 1, then this method is also consistent and first order accurate in time.

To answer the question about any advantage of this method over forward Euler. Recalling
that In forward Euler

𝑢𝑛+1 = 𝐵𝑢𝑛

Where 𝐵 is the update matrix given by 𝐵 = 𝐼 + 𝐷Δ𝑡𝐿𝑥, where 𝐿𝑥 is the 1-D Laplacian
operator for 𝑢𝑥𝑥 with Dirichlet boundary conditions, with eigenvalue 𝜆 = 2

ℎ2
�cos�𝑝𝜋ℎ� − 1�

where 𝑝 = 1⋯𝑁 using the standard grid convention used before.

Let 𝜇 be the eigenvalue of the above update matrix 𝐵, hence

𝜇 = 1 +
2𝐷Δ𝑡
ℎ2

�cos�𝑝𝜋ℎ� − 1�

For stability, |𝑢| ≤ 1 hence

�1 +
2𝐷Δ𝑡
ℎ2

�cos�𝑝𝜋ℎ� − 1�� ≤ 1

�1 − 4
𝐷Δ𝑡
ℎ2

� ≤ 1

Simplifying, this gives

0 ≤
𝐷Δ𝑡
ℎ2

≤
1
2

To compare the above with the R-K scheme in this problem, since

𝑢∗ − 𝑢𝑛

Δ𝑡
= 𝐿𝑢𝑛

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
1
2
(𝐿𝑢𝑛 + 𝐿𝑢∗) (1)
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Expanding gives

𝑢𝑛+1 = 𝑢𝑛 +
Δ𝑡
2
(𝐿𝑢𝑛 + 𝐿(𝑢𝑛 + Δ𝑡𝐿𝑢𝑛))

= 𝑢𝑛 +
Δ𝑡
2
�𝐿𝑢𝑛 + 𝐿𝑢𝑛 + Δ𝑡𝐿2𝑢𝑛�

= �𝐼 +
Δ𝑡
2
�2𝐿 + Δ𝑡𝐿2��𝑢𝑛

= 𝐵𝑢𝑛

The eigenvalue of 𝐿 is 2
ℎ2
�cos�𝑝𝜋ℎ� − 1� but since cos𝐴− 1 = −2 sin2 𝐴2 , hence cos�𝑝𝜋ℎ� − 1 =

−2 sin2 𝑝𝜋ℎ2 and the eigenvalue is written as − 4
ℎ2 sin

2 𝑝𝜋ℎ
2 .

let sin2 𝑝𝜋ℎ2 ≡ 𝜔, therefore the eigenvalue of 𝐿 becomes 𝜆 = −4𝜔ℎ2 .

Using this notation, the above update matrix 𝐵 for this scheme will have the following
eigenvalue

𝜇 = 1 +
Δ𝑡
2

⎛
⎜⎜⎜⎜⎝−𝐷

8𝜔
ℎ2

+ Δ𝑡�−𝐷
4𝜔
ℎ2 �

2⎞⎟⎟⎟⎟⎠

= 1 −
4𝐷Δ𝑡𝜔
ℎ2

+ Δ2𝑡
8𝐷2𝜔2

ℎ4

For stability, �𝜇� ≤ 1. Maximum 𝜇 will occur at 𝜔 = 1 implying that sin2 𝑝𝜋ℎ2 = 1 or 𝑝 = 𝑁,
resulting in

�1 −
4𝐷Δ𝑡
ℎ2

+ Δ2𝑡
8𝐷2

ℎ4 �
≤ 1

Therefore

−1 ≤ 1 −
4𝐷Δ𝑡
ℎ2

+ Δ2𝑡
8𝐷2

ℎ4
≤ 1

−2 ≤ −
4𝐷Δ𝑡
ℎ2

+ Δ2𝑡
8𝐷2

ℎ4
≤ 0

0 ≤
4𝐷Δ𝑡
ℎ2

− Δ2𝑡
8𝐷2

ℎ4
≤ 2

0 ≤
𝐷Δ𝑡
ℎ2

− Δ2𝑡
2𝐷2

ℎ4
≤
1
2

0 ≤
𝐷Δ𝑡
ℎ2

− 2�
𝐷Δ𝑡
ℎ2 �

2

≤
1
2

This shows that with the given RK scheme, stability implies the condition 0 ≤ 𝐷Δ𝑡
ℎ2 −Δ

2𝑡2𝐷
2

ℎ4
≤

1
2 . This is compared to 0 ≤ 𝐷Δ𝑡

ℎ2 ≤ 1
2 for forward Euler.

What does this mean in terms of the time step? Will this allow the use of a larger time step
than with FE while keep absolute stability?

Assume 𝐷 = 1, This is a table showing the maximum value of Δ𝑡 allowed for different ℎ
values

scheme ℎ = 1 ℎ = 0.1 ℎ = 0.01
FE 0 ≤ Δ𝑡

ℎ2 ≤
1
2 0.5 0.05 0.005

RK 0 ≤ Δ𝑡
ℎ2 −

2Δ2𝑡
ℎ4

≤ 1
2 0.5 0.05 0.005

Hence, the largest time step does not change with this scheme when compared to forward
Euler. It seems based on the above, that the explicit Runge-Kutta scheme for solving the
diffusion PDE does not offer any advantage in handling the stiffness of the PDE since the
time step remained constrained by ℎ2 as with FE. It seems that explicit schemes are not
suitable for stiff problems
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3.2.3.1 Appendix for problem 3

3.2.3.2 Derivation of the update matrix for 2 step R-K for diffusion problem with
Dirichlet B.C.

Given
𝑦𝑡 = 𝐷𝑦𝑥𝑥

Then

𝑦∗𝑖 − 𝑦𝑛𝑖
Δ𝑡

= 𝐷
𝑦𝑛𝑖−1 − 2𝑦𝑛𝑖 + 𝑦𝑛𝑖+1

ℎ2

𝑦∗𝑖 = 𝑦𝑛𝑖 + Δ𝑡

𝑓�𝑦𝑛�

���������������������������𝐷
ℎ2
�𝑦𝑛𝑖−1 − 2𝑦𝑛𝑖 + 𝑦𝑛𝑖+1�

Hence

2
𝑦𝑛+1𝑖 − 𝑦𝑛𝑖

Δ𝑡
= �𝑓�𝑦𝑛� + 𝑓�𝑦∗��

= �
𝐷
ℎ2
�𝑦𝑛𝑖−1 − 2𝑦𝑛𝑖 + 𝑦𝑛𝑖+1�� + �

𝐷
ℎ2
�𝑦∗𝑖−1 − 2𝑦∗𝑖 + 𝑦∗𝑖+1��

=
𝐷
ℎ2
�𝑦𝑛𝑖−1 − 2𝑦𝑛𝑖 + 𝑦𝑛𝑖+1�+

𝐷
ℎ2 �

𝑦𝑛𝑖−1 + Δ𝑡
𝐷
ℎ2
�𝑦𝑛𝑖−2 − 2𝑦𝑛𝑖−1 + 𝑦𝑛𝑖 ��−

2
𝐷
ℎ2 �

𝑦𝑛𝑖 + Δ𝑡
𝐷
ℎ2
�𝑦𝑛𝑖−1 − 2𝑦𝑛𝑖 + 𝑦𝑛𝑖+1��+

𝐷
ℎ2 �

𝑦𝑛𝑖+1 + Δ𝑡
𝐷
ℎ2
�𝑦𝑛𝑖 − 2𝑦𝑛𝑖+1 + 𝑦𝑛𝑖+2��

Expand and simplify

2
𝑦𝑛+1𝑖 − 𝑦𝑛𝑖

Δ𝑡
=
𝐷
ℎ2
𝑦𝑛𝑖−1�1 + 1 − 2Δ𝑡

𝐷
ℎ2
− 2Δ𝑡

𝐷
ℎ2 �

+
𝐷
ℎ2
𝑦𝑛𝑖 �−2 + Δ𝑡

𝐷
ℎ2
− 2 − 4Δ𝑡

𝐷
ℎ2
+ Δ𝑡

𝐷
ℎ2 �

+
𝐷
ℎ2
𝑦𝑛𝑖+1�1 − 2Δ𝑡

𝐷
ℎ2
+ 1 − 2Δ𝑡

𝐷
ℎ2 �

+
𝐷
ℎ2
𝑦𝑛𝑖+2�Δ𝑡

𝐷
ℎ2 �

=
𝐷
ℎ2 �

𝑦𝑛𝑖−1�2 − 4Δ𝑡
𝐷
ℎ2 �

+ 𝑦𝑛𝑖 �−4 − 2Δ𝑡
𝐷
ℎ2 �

+ 𝑦𝑛𝑖+1�2 − 4Δ𝑡
𝐷
ℎ2 �

+ 𝑦𝑛𝑖+2�Δ𝑡
𝐷
ℎ2 ��

Hence

𝑦𝑛+1𝑖 = 𝑦𝑛𝑖 +
𝐷Δ𝑡
2ℎ4

�𝑦𝑛𝑖−1�2ℎ2 − 4Δ𝑡𝐷� + 𝑦𝑛𝑖 �−4ℎ2 − 2Δ𝑡𝐷� + 𝑦𝑛𝑖+1�2ℎ2 − 4Δ𝑡𝐷� + 𝑦𝑛𝑖+2(Δ𝑡𝐷)�

= 𝑦𝑛𝑖 +
𝐷2Δ2𝑡
2ℎ4 �2𝑦𝑛𝑖−1�

ℎ2

Δ𝑡𝐷
− 2� − 2𝑦𝑛𝑖 �

2ℎ2

Δ𝑡𝐷
+ 1� + 2𝑦𝑛𝑖+1�

ℎ2

Δ𝑡𝐷
− 2� + 𝑦𝑛𝑖+2�

= 𝑦𝑛𝑖−1�
𝐷2Δ2𝑡
2ℎ4 �

ℎ2

Δ𝑡𝐷
− 2�� + 𝑦𝑛𝑖 �1 −

𝐷2Δ2𝑡
ℎ4 �

2ℎ2

Δ𝑡𝐷
+ 1��+

𝑦𝑛𝑖+1�
𝐷2Δ2𝑡
ℎ4 �

ℎ2

Δ𝑡𝐷
− 2�� + 𝑦𝑛𝑖+2

𝐷2Δ2𝑡
2ℎ4
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Let 𝐷2Δ2𝑡
ℎ4

= 𝑟1 and let ℎ2

Δ𝑡𝐷 = 𝑟2 then
4

𝑦𝑛+1𝑖 = 𝑦𝑛𝑖−1�
𝑟1
2
(𝑟2 − 2)� + 𝑦𝑛𝑖 (1 − 𝑟1(2𝑟2 + 1)) + 𝑦𝑛𝑖+1(𝑟1(𝑟2 − 2)) + 𝑦𝑛𝑖+2

𝑟1
2

= 𝑦𝑛𝑖−1�
𝑟1𝑟2
2

− 𝑟1� + 𝑦𝑛𝑖 (1 − 2𝑟1𝑟2 − 𝑟1) + 𝑦𝑛𝑖+1(𝑟1𝑟2 − 2𝑟1) + 𝑦𝑛𝑖+2
𝑟1
2

Using this 1-D grid

0 1 2 3 ... N N+1

L=1

Internal nodes

Figure 3.29: Grid format

The matrix form of the scheme becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁−1

𝑢𝑛+1𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − 2𝑟1𝑟2 − 𝑟1) (𝑟1𝑟2 − 2𝑟1)
𝑟1
2 0 0 0

� 𝑟1𝑟2
2 − 𝑟1� (1 − 2𝑟1𝑟2 − 𝑟1) (𝑟1𝑟2 − 2𝑟1)

𝑟1
2 0 0

0 � 𝑟1𝑟2
2 − 𝑟1� (1 − 2𝑟1𝑟2 − 𝑟1) (𝑟1𝑟2 − 2𝑟1)

𝑟1
2 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 � 𝑟1𝑟2

2 − 𝑟1� (1 − 2𝑟1𝑟2 − 𝑟1) (𝑟1𝑟2 − 2𝑟1)
0 0 0 0 � 𝑟1𝑟2

2 − 𝑟1� (1 − 2𝑟1𝑟2 − 𝑟1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
⋮
𝑢𝑛𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 𝑟1𝑟2
2 − 𝑟1�𝑢𝑛0

0
0
⋮

𝑦𝑛𝑁+1
𝑟1
2

(𝑟1𝑟2 − 2𝑟1)𝑢𝑛𝑁+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There is a problem above at node 𝑁 as two additional nodes are needed to its right, but
only one node exist. Need to look more into this later, as this part is not required for this
HW.

4Notice that units of 𝐷 are 𝑚𝑒𝑡𝑒𝑟2 per second, hence ℎ2

Δ𝑡𝐷
is dimensionless, so we are ok.
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3.2.4 Problem 4

4. Consider the forward time, centered space discretization

un+1

j − un
j

∆t
+ a

un
j+1 − un

j−1

2h
= b

un
j−1 − 2un

j + un
j+1

h2
,

to the convection-diffusion equation,

ut + aux = buxx, b > 0.

(a) Let ν = a∆t/h and µ = b∆t/h2. Use von Neumann analysis to show that the scheme is
stable if µ ≤ 1/2.

(b) Let a = 80, b = 1, h = 0.05. Generate a numerical solution on the spatial domain
[0, 1] with periodic boundary conditions using ∆t = 0.25h2/b with initial condition
u(x, 0) = exp(−20(x− 0.5)2). What happens? Does your stability analysis predict this?

(c) Since the solution to the PDE does not grow in time, it seems reasonable to require that
the numerical solution not grow in time. Show that the numerical solution does not
grow (in 2-norm) if and only if ν2 ≤ 2µ ≤ 1. This is called strict or practical stability,
and as the name suggests it is the restriction one would use in practice.

(d) Generate a numerical solution up to time t = 10−2.

2

Figure 3.30: Problem statement

3.2.4.1 Part (a)

The PDE is 𝑢𝑡 + 𝑎𝑢𝑥 = 𝑏𝑢𝑥𝑥, with 𝑏 > 0, the forward time, centered space discretization is

𝑢𝑛+1𝑗 − 𝑢𝑛𝑗
Δ𝑡

+ 𝑎
𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1

2ℎ
= 𝑏

𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1
ℎ2

(1)

Applying Von Neumann analysis, let 𝑢𝑛𝑗 = 𝑒
𝑖𝜉𝑥𝑗 and 𝑢𝑛+1𝑗 = 𝑔(𝜉)𝑒𝑖𝜉𝑥𝑗, then (1) becomes

𝑔𝑒𝑖𝜉𝑥𝑗 − 𝑒𝑖𝜉𝑥𝑗

Δ𝑡
+ 𝑎

𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ − 𝑒𝑖𝜉𝑥𝑗𝑒−𝑖𝜉ℎ

2ℎ
= 𝑏

𝑒𝑖𝜉𝑥𝑗𝑒−𝑖𝜉ℎ − 2𝑒𝑖𝜉𝑥𝑗 + 𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ

ℎ2

𝑔𝑒𝑖𝜉𝑥𝑗 − 𝑒𝑖𝜉𝑥𝑗 +
𝑎Δ𝑡
2ℎ

�𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ − 𝑒𝑖𝜉𝑥𝑗𝑒−𝑖𝜉ℎ� =
𝑏Δ𝑡
ℎ2
�𝑒𝑖𝜉𝑥𝑗𝑒−𝑖𝜉ℎ − 2𝑒𝑖𝜉𝑥𝑗 + 𝑒𝑖𝜉𝑥𝑗𝑒𝑖𝜉ℎ�

𝑔 − 1 +
𝜈
2
�𝑒𝑖𝜉ℎ − 𝑒−𝑖𝜉ℎ� = 𝜇�𝑒−𝑖𝜉ℎ − 2 + 𝑒𝑖𝜉ℎ�

𝑔(𝜉) = 1 −
𝜈
2
�𝑒𝑖𝜉ℎ − 𝑒−𝑖𝜉ℎ� + 𝜇�𝑒−𝑖𝜉ℎ − 2 + 𝑒𝑖𝜉ℎ�

Hence5

𝑔(𝜉) = 1 + 2𝜇(cos(𝜉ℎ) − 1) − 𝑖𝜈 sin(𝜉ℎ)

But cos𝐴 − 1 = −2 sin2 𝐴2 , hence cos(𝜉ℎ) − 1 = −2 sin
2 𝜉ℎ
2 and the above becomes

𝑔(𝜉) = 1 − 4𝜇 sin2�
𝜉ℎ
2 �

− 𝑖𝜈 sin(𝜉ℎ)

Therefore

�𝑔(𝜉)�2 = �1 − 4𝜇 sin2�
𝜉ℎ
2 ��

2

+ 𝜈2 sin2(𝜉ℎ) (2)

Using the trig identity

sin2(𝜉ℎ) = 4 sin2�
𝜉ℎ
2 ��

1 − sin2�
𝜉ℎ
2 ��

5Notice that the first oder derivatives (or odd order in general) produces eigenvalues that are complex,
and the even order ones produce real eigenvalues.
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then (2) becomes

�𝑔(𝜉)�2 = �1 − 4𝜇 sin2�
𝜉ℎ
2 ��

2

+ 4𝜈2 sin2�
𝜉ℎ
2 ��

1 − sin2�
𝜉ℎ
2 ��

Let sin2�𝜉ℎ2 � ≡ 𝜔 in the above

�𝑔(𝜉)�2 = �1 − 4𝜇𝜔�
2
+ 4𝜈2𝜔(1 − 𝜔)

The maximum of �𝑔�𝜉𝑝�� occurs when 𝜉ℎ ≈ 𝜋, making 𝜔 = 1, hence from above, the

maximum of �𝑔(𝜉)�2 is reduced to 1 − 4𝜇, and then for stability

�1 − 4𝜇� ≤ 1

therefore

−1 ≤ 1 − 4𝜇 ≤ 1
−2 ≤ −4𝜇 ≤ 0
0 ≤ 4𝜇 ≤ 2

Hence
0 ≤ 𝜇 ≤

1
2

The above result can also be derived using the stencil diagram method. The stencil diagram
for the above scheme (for internal nodes only) is

u
n

U
n+1

j

j

J-1 J+1

The stencil for problem 4 finite difference scheme with 

periodic boundary conditions

k

h

ut  aux  buxx


2
 

1  2

  
2

Figure 3.31: Grid used

As was done in problem 1, By imposing that the weight on each edge in the above directed
graph not exceed unity, and that the total algebraic sum of the weight of the edge also not
exceed unity. This includes any combination of edges involved. For if this was the case,
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then 𝑢𝑛+1𝑗 will always have an amplitude ≤ 𝑢𝑛𝑗 . Applying this to the above diagram gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 𝜐
2 + 𝜇 ≤ 1 Condition on 𝑗 − 1 edge

(2) �𝜇 − 𝜐
2 � ≤ 1 Condition on 𝑗 + 1 edge

(3) 2𝜇 ≤ 1 Condition on 𝑗 − 1 added to 𝑗 + 1 edge
(4) �1 − 2𝜇� ≤ 1 Condition on the 𝑗 edge
(5) �1 + 𝜐

2 − 𝜇� ≤ 1 Condition on the 𝑗 edge added to 𝑗 − 1
(6) �1 − 𝜐

2 − 𝜇� ≤ 1 Condition on the 𝑗 edge added to 𝑗 + 1
(7) 1 ≤ 1 Condition that all edges sum to less than 1

Condition (7) gives no information. Condition (4) gives 𝜇 ≤ 1 and hence weaker than (3),
condition (5) is the same as (2) and gives 𝜇 − 𝜐

2 ≤ 1, condition (6) gives 𝜐
2 + 𝜇 ≤ 2 which is

weaker than condition (1). Hence the following are remaining conditions (3),(1),(2).
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1) 𝜐
2 + 𝜇 ≤ 1 Condition on 𝑗 − 1 edge

(2) �𝜇 − 𝜐
2 � ≤ 1 Condition on 𝑗 + 1 edge

(3) 2𝜇 ≤ 1 Condition on 𝑗 − 1 added to 𝑗 + 1 edge

From the above, only condition (3) can provide useful information, which is that 𝜇 ≤ 1
2 ,

which is what was found using Von Neumann analysis.

3.2.4.2 Part (b)

The scheme was implemented. The source code is in the appendix of this problem. The
grid used is the standard grid

0 1 2 3 ... N N+1

L=1

Internal nodes

Figure 3.32: Grid used

In the following, I will be use the following PDE 𝑐𝑢𝑡 + 𝑎𝑢𝑥 = 𝑏𝑢𝑥𝑥 (where𝑐 was added a
parameter for the advection term).

Periodic boundary conditions implies 𝑢(0, 𝑡) = 𝑢(1, 𝑡), Hence there is an extra one unknown
(in addition to the internal nodes). Either 𝑢(0, 𝑡) or 𝑢(1, 𝑡) can be selected since they have
the same value. When selecting the right end node, then 𝑢𝑁+1 becomes an unknown to be
added to the internal nodes. Using the following diagram
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0 1 2 3 ... N N+1

N+2

unknowns

Periodic boundary conditions

Figure 3.33: Grid used

The forward time, centered space discretization is

𝑐
𝑢𝑛+1𝑗 − 𝑢𝑛𝑗

Δ𝑡
+ 𝑎

𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1
2ℎ

= 𝑏
𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1

ℎ2
(1)

Therefore, for nodes 2⋯𝑁, the finite difference scheme is

𝑐
𝑢𝑛+1𝑗 − 𝑢𝑛𝑗

Δ𝑡
+ 𝑎

𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1
2ℎ

= 𝑏
𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1

ℎ2

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 − 𝑎Δ𝑡
𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1

2𝑐ℎ
+ 𝑏Δ𝑡

𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1
𝑐ℎ2

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑎Δ𝑡
2𝑐ℎ

�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� +
𝑏Δ𝑡
𝑐ℎ2

�𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1�

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗−1�
𝑎Δ𝑡
2𝑐ℎ

+
𝑏Δ𝑡
𝑐ℎ2 �

+ 𝑢𝑛𝑗 �1 − 2
𝑏Δ𝑡
𝑐ℎ2 �

+ 𝑢𝑛𝑗+1�−
𝑎Δ𝑡
2𝑐ℎ

+
𝑏Δ𝑡
𝑐ℎ2 �

Let 𝜐 = 𝑎Δ𝑡
𝑐ℎ , 𝜇 =

𝑏Δ𝑡
𝑐ℎ2 , the above becomes

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗−1�
𝜐
2
+ 𝜇� + 𝑢𝑛𝑗 �1 − 2𝜇� + 𝑢𝑛𝑗+1�𝜇 −

𝜐
2
�

Node 𝑗 = 1 gives

𝑢𝑛+11 = 𝑢𝑛0�
𝜐
2
+ 𝜇� + 𝑢𝑛1�1 − 2𝜇� + 𝑢𝑛2�𝜇 −

𝜐
2
�

= 𝑢𝑛𝑁+1�
𝜐
2
+ 𝜇� + 𝑢𝑛1�1 − 2𝜇� + 𝑢𝑛2�𝜇 −

𝜐
2
�

And for node 𝑗 = 𝑁 + 1

𝑢𝑛+1𝑁+1 = 𝑢𝑛𝑁�
𝜐
2
+ 𝜇� + 𝑢𝑛𝑁+1�1 − 2𝜇� + 𝑢𝑛𝑁+2�𝜇 −

𝜐
2
�

= 𝑢𝑛𝑁�
𝜐
2
+ 𝜇� + 𝑢𝑛𝑁+1�1 − 2𝜇� + 𝑢𝑛1�𝜇 −

𝜐
2
�

The full system can now be written in matrix form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁

𝑢𝑛+1𝑁+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 − 2𝜇� �𝜇 − 𝜐
2
� 0 0 0 �𝜐

2 + 𝜇�
�𝜇 + 𝜐

2
� �1 − 2𝜇� �𝜇 − 𝜐

2
� 0 0 0

0 �𝜇 + 𝜐
2
� �1 − 2𝜇� �𝜇 − 𝜐

2
� 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 �𝜇 + 𝜐

2
� �1 − 2𝜇� �𝜇 − 𝜐

2
�

�𝜇 − 𝜐
2
� 0 0 0 �𝜇 + 𝜐

2
� �1 − 2𝜇�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
⋮
𝑢𝑛𝑁
𝑢𝑛𝑁+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above can also be written as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+11

𝑢𝑛+12

𝑢𝑛+13

⋮
𝑢𝑛+1𝑁

𝑢𝑛+1𝑁+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

�����������������������������������������������������������������������������������������������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼 −
𝑎Δ𝑡
2𝑐ℎ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 −1
−1 0 1 0 0 0
0 −1 0 1 0 0
⋮ ⋮ −1 ⋱ 1 0
0 0 0 −1 0 1
1 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
𝑏Δ𝑡
𝑐ℎ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
⋮ ⋮ ⋮ ⋱ ⋮ 0
0 0 0 1 −2 1
1 0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛1
𝑢𝑛2
𝑢𝑛3
⋮
𝑢𝑛𝑁
𝑢𝑛𝑁+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑢0𝑗 are taken from initial conditions. The above is in the form

𝑢𝑛+1 = 𝐵𝑢𝑛

and is implemented directly as above in the code. Using the numerical values given in the
problem

Δ𝑡 =
0.25ℎ2

𝑏
= 0.25

(0.05)2

1
= 0.0006 25

and

𝜐 =
𝑎Δ𝑡
ℎ

=
80(0.0006 25)

0.05
= 1

and

𝜇 =
𝑏Δ𝑡
ℎ2

=
0.0006 25
(0.05)2

= 0.25

since 𝜇 ≤ 1
2 the solution is expected to be stable since this is the condition derived in part

(a).

The following is the result of running the program. The numerical solution grew with time.
Here are few snap shots taken at increasing time steps showing the problem. After only
about 10 time steps, the numerical solution can be seen to grow more than the initial
conditions
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t=0.00688

t=0 t=0.00063
t=0.00125 t=0.005

t=0.00938
t=0.01063

t=0.01375

t=0.02438 t=0.02938 t=0.03375
t=0.03875

Figure 3.34: few snap shots taken at increasing time steps showing the problem

The stability analysis that was done did not predict this based on the value of 𝜇 which was

≤ 1
2 .
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3.2.4.3 Part(c)

The eigenvalues 𝑢𝑝 of the update matrix derived in part (b) are

𝑢𝑝 = 1 − 𝑖
𝑎Δ𝑡
ℎ

sin�𝜋𝑝ℎ� +
2𝑏Δ𝑡
ℎ2

�cos�𝜋𝑝ℎ� − 1�

But 𝜐 = 𝑎Δ𝑡
ℎ , 𝜇 = 𝑏Δ𝑡

ℎ2 , then the above becomes

𝑢𝑝 = 1 − 𝑖𝑣 sin�𝜋𝑝ℎ� + 2𝜇�cos�𝜋𝑝ℎ� − 1�

Let sin2�𝜉ℎ2 � ≡ 𝜔, then the above can be written as

�𝑢𝑝�
2 = �1 − 4𝜇𝜔�

2
+ 4𝜈2𝜔(1 − 𝜔)

As was done in part (a).

From part (a), it was found that when 𝜔 = 1, this resulted in the condition of stability being
0 ≤ 𝜇 ≤ 1

2 , and when 𝜔 = 0, the maximum eigenvalue is 1. To find the condition of �𝑢𝑝� ≤ 1

for the full range of 𝜔, first expand �𝑢𝑝�
2
into a quadratic in 𝜔 and minimize

�𝑢𝑝�
2 = 1 + 16𝜇2𝜔2 − 8𝜇𝜔 + 4𝜈2𝜔 − 4𝜈2𝜔2

= 1 − 4𝜔�2𝜇 − 𝜈2� + 4𝜔2�4𝜇2 − 𝜈2�

Since 𝜔 = sin2�𝜋𝑝ℎ2 �, then 𝜔 values are from 0⋯1. Since the maximum eigenvalue occurs

when 𝜔 = 0, then 𝜔 = 0 is the maximum point of the quadratic 1−4𝜔�2𝜇 − 𝜈2�+4𝜔2�4𝜇2 − 𝜈2�,
hence the slope of this quadratic at 𝜔 = 0 must be negative. But the slope is

𝑑
𝑑𝜔
�𝑢𝑝�

2 =
𝑑
𝑑𝜔
�1 − 4𝜔�2𝜇 − 𝜈2� + 4𝜔2�4𝜇2 − 𝜈2��

= −4�2𝜇 − 𝜈2� + 8𝜔�4𝜇2 − 𝜈2�

For the above to be negative (so that the eigenvalue remain below 1) implies that 2𝜇 − 𝜈2
must be positive, i.e.

2𝜇 − 𝜈2 ≥ 0

or
𝜈2 ≤ 2𝜇

And since from part(a) it was found that 𝜇 ≤ 1
2 , or 2𝜇 ≤ 1 then the above become

𝜈2 ≤ 2𝜇 ≤ 1

3.2.4.4 Part(d)

The solution for Δ𝑡 = 0.0006 25, ℎ = 0.05, 𝑎 = 80, 𝑏 = 1, with 𝑢(𝑥, 0) = exp�−20(𝑥 − 0.5)2� at
𝑡 = 0.01 seconds is
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Figure 3.35: Part c final solution

The value of the numerical solution at that time is

-0.1727
0.1817
0.6603
1.1158
1.4092
1.4609
1.2868
0.9910
0.6912
0.4441
0.2527
0.1168
0.0451
0.0337
0.0532
0.0563

-0.0013
-0.1275
-0.2680
-0.3162
-0.1727

3.2.4.5 Appendix for problem 4

3.2.4.5.1 derivation of the convection-diffusion using general terms The PDE is
𝑐𝑢𝑡 + 𝑎𝑢𝑥 = 𝑏𝑢𝑥𝑥, with 𝑏 > 0, the forward time, centered space discretization is

𝑐
𝑢𝑛+1𝑗 − 𝑢𝑛𝑗

Δ𝑡
+ 𝑎

𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1
2ℎ

= 𝑏
𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1

ℎ2
(1)
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Therefore, for nodes 2⋯𝑁, the finite difference scheme is

𝑐
𝑢𝑛+1𝑗 − 𝑢𝑛𝑗

Δ𝑡
+ 𝑎

𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1
2ℎ

= 𝑏
𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1

ℎ2

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 − 𝑎Δ𝑡
𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1

2𝑐ℎ
+ 𝑏Δ𝑡

𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1
𝑐ℎ2

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑎Δ𝑡
2𝑐ℎ

�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� +
𝑏Δ𝑡
𝑐ℎ2

�𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1�

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗−1�
𝑎Δ𝑡
2𝑐ℎ

+
𝑏Δ𝑡
𝑐ℎ2 �

+ 𝑢𝑛𝑗 �1 − 2
𝑏Δ𝑡
𝑐ℎ2 �

+ 𝑢𝑛𝑗+1�−
𝑎Δ𝑡
2𝑐ℎ

+
𝑏Δ𝑡
𝑐ℎ2 �

Let 𝜐 = 𝑎Δ𝑡
𝑐ℎ , 𝜇 =

𝑏Δ𝑡
𝑐ℎ2 , the above becomes

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗−1�
𝜐
2
+ 𝜇� + 𝑢𝑛𝑗 �1 − 2𝜇� + 𝑢𝑛𝑗+1�𝜇 −

𝜐
2
�

Node 𝑗 = 1 gives

𝑢𝑛+11 = 𝑢𝑛0�
𝜐
2
+ 𝜇� + 𝑢𝑛1�1 − 2𝜇� + 𝑢𝑛2�𝜇 −

𝜐
2
�

= 𝑢𝑛𝑁+1�
𝜐
2
+ 𝜇� + 𝑢𝑛1�1 − 2𝜇� + 𝑢𝑛2�𝜇 −

𝜐
2
�

And for node 𝑗 = 𝑁 + 1

𝑢𝑛+1𝑁+1 = 𝑢𝑛𝑁�
𝜐
2
+ 𝜇� + 𝑢𝑛𝑁+1�1 − 2𝜇� + 𝑢𝑛𝑁+2�𝜇 −

𝜐
2
�

= 𝑢𝑛𝑁�
𝜐
2
+ 𝜇� + 𝑢𝑛𝑁+1�1 − 2𝜇� + 𝑢𝑛1�𝜇 −

𝜐
2
�

3.2.5 Screen shot of the GUI matlab application used for HW1

Figure 3.36: Matlab program I developed for this HW
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3.2.6 Matlab Source code developed for this HW

3.2.6.1 nma_math228b_build_HW1.m� �
function nma_math228b_build_HW1()

list = dir('*.m');

if isempty(list)
fprintf('no matlab files found\n');
return

end

for i=1:length(list)
name=list(i).name;
fprintf('processing %s\n',name)
p0 = fdep(list(i).name,'-q');
[pathstr, name_of_matlab_function, ext] = fileparts(name);

%make a zip file of the m file and any of its dependency
p1=dir([name_of_matlab_function '.fig']);
if length(p1)==1

files_to_zip =[p1(1).name;p0.fun];
else

files_to_zip =p0.fun;
end

zip([name_of_matlab_function '.zip'],files_to_zip)

end

end� �
3.2.6.2 nma_math228b_HW1.m� �
function nma_math_228b_HW1

t=0:0.1:100;
x=0.01:0.01:1;
sol=zeros(length(x),1);

for i=1:length(t)
for j=1:length(x)

sol(j)= uh(x(j),t(i)) + up(x(j)) ;
end
plot(x,sol);
title(sprintf('t=%f',t(i)));
drawnow();
pause(.01);

end
end

%--------------------------
function v=up(x)

v= 50* x * (1-x) ;
end
%-----------------------
function v=uh(x,t)
a=0.01;
sum=0; N=50;
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for n=1:N
sum=sum+( 400* an(n)*exp( -a * (n*pi)^2 *t ) * sin(n*pi*x) );

end
v=sum;
end

%-----------------------
function v=an(n)
v=( (-1)^n-1)/(n^3*pi^3);
end� �
3.2.6.3 nma_math228b_plot.m� �
function nma_math228b_plot()
close all;

t=0.01;
D=1;

N=49;
h=1/(N+1);
p=1:N;
z=p*pi*(1/(N+1));
g= (D*t/h^2)*(cos(z)-1);
g=abs((1+g)./(1-g));

plot(p,g)
title(sprintf('Magnification factor as function of wave number\nC-N scheme for h=%f, t=0.01, N=%d',h,N))
xlabel('p, wave number');
ylabel('g(wave number)');
%

close all;
h=0.02;
t=0.001;
D=1;
r=t*D/(2*h^2);
z=-pi/h:0.01:pi/h;
g= abs((1+2*r*cos(z*h)-2*r)./(1-2*r*cos(z*h)+2*r));

plot(z*h,g)
title(sprintf('Magnification factor, C-N scheme for h=0.02, t=0.001'))
xlabel('zeta(radians)');
ylabel('g(zeta)');
xlim([-pi,pi])
ylim([0,1.2]);
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi/h','-pi/2h','0','pi/2h','pi/h'})

close all;
h=0.02;
t=0.001;
D=1;
r=t*D/(2*h^2);
z=-pi/h:0.01:pi/h;
g= abs(1-(4*D*t/h^2)*sin(z*h/2).^2);

plot(z*h,g)
title(sprintf('Magnification factor, FE scheme for h=0.02, t=0.001\ndelt*D/h^2=%3.3f',t*D/h^2))
xlabel('zeta(radians)');
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ylabel('g(zeta)');
xlim([-pi,pi])
ylim([0,1.2]);
set(gca,'XTick',-pi:pi/2:pi)
%set(gca,'XTickLabel',{'-pi/h','-pi/2h','0','pi/2h','pi/h'})

end� �
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3.3 HW 2

3.3.1 Animation of FitzHugh-Nagumo equations

The following are animated GIFs showing the solution to problem 3, parts (b) and (c).
These will show only in the HTML version.

Assuming that 𝑓(𝑣) = (𝑎 − 𝑣)(𝑣 − 1)𝑣, the equations solved are the following

𝜕𝑣
𝜕𝑡

= 𝐷Δ𝑣 + 𝑓(𝑣) − 𝑤 + 𝐼

𝜕𝑤
𝜕𝑡

= 𝜖�𝑣 − 𝛾𝑤�

Click on image to see the animation run, it will open in new window.
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3.3.2 Problem1

Math 228B

Homework 2

Due Tuesday, February 15th

1. In class, we showed that the two-dimensional Peaceman-Rachford ADI scheme is uncon-
ditionally stable and second-order accurate in time. This can be thought of as either an
approximate factorization or as a fractional step method. By adapting the fractional step
idea to three-dimensions we get the scheme

(

I −
b∆t

3
Lx

)

u∗ =

(

I +
b∆t

3
Ly +

b∆t

3
Lz

)

un

(

I −
b∆t

3
Ly

)

u∗∗ =

(

I +
b∆t

3
Lx +

b∆t

3
Lz

)

u∗

(

I −
b∆t

3
Lz

)

un+1 =

(

I +
b∆t

3
Lx +

b∆t

3
Ly

)

u∗∗.

(a) Use von Neumann analysis to show that this scheme is conditionally stable. This is
an example of how certain desirable properties of a numerical scheme can be lost when
using fractional stepping.

(b) What temporal accuracy do you expect from this scheme? Explain.

2. Consider

ut = 0.1∆u on Ω = (0, 1)× (0, 1)

∂u

∂~n
= 0 on ∂Ω

u(x, y, 0) = exp
(

−10((x− 0.4)2 + (y − 0.4)2)
)

(a) Write a program to solve this PDE using the Peaceman-Rachford
ADI scheme on a cell-centered grid. Use a direct solver for the
tridiagonal systems. In a cell-centered discretization the solution
is stored at the grid points (xi, yj) = (h(i − 0.5), h(j − 0.5)) for
i, j = 1 . . . N and h = 1/N . This discretization is natural for
handling Neumann boundary conditions, and it is often used to
discretize conservation laws. At the grid points adjacent to the
boundary, the one-dimensional discrete Laplacian for homoge-
neous Neumann boundary conditions is

uxx(x1) ≈
−u1 + u2

h2
.
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(b) Perform a refinement study to show that your numerical solution is second-order accurate
in space and time (refine time and space simultaneously using ∆t = h) at time t = 1.

(c) Show that the spatial integral of the solution to the PDE does not change in time. That
is

d

dt

∫

Ω

u dV = 0.

1

Figure 3.37: Problem description

3.3.2.1 Part (a)

The diffusion PDE is given by
𝑢𝑡 − 𝐷Δ𝑢 = 0

Where 𝐷 is the diffusion constant. The ADI scheme in 3D 6 is given by

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑥�𝑢∗ = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑦 +

𝐷Δ𝑡
3
𝐿𝑧�𝑢𝑛 (1)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑦�𝑢∗∗ = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑧�𝑢∗ (2)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑧�𝑢𝑛+1 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑦�𝑢∗∗ (3)

Where 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 are each the 1D Laplacian given by 1
ℎ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 0 1 −2 1
0 0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assuming that the spatial frequencies in each of the three Cartesian directions (𝑥, 𝑦, 𝑧)
are given by 𝜉𝑥, 𝜉𝑦, 𝜉𝑧 where

𝜋
ℎ ≤ 𝜉𝑖 ≤

𝜋
ℎ and by setting 𝑟 = 𝐷Δ𝑡

3ℎ2 , 𝑢
∗ = 𝑔∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and

𝑢 = 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and substituting these into Eq. (1) and dividing throughout by 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧�

6Please see the appendix of this problem at the end of the HW report showing how these equations came
about.
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gives the following

𝑔∗�1 − 𝑟�𝑒−𝑖𝜉1ℎ − 2 + 𝑒𝑖𝜉1ℎ�� = 1 + 𝑟�𝑒−𝑖𝜉2ℎ − 2 + 𝑒𝑖𝜉2ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�

𝑔∗ =
1 − 4𝑟 + 𝑟�𝑒−𝑖𝜉2ℎ + 𝑒𝑖𝜉2ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ + 𝑒𝑖𝜉3ℎ�

�1 + 2𝑟 − 𝑟�𝑒𝑖𝜉1ℎ + 𝑒−𝑖𝜉1ℎ��

=
1 − 4𝑟 + 2𝑟 cos(𝜉2ℎ) + 2𝑟 cos(𝜉3ℎ)

1 + 2𝑟 − 2𝑟 cos(𝜉1ℎ)

=
1 − 4𝑟�sin2�𝜉2ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉1ℎ2 �
(4)

The last step above was obtained by the use of the relation cos𝐴 = 1 − 2 sin2�𝐴2 �.

Applying the same method used above to Eq. (2), but now letting 𝑢∗ = 𝑔∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and
𝑢∗∗ = 𝑔∗∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and dividing throughout by 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� gives

𝑔∗∗�1 − 𝑟�𝑒−𝑖𝜉2ℎ − 2 + 𝑒𝑖𝜉2ℎ�� = 1 + 𝑟�𝑒−𝑖𝜉1ℎ − 2 + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�

𝑔∗∗ =
1 − 4𝑟 + 𝑟�𝑒−𝑖𝜉1ℎ + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ + 𝑒𝑖𝜉3ℎ�

1 + 2𝑟 − 𝑟�𝑒𝑖𝜉2ℎ + 𝑒−𝑖𝜉2ℎ�
𝑔∗

=
1 − 4𝑟 + 2𝑟 cos(𝜉1ℎ) + 2𝑟 cos(𝜉3ℎ)

1 + 2𝑟 − 2𝑟 cos(𝜉2ℎ)
𝑔∗

=
1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉2ℎ2 �
𝑔∗ (5)

Again, applying the same method to Eq. (3), but now letting 𝑢∗∗ = 𝑔∗∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and
𝑢𝑛+1 = 𝑔𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and dividing by 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� gives

𝑔�1 − 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�� = 1 + 𝑟�𝑒−𝑖𝜉1ℎ − 2 + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉2ℎ − 2 + 𝑒𝑖𝜉2ℎ�

𝑔 =
1 − 4𝑟 + 𝑟�𝑒−𝑖𝜉1ℎ + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉2ℎ + 𝑒𝑖𝜉2ℎ�

1 − 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�
𝑔∗∗

=
1 − 4𝑟 + 2𝑟 cos(𝜉1ℎ) + 2𝑟 cos(𝜉2ℎ)

1 + 2𝑟 − 2𝑟 cos(𝜉3ℎ)
𝑔∗∗

=
1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉2ℎ2 ��

1 + 4𝑟 sin2�𝜉3ℎ2 �
𝑔∗∗ (6)

Substituting (4) into (5) and substituting the resulting expression into (6) gives the overall
magnification factor for the ADI scheme:

𝑔 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉2ℎ2 ��

1 + 4𝑟 sin2�𝜉3ℎ2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉2ℎ2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 4𝑟�sin2�𝜉2ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉1ℎ2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Letting 𝐴 ≡ sin2�𝜉1ℎ2 �, 𝐵 ≡ sin2�𝜉2ℎ2 �, 𝐶 ≡ sin2�𝜉1ℎ2 � = 𝐶 in Eq. (7) results in

𝑔(𝜉1, 𝜉2, 𝜉3) = �
1 − 4𝑟(𝐴 + 𝐵)
1 + 4𝑟𝐶 ��

1 − 4𝑟(𝐴 + 𝐶)
1 + 4𝑟𝐵 ��

1 − 4𝑟(𝐵 + 𝐶)
1 + 4𝑟𝐴 � (8)

The scheme is conditionally stable if �𝑔(𝜉1, 𝜉2, 𝜉3)� ≤ 1 for some value of 𝑟 and �𝑔(𝜉1, 𝜉2, 𝜉3)� >
1 for some other value of 𝑟 (this is the same as using different values of Δ𝑡 in place of 𝑟,
since 𝑟 = 𝐷Δ𝑡

3ℎ2 and ℎ and 𝐷 would be kept constant).

Now the scheme can be shown to be conditionally stable by letting 𝐴 = 𝐵 = 𝐶 = 1 in Eq.
(8) and then by finding one value of 𝑟 which makes the magnification factor to become
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less than one and then by looking for another value of 𝑟 which makes the magnification
factor to becomes larger than one.

Therefore, when 𝐴 = 𝐵 = 𝐶 = 1, Eq. (8) becomes

�𝑔(𝜉1, 𝜉2, 𝜉3)� = �
1 − 8𝑟
1 + 4𝑟��

1 − 8𝑟
1 + 4𝑟��

1 − 8𝑟
1 + 4𝑟�

(8A)

Now, putting 𝑟 = 2 in the above gives �𝑔(𝜉1, 𝜉2, 𝜉3)� = 2.744 > 1 implying that the scheme is
unstable.

Putting 𝑟 = 0.5 in Eq. (8A) gives �𝑔(𝜉1, 𝜉2, 𝜉3)� = 0.125 < 1 implying that the scheme is stable.

Hence the scheme is conditionally stable, because by fixing ℎ and 𝐷, it was possible to
find a time step Δ𝑡 which made some mode become unstable. If one mode is unstable, the
overall scheme is also unstable. This result shows that the above given ADI scheme for 3D
is conditionally stable.

3.3.2.2 Part (b)

Expectation: Temporal accuracy is expected to be 𝑂(Δ𝑡) since at each 1/3 time step there
is one implicit step compared to two explicit steps. Starting from the main equations shown
in part (a)

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 (backward Euler)

�������������(𝐼 − 𝑟𝐿𝑥)𝑢∗ =

explicit (2 forward Euler)

��������������������𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧� 𝑢𝑛 (1)

�𝐼 − 𝑟𝐿𝑦�𝑢∗∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)𝑢∗ (2)

(𝐼 − 𝑟𝐿𝑧)𝑢𝑛+1 = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�𝑢∗∗ (3)

There will be an 𝑂(Δ𝑡) error resulting from the application of Euler approximation to each
of the terms in each equation above. One of the implicit errors will cancel exactly with
one of the errors from the explicit part of the equation (due to sign difference), leaving an
extra 𝑂(Δ𝑡) error after each third step. Hence at the completion of one full time step, the
temporal error will be 3𝑂(Δ𝑡) or 𝑂(Δ𝑡).

Explanation: The derivation below follows the method explained in class for the 2D ADI
case, but being applied to the 3D case. Starting by pre-multiplying Eq. (1) by the operator
(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧) gives

(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)(𝐼 − 𝑟𝐿𝑥)𝑢∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

But since (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧) commutes7 with (𝐼 − 𝑟𝐿𝑥), then the two terms in the LHS of the
above equation can be interchanged giving

(𝐼 − 𝑟𝐿𝑥)
now replace this from (2)

���������������������(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)𝑢∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

Replacing the term marked above by its LHS value from Eq. (2) yields

(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�𝑢∗∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

Pre-multiplying the above by the operator �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦� gives

�𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�𝑢∗∗ = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

But since �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦� commutes with (𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦� the above can be written as

(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�

replace this from (3)

������������������������𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�𝑢∗∗ = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

7To show these operators commute, similar argument can be made as was done for the 2D case in class,
which is by saying that each operator 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 on its own commutes with the other 2, hence the result will
follow.
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Replacing the term marked above by its LHS value from Eq. (3) gives

(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�(𝐼 − 𝑟𝐿𝑧)𝑢𝑛+1 = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

Expanding all terms by multiplying all operators and simplifying the result and using
𝐿 = 𝐿𝑥 + 𝐿𝑦 + 𝐿𝑧 gives the following

�𝐼 − 𝑟𝐿 + 𝑟2�𝐿𝑥𝐿𝑧 + 𝐿𝑦𝐿𝑧� + 𝑟2𝐿𝑥𝐿𝑦 − 𝑟3𝐿𝑥𝐿𝑦𝐿𝑧�𝑢𝑛+1 = (4)

�𝐼 + 𝑟𝐿 + 𝑟𝐿 + 3𝑟2𝐿𝑥𝐿𝑦 + 3𝑟2𝐿𝑥𝐿𝑧 + 3𝑟2𝐿𝑥𝐿𝑦 + 3𝑟2𝐿𝑦𝐿𝑧�𝑢𝑛 + (𝐻.𝑂.𝑇.)

Where H.O.T. are terms from operators of order 2 and higher. These terms produce errors
of order 𝑂�Δ𝑡2�, 𝑂�Δ𝑡3� and higher. Moving all these terms to the RHS simplifies Eq. (4)
to the following

(𝐼 − 𝑟𝐿)𝑢𝑛+1 = (𝐼 + 𝑟𝐿 + 𝑟𝐿)𝑢𝑛 + 𝑂�Δ𝑡2� + 𝑂�Δ𝑡3� +⋯

𝑢𝑛+1 − 𝑢𝑛 = 𝑟𝐿𝑢𝑛+1 + 2𝑟𝐿𝑢𝑛 + 𝑂�Δ𝑡2� + 𝑂�Δ𝑡3� +⋯

Since 𝑟 = 𝐷Δ𝑡
3 the above becomes

𝑢𝑛+1 − 𝑢𝑛 =
𝐷Δ𝑡
3
𝐿𝑢𝑛+1 + 2

𝐷Δ𝑡
3
𝐿𝑢𝑛 + 𝑂�Δ𝑡2� + 𝑂�Δ𝑡3� +⋯

Dividing the above equation by Δ𝑡 gives

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
𝐷
3
𝐿𝑢𝑛+1 +

2𝐷
3
𝐿𝑢𝑛 + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

Now adding 𝐷
6 𝐿𝑢

𝑛+1 and subtracting 𝐷
6 𝐿𝑢

𝑛+1 and subtracting 𝐷
6 𝐿𝑢

𝑛 and adding 𝐷
6 𝐿𝑢

𝑛

from the RHS of the above equation gives

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
𝐷
3
𝐿𝑢𝑛+1 +

𝐷
6
𝐿𝑢𝑛+1 +

2𝐷
3
𝐿𝑢𝑛 −

𝐷
6
𝐿𝑢𝑛 +

𝐷
6
𝐿𝑢𝑛 −

𝐷
6
𝐿𝑢𝑛+1 + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

𝐶−𝑁

���������������������������������������𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
1
2
�𝐿𝑢𝑛+1 + 𝐿𝑢𝑛� +

1
6
�𝐿𝑢𝑛 − 𝐿𝑢𝑛+1� + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

The C-N scheme is known to be 𝑂�Δ𝑡2 + ℎ2�. Multiplying the term 1
6
�𝐿𝑢𝑛 − 𝐿𝑢𝑛+1� by Δ𝑡

Δ𝑡 in
the above yields

𝑢𝑡 =
1
2
Δ𝑢 +

from C-N part

���������������������𝑂�Δ𝑡2� + 𝑂�ℎ2� +
Δ𝑡
6
𝐿�
𝑢𝑛 − 𝑢𝑛+1

Δ𝑡 � + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

Taking the limits Δ𝑡 → 0 results in

𝑢𝑡 =
1
2
Δ𝑢 +

from C-N part

���������������������𝑂�Δ𝑡2� + 𝑂�ℎ2� +

𝑠𝑡𝑖𝑙𝑙 𝑂(Δ𝑡)

���������������������������������Δ𝑡
6

𝜕7

𝜕2𝑥𝜕2𝑦𝜕2𝑧𝜕𝑡
+ 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

=
1
2
Δ𝑢 +

from C-N part

���������������������𝑂�Δ𝑡2� + 𝑂�ℎ2� + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

=
1
2
Δ𝑢 +�������������������𝑂�ℎ2� + 𝑂(Δ𝑡) +𝑂�Δ𝑡2� +⋯

Since in the above, the dominant temporal error term is𝑂(Δ𝑡) the scheme is a first order in time accurate.
It is also a second order in space accurate.
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3.3.3 Problem 2

Math 228B

Homework 2

Due Tuesday, February 15th

1. In class, we showed that the two-dimensional Peaceman-Rachford ADI scheme is uncon-
ditionally stable and second-order accurate in time. This can be thought of as either an
approximate factorization or as a fractional step method. By adapting the fractional step
idea to three-dimensions we get the scheme

(

I −
b∆t

3
Lx

)

u∗ =

(

I +
b∆t

3
Ly +

b∆t

3
Lz

)

un

(

I −
b∆t

3
Ly

)

u∗∗ =

(

I +
b∆t

3
Lx +

b∆t

3
Lz

)

u∗

(

I −
b∆t

3
Lz

)

un+1 =

(

I +
b∆t

3
Lx +

b∆t

3
Ly

)

u∗∗.

(a) Use von Neumann analysis to show that this scheme is conditionally stable. This is
an example of how certain desirable properties of a numerical scheme can be lost when
using fractional stepping.

(b) What temporal accuracy do you expect from this scheme? Explain.

2. Consider

ut = 0.1∆u on Ω = (0, 1)× (0, 1)

∂u

∂~n
= 0 on ∂Ω

u(x, y, 0) = exp
(

−10((x− 0.4)2 + (y − 0.4)2)
)

(a) Write a program to solve this PDE using the Peaceman-Rachford
ADI scheme on a cell-centered grid. Use a direct solver for the
tridiagonal systems. In a cell-centered discretization the solution
is stored at the grid points (xi, yj) = (h(i − 0.5), h(j − 0.5)) for
i, j = 1 . . . N and h = 1/N . This discretization is natural for
handling Neumann boundary conditions, and it is often used to
discretize conservation laws. At the grid points adjacent to the
boundary, the one-dimensional discrete Laplacian for homoge-
neous Neumann boundary conditions is

uxx(x1) ≈
−u1 + u2

h2
.

���� ������ ���� ����

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

������������������

(b) Perform a refinement study to show that your numerical solution is second-order accurate
in space and time (refine time and space simultaneously using ∆t = h) at time t = 1.

(c) Show that the spatial integral of the solution to the PDE does not change in time. That
is

d

dt

∫

Ω

u dV = 0.

1

(d) Show that the solution to the discrete equations satisfies the discrete conservation prop-
erty

∑

i,j

uni,j =
∑

i,j

u0i,j

for all n. Demonstrate this property with your code.

3. The FitzHugh-Nagumo equations

∂v

∂t
= D∆v + (a− v)(v − 1)v − w + I

∂w

∂t
= ǫ(v − γw).

are used in electrophysiology to model the cross membrane electrical potential (voltage) in
cardiac tissue and in neurons. Assuming that the spatial coupling is local and passive results
the term which looks like the diffusion of voltage. The state variables are the voltage v and
the recovery variable w.

(a) Write a program to solve the FitzHugh-Nagumo equations on the unit square with
homogeneous Neumann boundary conditions for v (meaning electrically insulated). Use
a fractional step method to handle the diffusion and reactions separately. Use an ADI
method for the diffusion solve. Describe what ODE solver you used for the reactions
and what fractional stepping your chose.

(b) Use the following parameters a = 0.1, γ = 2, ǫ = 0.005, I = 0, D = 5 ·10−5, for h = 0.01
and initial conditions

v(x, y, 0) = exp
(

−100(x2 + y2)
)

w(x, y, 0) = 0.0.

Note that v = 0, w = 0 is a stable steady state of the system. Call this the rest state.
For these initial conditions the voltage has been raised above rest in the bottom corner
of the domain. Generate a numerical solution up to time t = 300. What time step did
you use and why? Visualize the voltage and describe the solution.

(c) Use the same parameters from part (b), but use the initial conditions

v(x, y, 0) = 1− 2x

w(x, y, 0) = 0.05y,

and run the simulation until time t = 600. Show the voltage at several points in time
(pseudocolor plot, or contour plot, or surface plot z = V (x, y, t)) and describe the
solution.

The dynamics of excitable media is a fascinating subject from both the mathematical
and physiological perspectives. The electrical patterns that you simulated in part (c)
are related to cardiac arrhythmias. For more information see the book Mathematical

Physiology by Keener and Sneyd.

Just for fun, (there is no need to turn this in or even do it) try to find an input current
I(x, y, t) in the form of a short pulse (e.g. I(x, y, t) = f(x, y) exp

(

−κ(t− t2p)
)

) so that
the normal electrical wave from part (b) degenerates into an arrhythmia like that from
part (c). Then try to find a pulse of current that will eliminate the arrhythmia. This
second task may be easier. What to the doctors on TV do?

2

Figure 3.38: Problem description

The following diagram shows the discretization using cell-centered scheme for the case of
𝑁 = 4. The center of the cells moves closer to the physical boundaries of the unit square
as 𝑁 becomes larger.
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1

1

1/4

Physical 

domain

h Numerical 

solution 

domain

solution domain extends from x  h

2
1  h

2

and from y  h

2
1  h

2

x  0.1250.875

y  0.1250.875

h/2

h

Example for  N=4

Figure 3.39: Grid used

The physical domain is always the unit square 𝑥 = 0⋯1, 𝑦 = 0⋯1, but the discrete solution
domain is the one at corners of the red grid above. A small example is used below to help
determine the layout of the operator used in the direct solver. The 2D ADI scheme for the
diffusion problem is

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑥�u∗ = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑦�u𝑛 (1A)

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑦�u𝑛+1 = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑥�u∗

Where 𝐿𝑥 = 𝐿𝑦 =
1
ℎ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 0 1 −2 1
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for the case of homogenous Neumann bound-

ary conditions. The solution given below uses an overall 𝐿 operator which is used by the
direct solver. Another approach would have been to use the above 𝐿𝑥, 𝐿𝑦 operator, and
iterate over each each row and column applying the direct solver each time.

The following derives the overall 𝐿 operator used. Eq. (1A) can be written as

𝑢∗𝑖𝑗 −
𝐷Δ𝑡
2

𝑢∗𝑖−1,𝑗 − 2𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

= 𝑢𝑛𝑖𝑗 +
𝐷Δ𝑡
2

𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1
ℎ2

𝑢𝑛+1𝑖𝑗 −
𝐷Δ𝑡
2

𝑢𝑛+1𝑖,𝑗−1 − 2𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2
= 𝑢𝑛∗𝑖𝑗 +

𝐷Δ𝑡
2

𝑢∗𝑖−1,𝑗 − 2𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

letting 𝑟 = 𝐷Δ𝑡
2ℎ2 and simplifying the above gives

𝑢∗𝑖𝑗(1 + 2𝑟) − 𝑟𝑢∗𝑖−1,𝑗 − 𝑟𝑢∗𝑖+1,𝑗 = 𝑢𝑛𝑖𝑗(1 − 2𝑟) + 𝑟𝑢𝑛𝑖,𝑗−1 + 𝑟𝑢𝑛𝑖,𝑗+1 (1)

𝑢𝑛+1𝑖𝑗 (1 + 2𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗−1 − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 2𝑟) + 𝑟𝑢∗𝑖−1,𝑗 + 𝑟𝑢∗𝑖+1,𝑗 (2)

The above finite difference equations are applied at all the grid points, except for those for
the rows and columns at the boundaries. In order to determine the equations to use for
the boundary grid points, the approximation 𝐿𝑥 ≈

−𝑢1+𝑢2
ℎ2 is used. Similar one is used for

𝐿𝑦. The result of using the above approximation is the following finite difference equations
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used for the boundary grid points

𝑢∗𝑖𝑗 −
𝐷Δ𝑡
2

−𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

= 𝑢𝑛𝑖𝑗 +
𝐷Δ𝑡
2

−𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1
ℎ2

𝑢𝑛+1𝑖𝑗 −
𝐷Δ𝑡
2

−𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2
= 𝑢𝑛∗𝑖𝑗 +

𝐷Δ𝑡
2

−𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

Simplifying the above gives

𝑢∗𝑖𝑗(1 + 𝑟) − 𝑟𝑢∗𝑖+1,𝑗 = 𝑢𝑛𝑖𝑗(1 − 𝑟) + 𝑟𝑢𝑛𝑖,𝑗+1 (1A)

𝑢𝑛+1𝑖𝑗 (1 + 𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 𝑟) + 𝑟𝑢∗𝑖+1,𝑗 (2A)

To help obtain 𝐿, a small example is used to help see the structure of the matrix. This
small example exhibits all the needed information to generate the pattern for 𝐿 from. Using
𝑛𝑥 = 𝑛𝑦 = 4, the grid becomes

U(1,1) U(2,1) U(3,1) U(4,1)

U(1,2) U(2,2) U(3,2) U(4,2)

U(1,3) U(2,3) U(3,3) U(4,3)

U(1,4) U(2,4) U(3,4) U(4,4)

I 
index

J 
index

h

0 1 2 3 4

1

2

3

4

Figure 3.40: Updated Grid
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Eq. (1) and (1A) are now written for all the nodes resulting in the following 16 equations

𝑢∗11(1 + 𝑟) − 𝑟𝑢∗21 = 𝑢𝑛11(1 − 𝑟) + 𝑟𝑢𝑛12
𝑢∗21(1 + 2𝑟) − 𝑟𝑢∗1,1 − 𝑟𝑢∗3,1 = 𝑢𝑛21(1 − 𝑟) + 𝑟𝑢𝑛22
𝑢∗31(1 + 2𝑟) − 𝑟𝑢∗2,1 − 𝑟𝑢∗4,1 = 𝑢𝑛31(1 − 𝑟) + 𝑟𝑢𝑛32

𝑢∗41(1 + 𝑟) − 𝑟𝑢∗31 = 𝑢𝑛41(1 − 𝑟) + 𝑟𝑢𝑛42
𝑢∗12(1 + 𝑟) − 𝑟𝑢∗22 = 𝑢𝑛12(1 − 2𝑟) + 𝑟𝑢𝑛1,1 + 𝑟𝑢𝑛1,3

𝑢∗22(1 + 2𝑟) − 𝑟𝑢∗1,2 − 𝑟𝑢∗3,2 = 𝑢𝑛22(1 − 2𝑟) + 𝑟𝑢𝑛2,1 + 𝑟𝑢𝑛2,3
𝑢∗32(1 + 2𝑟) − 𝑟𝑢∗2,2 − 𝑟𝑢∗4,2 = 𝑢𝑛32(1 − 2𝑟) + 𝑟𝑢𝑛3,1 + 𝑟𝑢𝑛3,3

𝑢∗42(1 + 𝑟) − 𝑟𝑢∗32 = 𝑢𝑛42(1 − 2𝑟) + 𝑟𝑢𝑛4,1 + 𝑟𝑢𝑛4,3
𝑢∗13(1 + 𝑟) − 𝑟𝑢∗23 = 𝑢𝑛13(1 − 2𝑟) + 𝑟𝑢𝑛1,2 + 𝑟𝑢𝑛1,4

𝑢∗23(1 + 2𝑟) − 𝑟𝑢∗1,3 − 𝑟𝑢∗3,3 = 𝑢𝑛23(1 − 2𝑟) + 𝑟𝑢𝑛2,2 + 𝑟𝑢𝑛2,4
𝑢∗33(1 + 2𝑟) − 𝑟𝑢∗2,3 − 𝑟𝑢∗4,3 = 𝑢𝑛33(1 − 2𝑟) + 𝑟𝑢𝑛3,2 + 𝑟𝑢𝑛3,4

𝑢∗43(1 + 𝑟) − 𝑟𝑢∗33 = 𝑢𝑛43(1 − 2𝑟) + 𝑟𝑢𝑛4,2 + 𝑟𝑢𝑛4,4
𝑢∗14(1 + 𝑟) − 𝑟𝑢∗24 = 𝑢𝑛14(1 − 𝑟) + 𝑟𝑢𝑛13

𝑢∗24(1 + 2𝑟) − 𝑟𝑢∗1,4 − 𝑟𝑢∗3,4 = 𝑢𝑛24(1 − 𝑟) + 𝑟𝑢𝑛23
𝑢∗34(1 + 2𝑟) − 𝑟𝑢∗2,4 − 𝑟𝑢∗4,4 = 𝑢𝑛34(1 − 𝑟) + 𝑟𝑢𝑛33

𝑢∗44(1 + 𝑟) − 𝑟𝑢∗34 = 𝑢𝑛44(1 − 𝑟) + 𝑟𝑢𝑛43

In matrix form, the above gives 𝐴𝑢∗ = 𝑏 which is then used to solve for 𝑢∗. The matrix 𝐴
is now written out. To save space and to allow the matrix to fit on the page, the following
terms are used

𝑟 =
𝐷Δ𝑡
2ℎ2

𝛼 ≡ 1 + 𝑟
𝛽 ≡ 1 + 2𝑟
𝛾 ≡ 1 − 𝑟
𝜃 ≡ 1 − 2𝑟
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A

�������������������������������������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x
�⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢∗11
𝑢∗21
𝑢∗31
𝑢∗41
𝑢∗12
𝑢∗22
𝑢∗32
𝑢∗4,2
𝑢∗13
𝑢∗2,3
𝑢∗3,3
𝑢∗4,3
𝑢∗14
𝑢∗2,4
𝑢∗3,4
𝑢∗4,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

b

�����������������������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0 0
0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0
0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0
0 0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0
𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0 0
0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0
0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0
0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0
0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0
0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0
0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0
0 0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟
0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0 0
0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0
0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0
0 0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛11
𝑢𝑛21
𝑢𝑛31
𝑢𝑛41
𝑢𝑛12
𝑢𝑛22
𝑢𝑛32
𝑢𝑛4,2
𝑢𝑛13
𝑢𝑛2,3
𝑢𝑛3,3
𝑢𝑛4,3
𝑢𝑛14
𝑢𝑛2,4
𝑢𝑛3,4
𝑢𝑛4,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

A sparse direct solver can now be used to solve for 𝑢∗.

Starting the second ADI step to find 𝑢𝑛+1, the process is similar to the one shown above,
but the equations are written column-wise instead of row-wise as was the case earlier. For
non-boundary grid points the following equation is used

𝑢𝑛+1𝑖𝑗 (1 + 2𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗−1 − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 2𝑟) + 𝑟𝑢∗𝑖−1,𝑗 + 𝑟𝑢∗𝑖+1,𝑗

And for the boundary grid points the following equation is used

𝑢𝑛+1𝑖𝑗 (1 + 𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 𝑟) + 𝑟𝑢∗𝑖+1,𝑗
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Applying the above to each grid point results in the the following 16 equations

𝑢𝑛+111 (1 + 𝑟) − 𝑟𝑢𝑛+112 = 𝑢∗11(1 − 𝑟) + 𝑟𝑢∗21
𝑢𝑛+121 (1 + 𝑟) − 𝑟𝑢𝑛+122 = 𝑢∗21(1 − 2𝑟) + 𝑟𝑢𝑛1,1 + 𝑟𝑢𝑛3,1
𝑢𝑛+131 (1 + 𝑟) − 𝑟𝑢𝑛+132 = 𝑢∗31(1 − 2𝑟) + 𝑟𝑢𝑛2,1 + 𝑟𝑢𝑛4,1
𝑢𝑛+141 (1 + 𝑟) − 𝑟𝑢𝑛+142 = 𝑢∗41(1 − 𝑟) + 𝑟𝑢∗31

𝑢𝑛+112 (1 + 2𝑟) − 𝑟𝑢𝑛+11,1 − 𝑟𝑢𝑛+11,3 = 𝑢∗12(1 − 𝑟) + 𝑟𝑢∗22
𝑢𝑛+122 (1 + 2𝑟) − 𝑟𝑢𝑛+12,1 − 𝑟𝑢𝑛+12,3 = 𝑢∗22(1 − 2𝑟) + 𝑟𝑢𝑛1,2 + 𝑟𝑢𝑛3,2
𝑢∗32(1 + 2𝑟) − 𝑟𝑢∗3,1 − 𝑟𝑢∗3,3 = 𝑢𝑛32(1 − 2𝑟) + 𝑟𝑢𝑛2,2 + 𝑟𝑢𝑛4,2
𝑢∗42(1 + 2𝑟) − 𝑟𝑢∗4,1 − 𝑟𝑢∗4,3 = 𝑢𝑛42(1 − 𝑟) + 𝑟𝑢𝑛32
𝑢∗13(1 + 2𝑟) − 𝑟𝑢∗1,2 − 𝑟𝑢∗1,4 = 𝑢𝑛13(1 − 𝑟) + 𝑟𝑢𝑛23
𝑢∗23(1 + 2𝑟) − 𝑟𝑢∗2,2 − 𝑟𝑢∗2,4 = 𝑢𝑛23(1 − 2𝑟) + 𝑟𝑢𝑛1,3 + 𝑟𝑢𝑛3,3
𝑢∗33(1 + 2𝑟) − 𝑟𝑢∗3,2 − 𝑟𝑢∗3,4 = 𝑢𝑛33(1 − 2𝑟) + 𝑟𝑢𝑛2,3 + 𝑟𝑢𝑛4,3
𝑢∗43(1 + 2𝑟) − 𝑟𝑢∗4,2 − 𝑟𝑢∗4,4 = 𝑢𝑛43(1 − 𝑟) + 𝑟𝑢𝑛33

𝑢∗14(1 + 𝑟) − 𝑟𝑢∗13 = 𝑢𝑛14(1 − 𝑟) + 𝑟𝑢𝑛24
𝑢∗24(1 + 𝑟) − 𝑟𝑢∗23 = 𝑢𝑛24(1 − 2𝑟) + 𝑟𝑢𝑛1,4 + 𝑟𝑢𝑛3,4
𝑢∗34(1 + 𝑟) − 𝑟𝑢∗33 = 𝑢𝑛34(1 − 2𝑟) + 𝑟𝑢𝑛2,4 + 𝑟𝑢𝑛4,4
𝑢∗44(1 + 𝑟) − 𝑟𝑢∗43 = 𝑢𝑛44(1 − 𝑟) + 𝑟𝑢𝑛34

The above equations are now written as 𝐴𝑢 = 𝑏 but the unknowns are listed column-wise
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in order to keep the tridiagonal form. The resulting matrix 𝐴 is the following

A

�������������������������������������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x
�⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛+111

𝑢𝑛+112

𝑢𝑛+113

𝑢𝑛+114

𝑢𝑛+121

𝑢𝑛+122

𝑢𝑛+123

𝑢𝑛+12,4

𝑢𝑛+131

𝑢𝑛+132

𝑢𝑛+13,3

𝑢𝑛+13,4

𝑢𝑛+141

𝑢𝑛+14,2

𝑢𝑛+14,3

𝑢𝑛+14,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

b

�����������������������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0 0
0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0
0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0
0 0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0
𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0 0
0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0
0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0
0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0
0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0
0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0
0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0
0 0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟
0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0 0
0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0
0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0
0 0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢∗11
𝑢∗12
𝑢∗13
𝑢∗14
𝑢∗21
𝑢∗22
𝑢∗23
𝑢∗2,4
𝑢∗31
𝑢∗32
𝑢∗3,3
𝑢∗3,4
𝑢∗41
𝑢∗4,2
𝑢∗4,3
𝑢∗4,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Now 𝑢𝑛+1 is solved for using a direct sparse solver. The above 2 steps are repeated for each
one time step. One can see that the 𝐴 matrix is the same for both solving 𝐴𝑢∗ = 𝑏 and
𝐴𝑢𝑛+1 = 𝑏. Therefore, in the implementation only one 𝐴 and one 𝐵 matrix was allocated
initially and used for solving for 𝑢∗ and 𝑢𝑛+1. Both matrices (𝐴 and 𝐵) are created as sparse
matrices to save storage. The 𝐴 matrix represent the implicit part of the scheme, while the
𝐵 matrix for the explicit part.

Since the edges of the domain are insulated, no concentration will diffuse to the outside.
Therefore the result of diffusion will be that the concentration will diffuse internally and
will spread out. Therefore, at steady state as 𝑡 → ∞ the solution is known and given by

𝑢�𝑥, 𝑦,∞� =

1− ℎ
2

�
ℎ/2

1− ℎ
2

�
ℎ/2

𝑢�𝑥, 𝑦, 0�𝑑𝑥𝑑𝑦

The following plot shows the solution at 𝑡 = 1 second with the steady state solution displayed
as the blue horizontal flat surface superimposed on the same plot. The steady state solution
is what would result if run time was made to be very long.
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Steady 

state 

solution

Initial 

conditions

time=0.0
time=0.03125 time=0.0625

time=0.09375 time=0.125 time=0.15625

time=0.1675

0
time=0.9375

time=1 

second

Solution to problem 2, with D=0.1, time step=0.03125, space step = 0.03125, N=32

Figure 3.41: steady state solution

To verify that the numerical solution converges to the steady state solution, the plot below
was generate which represents the solution of the above problem taken at 𝑡 = 4 seconds.
The gap in the diagram below is the difference between the steady state solution and the
solution at 𝑡 = 4 seconds. This gap became smaller the longer the time to run is made
(keeping everything else fixed).
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Numerical solution at t=4

Steady state solution

Figure 3.42: steady state solution

3.3.3.1 Part(b)

Refinement study was carried out to show that the 2D ADI scheme is a second order
accurate in time and in space. The method used successive errors between numerical
solutions. The algorithm of the refinement study is given below at the end of this part of
the problem.

Recalling that In HW1, the spatial grid was divided by half each time. However, in this
problem, since cell centered grid is used, ℎ and Δ𝑡 were divided by 3 each time. This was
done so that the new grid will contain some grid locations that are still aligned in the same
physical location as the previous step. The error between both solutions is obtained by
taking the difference of only these points that are aligned. These points will be the grid
point of the coarse grid. The following diagram illustrate this for the case of 𝑛 = 3 and
𝑛 = 9

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

.

Initial grid, n=3
Second grid (in red), n=9

Showing relation between successive grids

Error is measured by comparing solution at only the points that are aligned 

across both grid

Figure 3.43: case of 𝑛 = 3 and 𝑛 = 9

The result of the refinement study shows second order accuracy as the error ratio came out to be 9.

Below is the result obtained. In addition to the ratio table, it can be seen that the slope of
the line in the log plot is 2, implying the scheme is second order accurate.
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              #              N           delt              h                      |u|                mean(u)            |e|                    ratio           |u steady|

              2              9         0.11111       0.111111       0.293146       0.290318   1.19490e-002       1.000000       0.289080

              3             27        0.03704       0.037037       0.293146       0.289369   1.23779e-003       9.653448       0.289080

              4             81        0.01235       0.012346       0.293146       0.289262   1.36668e-004       9.056912       0.289080

              5            243       0.00412       0.004115       0.293146       0.289251   1.51752e-005       9.006018       0.289080

              6            729       0.00137       0.001372       0.293146       0.289249   1.68601e-006       9.000673       0.289080

EDU>> 

Refinement study result, HW 2, problem 2, showing second order accuracy

Figure 3.44: refinement study plot

3.3.3.2 Refinement algorithm

The following is the general outline of the algorithm used in the refinement study. The
important part was to make sure when finding the error between the current and last
solution, is to use the same physical locations that are aligned between both grids, and to
use the coarse grid spacing when determining the grid norm of the error grid.

last_error = 0
h = 1/3
last_h = h
delt = h
last_u = Solve_2D_ADI(h,delt)

LOOP
h = h/3
delt = h

current_u = Solve_2D_ADI(h,delt)

-- now extract from current_u only locations that aligned with last_u grid
current_u_mapped = extracted_u(last_u)

error = last_h * norm(last_u - current_u_mapped,2)

ratio = last_error/error
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last_h = h
last_error = error

loop_counter++

IF loop_counter > some_maximum THEN -- normally 5,6 iterations is enough
EXIT LOOP

END IF
END LOOP

3.3.3.3 Part(c)

The spatial integral represents the total concentration in the domain. Since the boundary
are insulated, matter will only diffuse internally and no loss will occur to the outside. Hence,
from the conservation of mass principle, initial concentration will remain the same, but
will spread out to the mean in space. Therefore, it is known physically total concentration
will not change with time

𝑑
𝑑𝑡�

Ω

𝑢�𝑥, 𝑦, 𝑡�𝑑𝐴 = 0

The problem is asking to show this mathematically.

Since 𝑢𝑡 = 𝐷Δ𝑢, then

𝐼 =
𝑑
𝑑𝑡�

Ω

𝑢�𝑥, 𝑦, 𝑡�𝑑𝐴

= 𝐷�
Ω

Δ𝑢 𝑑𝐴

But Δ𝑢 = 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 , hence

�
1
𝐷�
𝐼 =

1

�
𝑦=0

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

𝑑𝑥𝑑𝑦

To show that 𝐼 = 0, the above is written as

�
1
𝐷�
𝐼 =

1

�
𝑦=0

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥𝑑𝑦 +
1

�
𝑦=0

1

�
𝑥=0

𝜕2𝑢
𝜕𝑦2

𝑑𝑥𝑑𝑦

=
1

�
𝑦=0

⎛
⎜⎜⎜⎜⎜⎝

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠𝑑𝑦 +

1

�
𝑥=0

⎛
⎜⎜⎜⎜⎜⎜⎝

1

�
𝑦=0

𝜕2𝑢
𝜕𝑦2

𝑑𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠𝑑𝑥 (1)

By applying the fundamental theory of calculus (or using integration by parts) results in

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥 =
𝜕𝑢
𝜕𝑥�

𝑥=1
−
𝜕𝑢
𝜕𝑥�

𝑥=0

However 𝜕𝑢
𝜕𝑥 �𝑥=1

is the normal derivative at the right boundary, and 𝜕𝑢
𝜕𝑥 �𝑥=0

is the normal

derivative at the left boundaries. These are both zero due to the homogenous Neumann
boundary conditions given in the problem statement. therefore

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥 = 0 (2)

Similar argument shows that

1

�
𝑦=0

𝜕2𝑢
𝜕𝑦2

𝑑𝑦 = 0 (3)
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Substituting Eqs. (2) and (3) into (1) gives

�
1
𝐷�
𝐼 = 0

Therefore
𝑑
𝑑𝑡�

Ω

𝑢�𝑥, 𝑦, 𝑡�𝑑𝐴 = 0

3.3.3.4 Part(d)

The finite difference equations for the 2D ADI scheme is given by

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑥�u∗ = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑦�u𝑛 (1)

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑦�u𝑛+1 = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑥�u∗ (2)

Summing the equations over all entries in the 2D solution domain gives

�
𝑖
�
𝑗
�𝐼 −

𝐷Δ𝑡
2
𝐿𝑥�𝑢∗ =�

𝑗
�
𝑖
�𝐼 +

𝐷Δ𝑡
2
𝐿𝑦�𝑢𝑛 (1A)

�
𝑗
�
𝑖
�𝐼 −

𝐷Δ𝑡
2
𝐿𝑦�𝑢𝑛+1 =�

𝑖
�
𝑗
�𝐼 +

𝐷Δ𝑡
2
𝐿𝑥�𝑢∗ (2A)

In the above 𝑖 represents the row number and 𝑗 represents the column number of the
solution grid 𝑢. The above two equations can be rewritten as

�
𝑖
�
𝑗
𝑢∗𝑖𝑗 −

𝐷Δ𝑡
2
�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 =�

𝑗
�
𝑖
𝑢𝑛𝑖𝑗 +

𝐷Δ𝑡
2
�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛𝑖𝑗 (1B)

�
𝑗
�
𝑖
𝑢𝑛+1𝑖𝑗 −

𝐷Δ𝑡
2
�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛+1𝑖𝑗 =�

𝑖
�
𝑗
𝑢∗𝑖𝑗 +

𝐷Δ𝑡
2
�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 (2B)

Looking at the term �
𝑖
∑
𝑗 𝐿𝑥𝑢

∗
𝑖𝑗 from Eq. (1B) and rewriting this as follows

�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 =�

𝑖

⎛
⎜⎜⎜⎜⎝�
𝑗
𝐿𝑥𝑢∗𝑖𝑗

⎞
⎟⎟⎟⎟⎠

= �
𝑖

𝐿𝑥 operator applied to 𝑖𝑡ℎrow

�����������⎛
⎜⎜⎜⎜⎝�
𝑗
𝐿𝑥𝑢∗𝑖𝑗

⎞
⎟⎟⎟⎟⎠

In other words,∑𝑗 𝐿𝑥𝑢
∗
𝑖𝑗 is the result of applying 𝐿𝑥 to each entry in the 𝑖𝑡ℎ row, then summing

the result.

Therefore, 𝐿𝑥 is applied to entry 𝑢∗(𝑖, 1) then to entry 𝑢∗(𝑖, 2) and so on, until the last entry
in the row which is 𝑢∗(𝑖, 𝑛).

How to find the result of applying 𝐿𝑥 on each row? Given that 𝐿𝑥 for 1D with homogenous
Neumann boundary conditions is

𝐿𝑥 =
1
ℎ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 0 1 −2 1
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Then applying the operator to each entry in the 𝑖𝑡ℎ row gives the following

⎛
⎜⎜⎜⎜⎝�
𝑗
𝐿𝑥𝑢∗𝑖𝑗

⎞
⎟⎟⎟⎟⎠ =

𝑗 = 1 𝑗 = 2 𝑗 = 3 4 5 6 7 ⋯ 𝑛 − 2 𝑛 − 1 𝑗 = 𝑛
−𝑢𝑖1 +𝑢𝑖2
+𝑢𝑖1 −2𝑢𝑖2 +𝑢𝑖3

+𝑢𝑖2 −2𝑢𝑖3 +𝑢𝑖4
+𝑢𝑖3 −2𝑢𝑖4 +𝑢𝑖5

+𝑢𝑖4 −2𝑢𝑖5 +𝑢𝑖6
+𝑢𝑖5 −2𝑢𝑖6 +𝑢𝑖7

⋱
+𝑢𝑖,𝑛−3 −2𝑢𝑖,𝑛−2 +𝑢𝑖,𝑛−1

+𝑢𝑖,𝑛−2 −2𝑢𝑖,𝑛−1 +𝑢𝑖,𝑛
+𝑢𝑖,𝑛−1 −𝑢𝑖,𝑛

In the above, 𝐿𝑥 was applied directly on the 𝑖𝑡ℎ row. The first line above shows the column
index 𝑗 which goes from 1⋯𝑛. The following diagram is made to help illustrate the above
process, showing how 𝐿𝑥 and 𝐿𝑦 are applied to the solution in the 𝑢 matrix.

x

y

...

J (column index)

I (row index)

Apply Lx on a row

x

y

...

J (column index)

I (row index)

Apply Ly on a column

Graphical illustration applying 1D laplacian for ADI scheme

Figure 3.45: Illustrating the above process

One can see now that thesum is zero due to terms cancellation. The sum is zero in this
case due to the homogenous Neumann boundary conditions which caused the first and
last entries to cancel out.

Using the same procedure, then applying 𝐿𝑦 to each column of 𝑢𝑛 will also result in zero
sum, since the north and south boundaries also have homogenous Neumann boundary
conditions. Since boundary conditions do not change going from 𝑢∗ to 𝑢𝑛+1, the same result
is obtained when applying 𝐿𝑦 operator to each column of 𝑢𝑛+1. From the above discussion,
it is found that

�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 = 0

�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛𝑖𝑗 = 0

�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛+1𝑖𝑗 = 0

�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 = 0

Substituting the above 4 equations back into Eqs. (1B),(2B) gives

�
𝑖
�
𝑗
𝑢∗𝑖𝑗 =�

𝑗
�
𝑖
𝑢𝑛𝑖𝑗 (1C)

�
𝑗
�
𝑖
𝑢𝑛+1𝑖𝑗 =�

𝑖
�
𝑗
𝑢∗𝑖𝑗 (2C)
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Substituting Eq. (1C) into (2C) gives

�
𝑖
𝑗𝑢𝑖𝑗𝑛 + 1 = �

𝑖
𝑗𝑢𝑖𝑗𝑛

Since the above is valid for any 𝑛 (boundary conditions do not change with time) then
setting 𝑛 = 0 in the above results in

�
𝑖𝑗
𝑢1𝑖𝑗 =�

𝑖𝑗
𝑢0𝑖𝑗

Similarly, setting 𝑛 = 1 results in
�
𝑖𝑗
𝑢2𝑖𝑗 =�

𝑖𝑗
𝑢1𝑖𝑗

and so on all the way any 𝑛 value. Hence in general the following result is obtained

�
𝑖𝑗
𝑢𝑛𝑖𝑗 =�

𝑖𝑗
𝑢𝑛−1𝑖𝑗

By repeated back substitution on the RHS, the following is obtained

�
𝑖𝑗
𝑢𝑛𝑖𝑗 =�

𝑖𝑗
𝑢0𝑖𝑗

Therefore, the discrete conservation property is satisfied.

3.3.3.4.1 Verification in code To verify part(d) in the code, a table was generated
during one run, where ∑𝑖𝑗 𝑢

𝑛
𝑖𝑗 was calculated at the end of each time step using the Matlab

command sum(sum(u)), and this value was printed at each time step. The result shows

that this value is constant implying the discrete conservation property is satisfied. Here
is the result below

current_time sum(U(current_time)
0.00000 1897.85094
0.01235 1897.85094
0.02469 1897.85094
0.03704 1897.85094
0.04938 1897.85094
0.06173 1897.85094
0.07407 1897.85094
0.08642 1897.85094
0.09877 1897.85094
0.11111 1897.85094

....
0.92593 1897.85094
0.93827 1897.85094
0.95062 1897.85094
0.96296 1897.85094
0.97531 1897.85094
0.98765 1897.85094
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3.3.4 Problem 3
(d) Show that the solution to the discrete equations satisfies the discrete conservation prop-

erty
∑

i,j

uni,j =
∑

i,j

u0i,j

for all n. Demonstrate this property with your code.

3. The FitzHugh-Nagumo equations

∂v

∂t
= D∆v + (a− v)(v − 1)v − w + I

∂w

∂t
= ǫ(v − γw).

are used in electrophysiology to model the cross membrane electrical potential (voltage) in
cardiac tissue and in neurons. Assuming that the spatial coupling is local and passive results
the term which looks like the diffusion of voltage. The state variables are the voltage v and
the recovery variable w.

(a) Write a program to solve the FitzHugh-Nagumo equations on the unit square with
homogeneous Neumann boundary conditions for v (meaning electrically insulated). Use
a fractional step method to handle the diffusion and reactions separately. Use an ADI
method for the diffusion solve. Describe what ODE solver you used for the reactions
and what fractional stepping your chose.

(b) Use the following parameters a = 0.1, γ = 2, ǫ = 0.005, I = 0, D = 5 ·10−5, for h = 0.01
and initial conditions

v(x, y, 0) = exp
(

−100(x2 + y2)
)

w(x, y, 0) = 0.0.

Note that v = 0, w = 0 is a stable steady state of the system. Call this the rest state.
For these initial conditions the voltage has been raised above rest in the bottom corner
of the domain. Generate a numerical solution up to time t = 300. What time step did
you use and why? Visualize the voltage and describe the solution.

(c) Use the same parameters from part (b), but use the initial conditions

v(x, y, 0) = 1− 2x

w(x, y, 0) = 0.05y,

and run the simulation until time t = 600. Show the voltage at several points in time
(pseudocolor plot, or contour plot, or surface plot z = V (x, y, t)) and describe the
solution.

The dynamics of excitable media is a fascinating subject from both the mathematical
and physiological perspectives. The electrical patterns that you simulated in part (c)
are related to cardiac arrhythmias. For more information see the book Mathematical

Physiology by Keener and Sneyd.

Just for fun, (there is no need to turn this in or even do it) try to find an input current
I(x, y, t) in the form of a short pulse (e.g. I(x, y, t) = f(x, y) exp

(

−κ(t− t2p)
)

) so that
the normal electrical wave from part (b) degenerates into an arrhythmia like that from
part (c). Then try to find a pulse of current that will eliminate the arrhythmia. This
second task may be easier. What to the doctors on TV do?

2Figure 3.46: Problem statement

3.3.4.1 Part(a)

The equations to solve are the following

𝜕𝑣
𝜕𝑡

= 𝐷Δ𝑣 + (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼

𝜕𝑤
𝜕𝑡

= 𝜖�𝑣 − 𝛾𝑤�

The first PDE 𝜕𝑣
𝜕𝑡 = 𝐷Δ𝑣 + (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼 was solved by the splitting method by

solving the diffusion equation𝜕𝑣𝜕𝑡 = 𝐷Δ𝑣 using ADI method separately and then by solving

the reaction (non-linear) equation 𝜕𝑣
𝜕𝑡 = (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼 along with 𝜕𝑤

𝜕𝑡 = 𝜖�𝑣 − 𝛾𝑤�
separately. The following is a coupled first order non-linear differential equations system
(the reaction ODE is nonlinear in votage 𝑣)
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𝑑𝑣
𝑑𝑡
= (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼

𝑑𝑤
𝑑𝑡

= 𝜖�𝑣 − 𝛾𝑤�

The above system was solved using Runge-Kutta order 4. The following diagram illustrates
the time line for one full splitting step.

tn1
tn

Diffusion (ADI) Diffusion (ADI)

t

Reaction (RK-4)

t t t

Reaction (RK-4)

tn1

Splitting method time-line for solving the diffusion-reaction PDE on 2D

Figure 3.47: time line for one full splitting step

ADI was described in problem 2, and the same function was reused for this problem for
the diffusion solver. For solving the reaction system of equations, RK4 was implemented
as follows. define

𝑓(𝑣, 𝑤) = (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼

and also define
𝑔(𝑣, 𝑤) = 𝜖�𝑣 − 𝛾𝑤�

Therefore, the RK4 solver for the above system becomes

𝑣𝑛+1 = 𝑣𝑛 +
1
6
(𝑚1 + 2𝑚2 + 2𝑚3 + 𝑚4)

𝑤𝑛+1 = 𝑤𝑛 +
1
6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

Where

𝑚1 = Δ𝑡𝑓(𝑣, 𝑤)

𝑚2 = Δ𝑡𝑓�𝑣 +
1
2
𝑚1, 𝑤 +

1
2
𝑘1�

𝑚3 = Δ𝑡𝑓�𝑣 +
1
2
𝑚2, 𝑤 +

1
2
𝑘2�

𝑚4 = Δ𝑡𝑓(𝑣 + 𝑚3, 𝑤 + 𝑘3)

And

𝑘1 = Δ𝑡𝑔(𝑣, 𝑤)

𝑘2 = Δ𝑡𝑔�𝑣 +
1
2
𝑚1, 𝑤 +

1
2
𝑘1�

𝑘3 = Δ𝑡𝑔�𝑣 +
1
2
𝑚2, 𝑤 +

1
2
𝑘2�

𝑘4 = Δ𝑡𝑔(𝑣 + 𝑚3, 𝑤 + 𝑘3)
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Another point regarding the splitting method. It was required to decide which splitting method to use.
Should a simple splitting, Strang splitting or the 2-step splitting method which was de-
scribed in class be used? To make sure the second order accuracy of ADI 2D in time is
preserved, simple splitting was not used (unless the operators commute, this would have
caused the scheme to become first order accurate in time). Instead, the two step splitting
method was used, as it was found to be simpler than Strang method to implement.

3.3.4.2 Part(b)

The program written in part(a) was run using the parameters given. The time step used
was set to be the same as the space step. This time step is recommended for the ADI
The diffusion solver as it is a second order accurate in time and space. This is the fast
system (the stiff part of the system), hence making the time step larger than the space
step would not give accurate results, even though it will remain a stable scheme. Keeping
the time step the same as the space step seemed to be a good choice, as it kept the
time resolution and the space resolution the same. The same time step was then used for
the reaction solver, as was required by the splitting method to keep each step the same
length.

The following shows the visualization of the voltage solution for up to 300 seconds as
required using the surf() command.
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Time=0 sec Time=16 sec
Time=32 sec

Time=48 sec Time=68 sec Time=92 sec

Time=150 sec
Time=180 sec

Time=200 sec

Time=220 sec
Time=242 sec

Time=300 sec

Result for Part(b), HW2.  FitzHugh-Nagumo equations simulation

Figure 3.48: visualization of the voltage solution for up to 300 seconds

The solution 𝑣(𝑡) started from a peak value at one corner of the square. Shortly after, at
about 50 seconds, a wave started to form, the wave front became large and it spread out
and advanced with time. When the pulse reached the boundary on the other corner, it
started to diffuse and by 𝑡 = 300 seconds, the pulse has completely disappeared.

3.3.4.3 Part(c)

The following is the result of the simulation for this part.
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t=0 seconds
t=10 seconds

t=30 seconds

t=50 seconds t=86 seconds t=106 seconds

t=138 seconds
t=170 seconds

t=206 seconds

t=250 seconds t=284 seconds t=300 seconds

Result of part c problem 3. First 300 seconds

Figure 3.49: simulation of part c
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t=330 seconds
t=376 seconds

t=420 seconds

t=462 seconds t=506 seconds
t=550 seconds

t=574 seconds t=584 seconds t=600 seconds

Result of part c problem 3. from t=300 to t=600 seconds

Figure 3.50: Up to 300 seconds

In this simulation, the pulse that appeared after about 50 second, quickly became a spiral,
and did not appear to diffuse as was the case in part (d). At the end of the simulation, the
pulse was continuing to spiral in the same rotation direction it started with. The above
phenomena seem to be termed an arrhythmia pulse.

One common theme between part(c) and part (b), is the formation of a wave like motion
that traveles across the domain. The difference was in the shape of the pulse, the direction
it moves to and the amount of diffusion that occured.

3.3.5 Appendix

3.3.5.1 Problem 1 appendix

3.3.5.1.1 Derivation of ADI equations for 2D and 3D for the diffusion problem
Given 𝑢𝑡 = Δ𝑢 (𝐷 is assumed 1), then in 2D forward Euler (explicit) gives

𝑢𝑛+1𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘

= �
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗

While C-N method gives

𝑢𝑛+1𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘

=
1
2

⎡
⎢⎢⎢⎢⎢⎣�
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2 �

𝑛+1

𝑖𝑗
+ �

𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗

⎤
⎥⎥⎥⎥⎥⎦

However, in ADI, the time step itself is divided by half, and in the first half step, one of
the spatial second derivatives is implicit while and the other spatial second derivative is
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explicit. In the second half step, these are reversed.

𝑢
𝑛+ 1

2
𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘/2

=

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
2

𝑖𝑗
+

explicit

�������
�
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗

𝑢𝑛+1𝑖𝑗 − 𝑢
𝑛+ 1

2
𝑖𝑗

𝑘/2
=

explicit

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
2

𝑖𝑗
+

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������
�
𝜕2𝑢
𝜕𝑦2 �

𝑛+1

𝑖𝑗

Writing 𝜕2𝑢
𝜕𝑥2 = 𝐿𝑥 =

𝑢𝑖−1,𝑗−2𝑢𝑖𝑗+𝑢𝑖+1,𝑗
ℎ2 and 𝜕2𝑢

𝜕𝑦2 = 𝐿𝑦 =
𝑢𝑖,𝑗−1−2𝑢𝑖𝑗+𝑢𝑖,𝑗+1

ℎ2 , the above 2 equations become

𝑢
𝑛+ 1

2
𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘/2

=
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2
+
𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1

ℎ2

𝑢𝑛+1𝑖𝑗 − 𝑢
𝑛+ 1

2
𝑖𝑗

𝑘/2
=
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2
+
𝑢𝑛+1𝑖,𝑗−1 − 2𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2

Moving all implicit terms to the LHS and rearranging results in

𝑢
𝑛+ 1

2
𝑖𝑗 −

𝑘
2
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2
= 𝑢𝑛𝑖𝑗 +

𝑘
2
𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1

ℎ2

𝑢𝑛+1𝑖𝑗 −
𝑘
2
𝑢𝑛+1𝑖,𝑗−1 − 2𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2
= 𝑢

𝑛+ 1
2

𝑖𝑗 +
𝑘
2
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2

Hence, in operator form the above becomes

�𝐼 −
𝑘
2
𝐿𝑥�𝑢

𝑛+ 1
2

𝑖𝑗 = �𝐼 +
𝑘
2
𝐿𝑦�𝑢𝑛𝑖𝑗

�𝐼 −
𝑘
2
𝐿𝑦�𝑢𝑛+1𝑖𝑗 = �𝐼 +

𝑘
2
𝐿𝑥�𝑢

𝑛+ 1
2

𝑖𝑗

In the class notes, 𝑢∗𝑖𝑗 was used to represent 𝑢
𝑛+ 1

2
𝑖𝑗 but they are the same. The above is the

ADI scheme for 2D. The 3D equations are now derived. Since three different directions
exist now, the time step is divided into 3. This results in

𝑢
𝑛+ 1

3
𝑖𝑗 − 𝑢𝑛𝑖𝑗
Δ𝑡/3

=

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
3

𝑖𝑗
+

explicit

�������
�
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗
+

explicit

�������
�
𝜕2𝑢
𝜕𝑧2 �

𝑛

𝑖𝑗

𝑢
𝑛+ 2

3
𝑖𝑗 − 𝑢

𝑛+ 1
3

𝑖𝑗

Δ𝑡/3
=

explicit

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
3

𝑖𝑗
+

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������

�
𝜕2𝑢
𝜕𝑦2 �

𝑛+ 2
3

𝑖𝑗
+

explicit

�����������

�
𝜕2𝑢
𝜕𝑧2 �

𝑛+ 1
3

𝑖𝑗

𝑢𝑛+1𝑖𝑗 − 𝑢
𝑛+ 2

3
𝑖𝑗

Δ𝑡/3
=

explicit

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 2
3

𝑖𝑗
+

explicit

�����������

�
𝜕2𝑢
𝜕𝑦2 �

𝑛+ 2
3

𝑖𝑗
+

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������
�
𝜕2𝑢
𝜕𝑧2 �

𝑛+1

𝑖𝑗

Similar to what done in the 2D case, the above are rearranged resulting in

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑥�u

𝑛+ 1
3 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑦 +

𝐷Δ𝑡
3
𝐿𝑧�u𝑛 (1)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑦�u

𝑛+ 2
3 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑧�u

𝑛+ 1
3 (2)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑧�u𝑛+1 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑦�u

𝑛+ 2
3 (3)
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3.3.6 Matlab Source code developed for this HW

3.3.6.1 nma_math228b_HW2_prob2.m� �
function nma_math228b_HW2_prob2
% This function implements refinement study for HW2
% problem 2, Math 228B, Winter 2011, UC Davis
%
%
% By Nasser M. Abbasi

% set up initialization for the error table, such as headings
% and formating

close all;

% for formating of error table
titles = {'#','N','delt','h','|u|','mean(u)','|e|','ratio'};
fms = {'d','d','.5f','.5f','.5f','.5f','.4e','.5f'};
wid = 13;
fileID = 1;

% use 8 runs, and allocate the table to store the error and ratios
N=5;
table=zeros(N,8); % #, t, h, |u|,|u-u_last|, ratio, N, mean(u), |exact|

% Initialize space and time steps.
grid_size = 9;
h1 = figure();
D = 0.1; %diffusion constant
time_to_run = 1; % 1 second

for n = 1:N

% Simulatiously divide space step and time step.

grid_size = grid_size * 3;
h = 1/grid_size;
k = h;

[u,u_steady_state] = solve_2D_diffusion(grid_size,h,k,D,time_to_run);

% the numerical solution now is stored in u. Make
% a new entry in the error table for this iteration.
table(n,1) = n;
table(n,7) = grid_size;
table(n,8) = mean(mean(u));

table(n,2) = k;
table(n,3) = h;

table(n,4) = h*norm(u(:),2); % use grid 2-norm

if n>1
table(n,5) = abs(table(n-1,4)-table(n,4)); %e
%table(n,5) = h*norm( u-u_steady_state,2); %e

if n==2
table(n,6)=1;

else
table(n,6) = table(n-1,5)/table(n,5); %e ratio

end

[hd,bdy]=nma_format_matrix(titles,�...
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[table(2:n,1) table(2:n,7) table(2:n,2) table(2:n,3) table(2:n,4) table(2:n,8) table(2:n,5) table(2:n,6)],...
wid,fms,fileID,true );

clf(h1);
set(0,'CurrentFigure',h1);
ax = axes();
set(h1, 'CurrentAxes',ax);
cla('reset');

text(.1,.60,bdy,'FontSize',10);
set(ax,'YTick',[]);
set(ax,'XTick',[]);
text(.1,.9,hd,'FontSize',10);
title('result of refinement study');
drawnow();

end
end

% The refinment study is completed. Generate plots and error table

h2 = figure();
ax2 = axes();
set(0,'CurrentFigure',h2);
set(h2, 'CurrentAxes',ax2);
cla('reset');
set(0,'defaultaxesfontsize',8) ;

loglog(table(2:end,3),table(2:end,5),'-d');
xlabel('log(h)','FontSize',8);
title({'refinement study result, ';'log vs successive errors difference'},...

'FontSize',8);
ylabel('log(error norm)','FontSize',8);
grid on;
end

%-----------------------
function [u,u_steady_state]=solve_2D_diffusion(...

grid_size,...
h,... % space step size
k,... % time step size
D,... % diffusion constant
max_t... % maximum time to run solver for
)

n = grid_size-2; %internal nodes
ic = @(X,Y) exp( -10*((X-0.4).^2 + (Y-0.4).^2 )); % initial data
[X,Y] = meshgrid(h/2:h:1-h/2,1-h/2:-h:h/2); % coordinates
u_mean = quad2d(ic,h/2,1-(h/2),h/2,1-(h/2));
%u_mean = quad2d(ic,0,1,0,1);

%ic= @(X,Y) -exp( -(X-0.25).^2 - (Y-0.6).^2 );

% create sparse matrices for A and B (implicit and explicit) see HW report
A = lap2D_diffusion_ADI_A(n,D,k,h);
A_RHS = lap2D_diffusion_ADI_A_RHS(n,D,k,h);

u = ic(X,Y); % initial U
u_steady_state = zeros(size(u));
u_steady_state(:,:)=u_mean;
u_max = max(max(u));
u_min = min(min(u));
h1 = figure();
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current_t = 0;
done = false;

while not(done)

% solve for U*
tmp = reshape(flipud(u(2:end-1,2:end-1))',n^2,1);
sol = A\(A_RHS*tmp);
u(2:end-1,2:end-1) = flipud(reshape(sol,n,n)');

%update the boundaries
u = update_BC(u);

% solve for U_n+1
tmp = reshape(flipud(u(2:end-1,2:end-1)),n^2,1);
sol = A\(A_RHS*tmp);
u(2:end-1,2:end-1) = flipud(reshape(sol,n,n));

u = update_BC(u);

set(0,'CurrentFigure',h1);
surf(X,Y,u);
colormap cool;
title(sprintf('solution at time = %1.3f, D=%.3f, N=%d\nsteady state=%1.4f, h=%1.5f',...

current_t,D,grid_size,u_mean,h));

hold on;
mesh(X,Y,u_steady_state);
zlim([u_min u_max]);
drawnow();
hold off;

%update current time and check if reached end of time
current_t = current_t + k;
if current_t > max_t

done = true;
end

end
close(h1);
end

%------------------------
function A=lap2D_diffusion_ADI_A(...

n, ... %size of matrix (1D size)
D, ... %diffusion constant
k, ... %time step
h) %space_step

r = D*k/(2*h^2);
e = ones(n,1);
B = [-r*e (1+2*r)*e -r*e];
Lx = spdiags(B,[-1 0 1],n,n);
Ix = speye(n);
A = kron(Ix,Lx);

% adjust A, see HW report

pos = 1:n:n^2;

for i = 1:length(pos)
A(pos(i),pos(i))=1+r;
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end

pos = n:n:n^2;

for i=1:length(pos)
A(pos(i),pos(i))=1+r;

end

end
%----------------------------------------
function A=lap2D_diffusion_ADI_A_RHS(...

n, ... %size of matrix (1D)
D, ... %diffusion constant
k, ... %time step
h) %space_step

r = D*k/(2*h^2);

e = ones(n^2,1);
B = [r*e (1-r)*e r*e];
A = spdiags(B,[-n 0 n],n^2,n^2);

%adjust matrix, see HW report
pos = n+1:n^2-n;
for i=1:length(pos)

A(pos(i),pos(i))=1-2*r;
end

end

%---------------------
function u = update_BC(u)

u(1,2:end-1) = u(2,2:end-1);
u(end,2:end-1) = u(end-1,2:end-1);
u(2:end-1,1) = u(2:end-1,2);
u(2:end-1,end) = u(2:end-1,end-1);

u(1,1) = u(1,2);
u(end,1) = u(end-1,1);
u(end,end) = u(end,end-1);
u(1,end) = u(1,end-1);

end� �
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3.4 HW 3

3.4.1 Problem 1

Math 228B
Homework 3
Due Thursday, 3/03/11

1. Write programs to solve the advection equation

ut + aux = 0,

on [0, 1] with periodic boundary conditions using upwinding and Lax-Wendroff. For smooth
solutions we expect upwinding to be first-order accurate and Lax-Wendroff to be second-order
accurate, but it is not clear what accuracy to expect for nonsmooth solutions.

(a) Let a = 1 and solve the problem up to time t = 1. Perform a refinement study for both
upwinding and Lax-Wendroff with ∆t = 0.8h with a smooth initial condition. Compute
the rate of convergence in the 1-norm, 2-norm, and max-norm. Note that the exact
solution at time t = 1 is the initial condition, and so computing the error is easy.

(b) Repeat the previous problem with the discontinuous initial condition

u(x, 0) =

{

1 if |x − 1/2| < 1/4

0 otherwise

2. Consider three-point explicit schemes for the linear advection equation in the real line of the
form

un+1

j = un
j − C

(

un
j − un

j−1

)

+ D
(

un
j+1 − un

j

)

.

Show that
∑

j

∣

∣

∣
un+1

j − un+1

j−1

∣

∣

∣
≤

∑

j

∣

∣un
j − un

j−1

∣

∣ (1)

if C ≥ 0, D ≥ 0, and C + D ≤ 1. When the numerical solution of a scheme satisfies (1)
the scheme is total variation diminishing or TVD. Put upwinding and Lax-Wendroff into the
above form, and show that upwinding is TVD when it is stable and that Lax-Wendroff is not
TVD. Give an interpretation for the meaning of TVD and explain how this relates to the
numerical solutions from problem 1b.

3. For solving the heat equation we frequently use Crank-Nicolson. For the linear advection
equation, Crank-Nicolson is

un+1

j − un
j +

ν

4
(un

j+1 − un
j−1) +

ν

4
(un+1

j+1
− un+1

j−1
) = 0.

(a) Show that Crank-Nicolson is unconditionally stable for the advection equation.

(b) Use von Neumann analysis to show that for a periodic domain ‖un‖2 = ‖u0‖2 for all
n. This scheme is said to be nondissipative. This seems reasonable because this is a
property of the PDE.

(c) Solve the advection equation on the periodic domain [0, 1] with the initial condition from
problem 1b. Show the solution and comment on your results.

1

Figure 3.51: Problem description

3.4.1.1 Part (a)

The advection PDE in 1D is given by

𝑢𝑡 + 𝑎𝑢𝑥 = 0

Where 𝑎 represents the speed of flow, which can be positive or negative. The Lax-Wendroff
finite difference scheme for the above PDE is given by

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑎𝑘
2ℎ
�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� +

𝑎2𝑘2

2ℎ2
�𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1�

where 𝑘 is the time step and ℎ is the space step. The upwind finite difference scheme for
𝑎 > 0 is given by

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑎𝑘
ℎ
�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�

The relation between 𝑎, 𝑘 and ℎ is given by

𝑐𝑜𝑢𝑟𝑎𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝜈 =
𝑎𝑘
ℎ

Both schemes above are stable for |𝑣| ≤ 1. The problem asked to use 𝜈 = 0.8 and 𝑎 = 1,
giving 𝑘 = 0.8ℎ.

A program was written to implement these schemes for both smooth and discontinues
initial conditions. The exact solution was computed from 𝑢 = 𝑢0(𝑥 − 𝑎𝑡) where 𝑢0(𝑥) is the
initial data. sin(4𝜋𝑥) was used for smooth initial conditions.

The boundary conditions are periodic. This means that the first grid point if physically
the same as the last grid point as would be the case by viewing the domain as a closed
ring. The following diagram illustrates the numbering used.
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0 1 2 3 ... N N+1 N+2

unknowns

Periodic boundary conditions

-1

Figure 3.52: Grid used

Error norm calculation

The total error at a grid point 𝑗 is given by

e𝑗= U𝑗−u�𝑥𝑗�

Where U𝑗 is the numerical solution at the 𝑗𝑡ℎ grid point and u�𝑥𝑗� is the exact solution
evaluated at the same grid point location. e is a vector of length 𝑁 where 𝑁 is the number
of grid points.

To measure the size of the error vector e, a grid norm is used in place of the standard
vector norm. The following are the definitions of the norms used.

1. max-norm (also called infinity norm) �eℎ�
max

= max
𝑗
�𝑒𝑗�

2. 1-norm �eℎ�
1
= ℎ

𝑁
�
𝑗=1
�𝑒𝑗�

3. 2-norm �eℎ�
2
=
�
ℎ
𝑁
�
𝑗=1
�𝑒𝑗�

2

3.4.1.2 Results of refinement study for Lax-Wendroff

The result of the refinement study for smooth data for Lax-Wendroff shows that the error
ratio converged to 4, and since the space step was divided by 2 at each run, this indicates
a second order accuracy in time and space

The following diagram shows the results obtained. All norms gave the same order of
accuracy. In the diagram below, the first ratio column represent the error ratio found using
norm-2, while the second ratio column represents the norm-1 result, and the third ratio
column is for the max-norm. The log plot is generated only for 2-norm. The following
parameters were used: ℎ = 0.01,maximum time = 1 second, Δ𝑡 = 0.8ℎ, and initial conditions
𝑢(𝑥, 0) = sin(4𝜋𝑥) with periodic boundary conditions.
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Figure 3.53: refinement study part a LAX

Result of refinement study for Upwind

The result of the refinement study for smooth data for upwind showed that the error ratio
converged to 2 indicating a first order accuracy in time and space. The following diagram
shows the results obtained. All norms gave the same order of accuracy.
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Figure 3.54: refinement study upwind

3.4.1.3 Part (b)

The refinement study made in part (a) was repeated using the following initial conditions

𝑢(𝑥, 0) =

⎧⎪⎪⎨
⎪⎪⎩
1 �𝑥 − 1

2 � <
1
4

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Which is a rectangular pulse of the following shape

0.5
0

0.25 0.75
1.0

1.0

X

Initial conditions for problem 1, part (b)

Figure 3.55: initial data

The following diagram shows the results obtained.

Results of refinement study for Lax-Wendroff
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Figure 3.56: refinement study part b LAX

The following table is a summary of the results of the above refinement study for Lax-
wendroff

Norm ratio order of accuracy 𝑝 = log
2
(𝑟𝑎𝑡𝑖𝑜)

1-norm 1.5 1
2

2-norm 1.2 1
4

max-norm 1 0

The maximum norm being zero order says that the largest error in absolute terms does
not decrease. Hence for discontinues data, convergence will not occur in the max-norm,
no matter how small ℎ is made.

Results of refinement study for upwind

The following diagram shows the results obtained
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Figure 3.57: refinement study part b UPWIND

The following table is a summary of the results of the above refinement study for upwind.
The results are similar to Lax-Wendroff.

Norm ratio order of accuracy 𝑝 = log
2
(𝑟𝑎𝑡𝑖𝑜)

1-norm 1.4 0.485
2-norm 1.2 1

4
max-norm 1 0

It is noticed that Lax-Wendroff is more accurate scheme than upwind, but only if the initial
data is smooth. For discontinuous initial conditions, Lax-wendroff loses its advantage over
upwind, and both schemes gave similar order of accuracy.
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3.4.2 Problem 2

Math 228B
Homework 3
Due Thursday, 3/03/11

1. Write programs to solve the advection equation

ut + aux = 0,

on [0, 1] with periodic boundary conditions using upwinding and Lax-Wendroff. For smooth
solutions we expect upwinding to be first-order accurate and Lax-Wendroff to be second-order
accurate, but it is not clear what accuracy to expect for nonsmooth solutions.

(a) Let a = 1 and solve the problem up to time t = 1. Perform a refinement study for both
upwinding and Lax-Wendroff with ∆t = 0.8h with a smooth initial condition. Compute
the rate of convergence in the 1-norm, 2-norm, and max-norm. Note that the exact
solution at time t = 1 is the initial condition, and so computing the error is easy.

(b) Repeat the previous problem with the discontinuous initial condition

u(x, 0) =

{

1 if |x − 1/2| < 1/4

0 otherwise

2. Consider three-point explicit schemes for the linear advection equation in the real line of the
form

un+1

j = un
j − C

(

un
j − un

j−1

)

+ D
(

un
j+1 − un

j

)

.

Show that
∑

j

∣

∣

∣
un+1

j − un+1

j−1

∣

∣

∣
≤

∑

j

∣

∣un
j − un

j−1

∣

∣ (1)

if C ≥ 0, D ≥ 0, and C + D ≤ 1. When the numerical solution of a scheme satisfies (1)
the scheme is total variation diminishing or TVD. Put upwinding and Lax-Wendroff into the
above form, and show that upwinding is TVD when it is stable and that Lax-Wendroff is not
TVD. Give an interpretation for the meaning of TVD and explain how this relates to the
numerical solutions from problem 1b.

3. For solving the heat equation we frequently use Crank-Nicolson. For the linear advection
equation, Crank-Nicolson is

un+1

j − un
j +

ν

4
(un

j+1 − un
j−1) +

ν

4
(un+1

j+1
− un+1

j−1
) = 0.

(a) Show that Crank-Nicolson is unconditionally stable for the advection equation.

(b) Use von Neumann analysis to show that for a periodic domain ‖un‖2 = ‖u0‖2 for all
n. This scheme is said to be nondissipative. This seems reasonable because this is a
property of the PDE.

(c) Solve the advection equation on the periodic domain [0, 1] with the initial condition from
problem 1b. Show the solution and comment on your results.

1

Figure 3.58: Problem statement

Given

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 − 𝐶�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1� + 𝐷�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 �
Writing the above in the following form

𝑢𝑛+1𝑗 = 𝐶𝑢𝑛𝑗−1 + (1 − (𝐶 + 𝐷))𝑢𝑛𝑗 + 𝐷𝑢𝑛𝑗+1

= �𝐶 (1 − (𝐶 + 𝐷)) 𝐷�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛𝑗−1
𝑢𝑛𝑗
𝑢𝑛𝑗+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝐴

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛𝑗−1
𝑢𝑛𝑗
𝑢𝑛𝑗+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Doing the same for 𝑢𝑛+1𝑗−1 results in

𝑢𝑛+1𝑗−1 = 𝐴

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑛𝑗−2
𝑢𝑛𝑗−1
𝑢𝑛𝑗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Using the above gives

𝑗=∞
�
𝑗=−∞

�𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑗−1 � =
𝑗=∞
�
𝑗=−∞

�

�
𝐴

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑛𝑗−1
𝑢𝑛𝑗
𝑢𝑛𝑗+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝐴

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑛𝑗−2
𝑢𝑛𝑗−1
𝑢𝑛𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

�

=
𝑗=∞
�
𝑗=−∞

�

�
𝐴

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2
𝑢𝑛𝑗 − 𝑢𝑛𝑗−1
𝑢𝑛𝑗+1 − 𝑢𝑛𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

�

=
𝑗=∞
�
𝑗=−∞

�𝐶�𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2 � + (1 − 𝐶 − 𝐷)�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1� + 𝐷�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 � �

Using the relation that ∑|𝐴 + 𝐵| ≤ ∑(|𝐴| + |𝐵|), the above becomes
𝑗=∞
�
𝑗=−∞

�𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑗−1 � ≤
𝑗=∞
�
𝑗=−∞

�𝐶�𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2�� +
𝑗=∞
�
𝑗=−∞

�(1 − 𝐶 − 𝐷)�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�� +
𝑗=∞
�
𝑗=−∞

�𝐷�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 ��

Given that that 𝐶 ≥ 0,𝐷 ≥ 0 and that (1 − 𝐶 − 𝐷) > 0, where the last case follows from
(𝐶 + 𝐷) ≤ 1, therefore 𝐶,𝐷 and (1 − 𝐶 − 𝐷) can be taken from outside the absolute sign in
the above expression leading to

𝑗=∞
�
𝑗=−∞

�𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑗−1 � ≤ 𝐶
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2� + (1 − 𝐶 − 𝐷)
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1� + 𝐷
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 �
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Collecting terms with the same coefficient gives

𝑗=∞
�
𝑗=−∞

�𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑗−1 � ≤ 𝐶
⎛
⎜⎜⎜⎜⎝
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2� −
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�
⎞
⎟⎟⎟⎟⎠ (3)

+ 𝐷
⎛
⎜⎜⎜⎜⎝
𝑗=∞
�
𝑗=−∞

��𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 �� −
𝑗=∞
�
𝑗=−∞

��𝑢𝑛𝑗 − 𝑢𝑛𝑗−1��
⎞
⎟⎟⎟⎟⎠

+
𝑗=∞
�
𝑗=−∞

��𝑢𝑛𝑗 − 𝑢𝑛𝑗−1��

The first 2 expressions above in the RHS vanish, leading to the result required. To show
this, Consider the first expression from the RHS above, and expanding it on the real line
gives

𝐶
⎛
⎜⎜⎜⎜⎝
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2� −
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�
⎞
⎟⎟⎟⎟⎠ =

�⋯ + ��𝑢𝑛−2 − 𝑢𝑛−3�� + �𝑢𝑛−1 − 𝑢𝑛−2� + �𝑢𝑛0 − 𝑢𝑛−1� + �𝑢𝑛1 − 𝑢𝑛0 � + �𝑢𝑛2 − 𝑢𝑛1 � + �𝑢𝑛3 − 𝑢𝑛2 � + �𝑢𝑛4 − 𝑢𝑛3 � + ⋯�−

�⋯ + �𝑢𝑛−2 − 𝑢𝑛−3� + �𝑢𝑛−1 − 𝑢𝑛−2� + �𝑢𝑛0 − 𝑢𝑛−1� + �𝑢𝑛1 − 𝑢𝑛0 � + �𝑢𝑛2 − 𝑢𝑛1 � + �𝑢𝑛3 − 𝑢𝑛2 � + �𝑢𝑛4 − 𝑢𝑛3 � + ⋯�

The above result shows that all terms cancel out. Each term in the first line above, has a
corresponding term in the second line, but with a negative sign. Therefore

𝐶
⎛
⎜⎜⎜⎜⎝
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2� −
𝑗=∞
�
𝑗=−∞

�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�
⎞
⎟⎟⎟⎟⎠ = 0 (4)

Similarly the following term vanish as well

𝐷
⎛
⎜⎜⎜⎜⎝
𝑗=∞
�
𝑗=−∞

��𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 �� −
𝑗=∞
�
𝑗=−∞

��𝑢𝑛𝑗 − 𝑢𝑛𝑗−1��
⎞
⎟⎟⎟⎟⎠ =

�⋯ + ��𝑢𝑛−2 − 𝑢𝑛−3�� + �𝑢𝑛−1 − 𝑢𝑛−2� + �𝑢𝑛0 − 𝑢𝑛−1� + �𝑢𝑛1 − 𝑢𝑛0 � + �𝑢𝑛2 − 𝑢𝑛1 � + �𝑢𝑛3 − 𝑢𝑛2 � + �𝑢𝑛4 − 𝑢𝑛3 �⋯�−

�⋯ + �𝑢𝑛−2 − 𝑢𝑛−3� + �𝑢𝑛−1 − 𝑢𝑛−2� + �𝑢𝑛0 − 𝑢𝑛−1� + �𝑢𝑛1 − 𝑢𝑛0 � + �𝑢𝑛2 − 𝑢𝑛1 � + �𝑢𝑛3 − 𝑢𝑛2 � + �𝑢𝑛4 − 𝑢𝑛3 � + ⋯�

= 0 (5)

Substituting Eqs. (4) and (5) into (3) gives

𝑗=∞
�
𝑗=−∞

�𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑗−1 � ≤
𝑗=∞
�
𝑗=−∞

��𝑢𝑛𝑗 − 𝑢𝑛𝑗−1��

Which is the result we are asked to show.

3.4.2.1 Second part

Lax-Wendroff is given by

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑎𝑘
2ℎ
�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� +

𝑎2𝑘2

2ℎ2
�𝑢𝑛𝑗−1 − 2𝑢𝑛𝑗 + 𝑢𝑛𝑗+1�

= 𝑢𝑛𝑗 �1 −
𝑎2𝑘2

ℎ2 �
+ 𝑢𝑛𝑗−1�

𝑎𝑘
2ℎ
+
𝑎2𝑘2

2ℎ2 �
+ 𝑢𝑛𝑗+1�

𝑎2𝑘2

2ℎ2
−
𝑎𝑘
2ℎ�

(1)

Eq. (1) needs to be put in the following form 𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 − 𝐶�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1� + 𝐷�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 � or

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 (1 − 𝐶 − 𝐷) + 𝐶𝑢𝑛𝑗−1 + 𝐷𝑢𝑛𝑗+1 (2)

Comparing Eqs. (1) and (2) leads to

1 − 𝐶 − 𝐷 = 1 −
𝑎2𝑘2

ℎ2

𝐶 + 𝐷 =
𝑎2𝑘2

ℎ2

𝐶 =
𝑎𝑘
2ℎ
+
𝑎2𝑘2

2ℎ2

𝐷 =
𝑎2𝑘2

2ℎ2
−
𝑎𝑘
2ℎ

=
1
2�
𝑎2𝑘2

ℎ2
−
𝑎𝑘
ℎ �

(3)
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For the scheme to be TVD it is required that 𝐶 ≥ 0 and 𝐷 ≥ 0. Lax-Wendroff is stable

when |𝑎| 𝑘ℎ ≤ 1. Therefore this implies that 𝑎2𝑘2

ℎ2 < |𝑎| 𝑘ℎ .Hence the constant 𝐷 in Eq. (3)
above will become negative. Therefore one of the conditions of TVD has been violated.
Hence Lax-Wendroff is not TVD. Now consider upwind.

Consider the case 𝑎 > 0. Upwind scheme is given by

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑎𝑘
ℎ
�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�

= 𝑢𝑛𝑗 �1 −
𝑎𝑘
ℎ �

+
𝑎𝑘
ℎ
𝑢𝑛𝑗−1 (4)

By comparing coefficients between Eqs. (4) and (2) results in

1 − 𝐶 − 𝐷 = 1 −
𝑎𝑘
ℎ

𝐶 + 𝐷 =
𝑎𝑘
ℎ

𝐶 =
𝑎𝑘
ℎ

𝐷 = 0 (5)

But when 𝑎 > 0, upwind is stable when 0 ≤ 𝑎𝑘
ℎ ≤ 1. Therefore 𝐶 > 0 and all the TVD

conditions above are now satisfied, Hence upwind is TVD for 𝑎 > 0.

Now consider when 𝑎 < 0, The upwind scheme is now given by

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑎𝑘
ℎ
�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗 �

= 𝑢𝑛𝑗 �1 +
𝑎𝑘
ℎ �

+ �−
𝑎𝑘
ℎ �
𝑢𝑛𝑗+1 (6)

By comparing coefficients between Eqs. (6) and (2) results in

1 − 𝐶 − 𝐷 = 1 +
𝑎𝑘
ℎ

𝐶 + 𝐷 = −
𝑎𝑘
ℎ

𝐶 = 0

𝐷 = −
𝑎𝑘
ℎ

(5)

since 𝑎 < 0, then upwind is now stable when −1 ≤ 𝑎𝑘
ℎ ≤ 0. Therefore 𝐷 > 0 in the above,

and 𝐶 +𝐷 > 0 as well, and hence all the TVD conditions are satisfied, therefore upwind is
TVD for 𝑎 < 0 as well. Therefore upwind is TVD.

Interpretation of TVD: A scheme with this property implies that the numerical solution,
starting with initial data that is monotone, will remain monotone as the solution is advanced
in time. This implies that no new local extrema will be created and values of local minimum
are nondecreasing while values of local maximum are nonincreasing. In part (b), when
initial data was discontinuous, it was observed that Lax-wendroff produced wiggles where
non-existed before, meaning that new local maximum and new local minimum were created
in that region. This agrees with the finding here that Lax-Wendroff is not TVD.

On the other hand, with upwind, no new wiggles were created near the discontinuity, and
the numerical solution remained monotone. This agrees with the finding here that upwind
is TVD scheme. A scheme which is TVD is also stable, since the TVD property will
prevent any ’blow up’ in the solution due to the above properties of being TVD scheme.
TVD scheme is stable, but limited to first order accuracy. To obtain more accuracy and
use a second order, the price to pay is that the scheme becomes non TVD.
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3.4.3 Problem 3

Math 228B
Homework 3
Due Thursday, 3/03/11

1. Write programs to solve the advection equation

ut + aux = 0,

on [0, 1] with periodic boundary conditions using upwinding and Lax-Wendroff. For smooth
solutions we expect upwinding to be first-order accurate and Lax-Wendroff to be second-order
accurate, but it is not clear what accuracy to expect for nonsmooth solutions.

(a) Let a = 1 and solve the problem up to time t = 1. Perform a refinement study for both
upwinding and Lax-Wendroff with ∆t = 0.8h with a smooth initial condition. Compute
the rate of convergence in the 1-norm, 2-norm, and max-norm. Note that the exact
solution at time t = 1 is the initial condition, and so computing the error is easy.

(b) Repeat the previous problem with the discontinuous initial condition

u(x, 0) =

{

1 if |x − 1/2| < 1/4

0 otherwise

2. Consider three-point explicit schemes for the linear advection equation in the real line of the
form

un+1

j = un
j − C

(

un
j − un

j−1

)

+ D
(

un
j+1 − un

j

)

.

Show that
∑

j

∣

∣

∣
un+1

j − un+1

j−1

∣

∣

∣
≤

∑

j

∣

∣un
j − un

j−1

∣

∣ (1)

if C ≥ 0, D ≥ 0, and C + D ≤ 1. When the numerical solution of a scheme satisfies (1)
the scheme is total variation diminishing or TVD. Put upwinding and Lax-Wendroff into the
above form, and show that upwinding is TVD when it is stable and that Lax-Wendroff is not
TVD. Give an interpretation for the meaning of TVD and explain how this relates to the
numerical solutions from problem 1b.

3. For solving the heat equation we frequently use Crank-Nicolson. For the linear advection
equation, Crank-Nicolson is

un+1

j − un
j +

ν

4
(un

j+1 − un
j−1) +

ν

4
(un+1

j+1
− un+1

j−1
) = 0.

(a) Show that Crank-Nicolson is unconditionally stable for the advection equation.

(b) Use von Neumann analysis to show that for a periodic domain ‖un‖2 = ‖u0‖2 for all
n. This scheme is said to be nondissipative. This seems reasonable because this is a
property of the PDE.

(c) Solve the advection equation on the periodic domain [0, 1] with the initial condition from
problem 1b. Show the solution and comment on your results.

1
Figure 3.59: Problem statement

3.4.3.1 Part (a)

The PDE for linear advection equation is given by

𝑢𝑡 + 𝑎𝑢𝑥 = 0

The Crank Nicholson finite difference scheme for the above is

𝑢𝑛+1𝑗 − 𝑢𝑛𝑗 +
𝜈
4
�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� +

𝜈
4
�𝑢𝑛+1𝑗+1 − 𝑢𝑛+1𝑗−1 � = 0 (1)

Where 𝜈 = 𝑎𝑘
ℎ , 𝑘 is the time step and ℎ is the space step. Applying Von Neumann stability

analysis, let
𝑢𝑛+1𝑗 = 𝑔(𝜉)𝑒𝑖𝜁𝑥𝑗

and let
𝑢𝑛𝑗 = 𝑒

𝑖𝜁𝑥𝑗

Substituting the above 2 equations into Eq. (1) gives

𝑔(𝜉)𝑒𝑖𝜁𝑥𝑗 − 𝑒𝑖𝜁𝑥𝑗 +
𝜈
4
�𝑒𝑖𝜁𝑥𝑗𝑒𝑖𝜁ℎ − 𝑒𝑖𝜁𝑥𝑗𝑒−𝑖𝜁ℎ� +

𝜈
4
�𝑔(𝜉)𝑒𝑖𝜁𝑥𝑗𝑒𝑖𝜁ℎ − 𝑔(𝜉)𝑒𝑖𝜁𝑥𝑗𝑒−𝑖𝜁ℎ� = 0

Dividing throughout by 𝑒𝑖𝜁𝑥𝑗 gives

𝑔(𝜉) − 1 +
𝜈
4
�𝑒𝑖𝜁ℎ − 𝑒−𝑖𝜁ℎ� +

𝜈
4
𝑔(𝜉)�𝑒𝑖𝜁ℎ − 𝑒−𝑖𝜁ℎ� = 0

Solving for 𝑔(𝜉) and applying Euler relation to convert exponential to trigonometry func-
tions gives

𝑔(𝜉)�1 +
𝜈𝑖
2
sin 𝜁ℎ� = 1 −

𝜈𝑖
2
sin 𝜁ℎ

𝑔(𝜉) =
1 − 𝜈𝑖

2 sin 𝜁ℎ

1 + 𝜈𝑖
2 sin 𝜁ℎ

Hence

�𝑔(𝜉)�2 =
�1 − 𝑖𝜈2 sin 𝜁ℎ�

2

�1 + 𝑖𝜈2 sin 𝜁ℎ�
2 =

1 + 𝜈2

4 sin
2 𝜁ℎ

1 + 𝜈2

4 sin
2 𝜁ℎ

Hence
�𝑔(𝜉)� = 1

Since �𝑔(𝜉)� ≤ 1 the scheme is unconditionally stable8.The stability of this scheme does not
depend on CFL criteria, in other words, there is no dependency on Δ𝑡 or ℎ for the stability.
In addition, it is seen that the amplitude of each Fourier mode remain constant at each
time increment. High wave numbered modes as well as small wave numbered modes will
remain in the numerical solution with same energy content. There is no dissipation in the
numerical solution.

8May be we should call this as marginally stable? Since there is no attenuation and also there is no
magnification.
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3.4.3.2 part (b)

The following relation, which is valid due to the periodic boundary conditions being used,
will be utilized in the proof below

�
𝑗
𝑢𝑛𝑗 =�

𝑗
𝑢𝑛𝑗−1 =�

𝑗
𝑢𝑛𝑗+1

The above relation can be more easily seen by viewing the domain as a ring, where the
first grid point is physically the same as the last grid point. Therefore the location of where
the sum starts is not important, since the same number of grid points will always be added
as long as the sum is over the whole range. The following diagram illustrate this point.

J=0

J=1

J=2

J=3

J=4

J=0

J=1

J=2

J=3

J=4


j

u j
n 

j

uj1
n

Showing graphically a property of periodic boundary 

conditions used in the proof

Figure 3.60: Grid layout

Now, the proof will start. Starting from the C-N scheme given by

𝑢𝑛+1𝑗 +
𝜈
4
�𝑢𝑛+1𝑗+1 − 𝑢𝑛+1𝑗−1 � = 𝑢𝑛𝑗 −

𝜈
4
�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1�

And squaring each side, and summing over all 𝑗 gives

�
𝑗
�𝑢𝑛+1𝑗 +

𝜈
4
�𝑢𝑛+1𝑗+1 − 𝑢𝑛+1𝑗−1 ��

2
=�

𝑗
�𝑢𝑛𝑗 −

𝜈
4
�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1��

2

Expanding

�
𝑗
�𝑢𝑛+1𝑗 �

2
+
𝜈
2
𝑢𝑛+1𝑗 �𝑢𝑛+1𝑗+1 − 𝑢𝑛+1𝑗−1 � + �

𝜈
4
�
2
�𝑢𝑛+1𝑗+1 − 𝑢𝑛+1𝑗−1 �

2
=

�
𝑗
�𝑢𝑛𝑗 �

2
−
𝜈
2
𝑢𝑛𝑗 �𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� + �

𝜈
4
�
2
�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1�

2

Moving all terms from LHS to RHS except for �
𝑗
�𝑢𝑛+1𝑗 �

2
the above becomes

�
𝑗
�𝑢𝑛+1𝑗 �

2
=�

𝑗
�𝑢𝑛𝑗 �

2
−
𝜈
2
�𝑢𝑛𝑗 �𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� + 𝑢𝑛+1𝑗 �𝑢𝑛+1𝑗+1 − 𝑢𝑛+1𝑗−1 ��

+ �
𝜈
4
�
2
��𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1�

2
− �𝑢𝑛+1𝑗+1 − 𝑢𝑛+1𝑗−1 �

2
�

Using Von Neumann, let 𝑢𝑛+1𝑗 = �𝑔�𝑢𝑛𝑗 in the above, where 𝑔 is the magnification factor
which was found from part (a) to be independent of 𝜉. The above becomes

�
𝑗
�𝑢𝑛+1𝑗 �

2
=�

𝑗
�𝑢𝑛𝑗 �

2
−
𝜈
2�
𝑢𝑛𝑗 �𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� + �𝑔�

2𝑢𝑛𝑗 �𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1��

+ �
𝜈
4
�
2
��𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1�

2
− �𝑔�2�𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1�

2
�
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Since �𝑔� = 1 as was found in part(a), then the last term in the RHS above will vanish
resulting in

�
𝑗
�𝑢𝑛+1𝑗 �

2
=�

𝑗
�𝑢𝑛𝑗 �

2
−
𝜈
2
�𝑢𝑛𝑗 �𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1� + 𝑢𝑛𝑗 �𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1��

= �
𝑗
�𝑢𝑛𝑗 �

2
− 𝜈 𝑢𝑛𝑗 �𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−1�

= �
𝑗
�𝑢𝑛𝑗 �

2
+ 𝜈

⎛
⎜⎜⎜⎜⎝�
𝑗
𝑢𝑛𝑗 𝑢𝑛𝑗−1 −�

𝑗
𝑢𝑛𝑗 𝑢𝑛𝑗+1

⎞
⎟⎟⎟⎟⎠ (1)

Due to the periodic boundary9 conditions �
𝑗
𝑢𝑛𝑗 𝑢𝑛𝑗−1 =�

𝑗
𝑢𝑛𝑗 𝑢𝑛𝑗+1, Therefore Eq. (1) reduces

to

�
𝑗
�𝑢𝑛+1𝑗 �

2
=�

𝑗
�𝑢𝑛𝑗 �

2
(2)

But by definition

‖𝑢‖22 =�
𝑗
𝑢2

Hence Eq. (2) can be written as

�𝑢𝑛+1�2
2
= ‖𝑢𝑛‖22

or

�𝑢𝑛+1�
2
= ‖𝑢𝑛‖2 (3)

Similarly ‖𝑢𝑛‖2 = �𝑢
𝑛−1�

2
= ⋯ = �𝑢0�

2
, therefore Eq. (3) becomes

�𝑢𝑛+1�
2
= �𝑢0�

2

3.4.3.3 Part(c)

The C-N scheme was implemented for the 1D advection PDE. The source code is shown
in the appendix. The following diagram shows the result for the initial conditions as given
in part (b). The result for C-N is shown next to the solution produced by Lax-Wendroff in
order to compare the results

9Side note: Initially I thought I might have to use the Schawrz inequality |𝑢 ⋅ 𝑣| ≤ ‖𝑢‖‖𝑣‖, to write

�
𝑗
𝑢𝑛𝑗 𝑢𝑛𝑗+1 ≤

�
�
𝑗
�𝑢𝑛𝑗 �

2

�
�
𝑗
�𝑢𝑛𝑗+1�

2

And due to periodic boundary conditions, obtain �
𝑗
�𝑢𝑛𝑗 �

2
=�

𝑗
�𝑢𝑛𝑗+1�

2
, and so �

𝑗
𝑢𝑛𝑗 𝑢𝑛𝑗+1 ≤�

𝑗
�𝑢𝑛𝑗 �

2
But this

turned out not to be required.
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Figure 3.61: C-N result

C-N shows more wiggles near the boundaries than Lax-Wendroff. Both are not TVD
schemes, so starting with non-smooth initial data, it was expected to see wiggles in both
cases.

C-N scheme showed more wiggles and they appeared earlier in time as well, even though
the solution was stable all the time, since these did not grow when the running time was
made longer (It was shown in part(a) that the scheme is unconditionally stable). Norm-2
of the solution was displayed all the time and it remained the same value through the
run-time, even as wiggles appeared in the solution. This was the case for both schemes
shown.

This result shows that 2-norm of the numerical solution is stable as the 2-norm of the
numerical solution did not grow with time. The scheme is non-dissipative at all, and
high frequency modes did not attenuate, leading the solution observed. Using such non-
dissipative schemes on non-smooth data does not appear to be a good idea. The following
diagram below is another illustration to compare Lax-Wendroff with C-N with ℎ = 0.005,
showing the numerical solution at 𝑡 = 0.04 seconds.
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Figure 3.62: compare Lax-Wendroff with C-N with ℎ = 0.005

The top diagram shows Lax-Wendroff, and the bottom one shows C-N. Notice that wiggles
are larger in amplitude for C-N since its magnification factor is constant at 1, resulting in
no attenuation at all in the large spatial frequency present in the initial data.
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3.5 HW 4

3.5.1 Problem 1

Math 228B
Homework 4
Due Thursday, 3/17/11.

1. In one spatial dimension the linearized equations of acoustics (sound waves) are

pt + Kux = 0

ρut + px = 0,

where u is the velocity and p is the pressure, ρ is the density, and K is the bulk modulus of
compressibility.

(a) Show that this system is hyperbolic and find the wave speeds.

(b) Write a program to solve this system using Lax-Wendroff in original variables on (0, 1)
using a cell centered grid xj = (j − 1/2)h for j = 1 . . . N . Write the code to use ghost
cells, so that different boundary conditions can be changed by simply changing the values
in the ghost cells.

Set the ghost cells at the left by

pn
0 = pn

1

un
0 = −un

1 ,

and set the ghost cells on the right by

pn
N+1 =

1

2

(

pn
N + un

N

√

Kρ

)

un
N+1 =

1

2

(

pn
N√
Kρ

+ un
N

)

.

Run simulations with different initial conditions. Explain what happens at the left and
right boundaries.

(c) Give a physical interpretation and a mathematical explanation of these boundary con-
ditions.

2. A scheme is monotone preserving if the solution, un
j , is monotone in j for all n whenever the

initial condition, u0
j , is monotone in j. Show that if a scheme is TVD, then it is monotone

preserving. Assume that the domain is the whole real line, that the solution satisfies the
asymptotic boundary conditions lim

j→±∞

un
j = U±∞, and that the initial condition has bounded

variation.

3. Write a program to solve the linear advection equation,

ut + aux = 0,

on the unit interval using a finite volume method of the form

un+1
j = un

j − ∆t

h

(

Fj+1/2 − Fj−1/2

)

.

1

Figure 3.63: Problem description

3.5.1.1 part(a)

The definitions and physical units of the variables used in the PDE’s are given below. In
the following table, 𝐿 stands for length, 𝑇 for time, 𝑀 for mass and 𝑁 for force.

term meaning dimensions SI units

𝑝 acoustic air pressure in medium 𝑁
𝐿2 or

𝑀𝐿
𝑇2

1
𝐿2 or

𝑀
𝐿𝑇2 𝑁/𝑀𝑒𝑡𝑒𝑟2

𝑢 acoustic perturbation velocity 𝐿/𝑇 𝑀𝑒𝑡𝑒𝑟/𝑆𝑒𝑐𝑜𝑛𝑑
𝑐 speed of sound in medium 𝐿/𝑇 𝑀𝑒𝑡𝑒𝑟/𝑆𝑒𝑐𝑜𝑛𝑑
𝐾 bulk modulus or modulus of bulk

elasticity for gas10
𝑀
𝑇2𝐿 𝑘𝑔 per 𝑚𝑒𝑡𝑒𝑟 per 𝑠𝑒𝑐𝑜𝑛𝑑2

𝜌 air density 𝑀/𝐿3 𝑘𝑔/𝑚𝑒𝑡𝑒𝑟3

To show that the system is hyperbolic, the PDE’s are written in matrix form

𝑝𝑡 + 𝐾𝑢𝑥 = 0
𝜌𝑢𝑡 + 𝑝𝑥 = 0
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Therefore

⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠
𝑡

+

𝐴

���������⎛
⎜⎜⎜⎜⎝
0 𝐾
1/𝜌 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠
𝑥

=
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

q𝑡 + 𝐴q𝑥 = 0

If the eigenvalues of 𝐴 are real and distinct, implying the existence of linearly independent
eigenvectors for 𝐴, then the system is called strictly hyperbolic11. The eigenvalues of 𝐴 are
found by solving the following equation

𝐷𝑒𝑡(𝐴 − 𝜆I) = 0

(−𝜆)(−𝜆) − (𝑘)�1/𝜌� = 0

𝜆2 =
𝑘
𝜌

𝜆1,2 = ±
�

𝑘
𝜌

The quantity 𝑘
𝜌 is positive and real because 𝜌 is density (which is a real positive number)

and 𝑘 is bulk modulus of compressibility which is also real positive number.

Therefore both eigenvalues of𝐴 are real and distinct. Hence the system is strictly hyperbolic.
The system is diagonalizable as well, since the transpose of 𝐴 is a diagonal matrix, but
this property was not needed to show the system is hyperbolic. The speed of sound in the

medium is given by
�

𝑘
𝜌 . Hence a sound wave will travel in one direction at speed

�
𝑘
𝜌 and

another sound wave will travel in the same speed but in the opposite direction.

3.5.1.2 Part (b)

The following diagram illustrates the grid numbering used in the numerical solution

Cell 1 Cell 2

…...
Cell N

Ghost 

cell 0

Ghost cell 

N+1

1

P(1)

U(1)

P(2)

U(2)
P(N)

U(N)

P(N+1)

U(N+1)

P(0)

U(0)

The numbering system used for HW4, problem 1, part(b) to solve Lax-Wendroff on cell centered grid

Figure 3.64: Grid used

The Lax-Wendroff scheme for the linear system q𝑡 + 𝐴q𝑥 = 0 is given by

q𝑛𝑗 + 1 = q𝑛𝑗 −
Δ𝑡
2ℎ
𝐴�q𝑛𝑗+1 − q𝑛𝑗−1� +

Δ𝑡2

2ℎ2
𝐴2�q𝑛𝑗−1 − 2q𝑛𝑗 + q𝑛𝑗+1�

Where 𝐴 =
⎛
⎜⎜⎜⎜⎝
0 𝐾
1/𝜌 0

⎞
⎟⎟⎟⎟⎠ is a constant matrix.

11Another method to show that the system is hyperbolic, is to show that 𝐴 is real and symmetric, because
this implies that 𝐴 is diagonalizable. In this case, the system is called symmetric hyperbolic.
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In this problem, the solution at time 𝑛 is

q𝑛𝑗 =
⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠

𝑛

𝑗

= q𝑛𝑗 =
⎛
⎜⎜⎜⎜⎝
𝑝𝑛𝑗
𝑢𝑛𝑗

⎞
⎟⎟⎟⎟⎠

The following are the boundary conditions used

q𝑛0 =
⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠

𝑛

0

=
⎛
⎜⎜⎜⎜⎝
𝑝𝑛1
𝑢𝑛1

⎞
⎟⎟⎟⎟⎠

q𝑛𝑁+1 =
⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠

𝑛

𝑁+1

=
1
2

⎛
⎜⎜⎜⎜⎜⎝
𝑝𝑛𝑁 + 𝑢𝑛𝑁�𝑘𝜌

𝑝𝑛𝑁

�𝑘𝜌
+ 𝑢𝑛𝑁

⎞
⎟⎟⎟⎟⎟⎠

To find the time step Δ𝑡, Courant number 𝑟 = 0.8 was used12, and Δ𝑡 found by using the
CFL condition

𝑟 = �
Δ𝑡
ℎ
𝜆�

Solving for Δ𝑡 gives

Δ𝑡 =
𝑟ℎ
|𝜆|

The solution was implemented in Matlab and the result is given below. For each run,
a number of plots are shown to illustrate the solution at different time instances. The
following table describes the simulations done. Three different initial conditions are used
with two different runs for each initial condition. The first run used the boundary conditions
given in this problem, and the second run used different boundary conditions which caused
the sound wave to reflect when it reached both the left and the right boundaries, and not
just the left boundary. Therefore a total of 6 simulations were made, the first three used
the following boundary conditions

𝑝𝑛0 = 𝑝𝑛1
𝑢𝑛0 = −𝑢𝑛1

𝑝𝑛𝑁+1 =
1
2
�𝑝𝑛𝑁 + 𝑢𝑛𝑁�𝑘𝜌 �

𝑢𝑛𝑁+1 =
1
2

⎛
⎜⎜⎜⎝
𝑝𝑛𝑁
�𝑘𝜌

+ 𝑢𝑛𝑁

⎞
⎟⎟⎟⎠

And the second three simulations used the following boundary conditions

𝑝𝑛0 = 𝑝𝑛1
𝑢𝑛0 = −𝑢𝑛1

𝑝𝑛𝑁+1 = 𝑝𝑛𝑁
𝑢𝑛𝑁+1 = −𝑢𝑛𝑁

The images below show the three initial conditions for the pressure 𝑝(𝑥, 0). The initial
velocity 𝑢(𝑥, 0) was set to zero for all simulations. The following section shows the simulation
plots for each one of the 6 simulations. All snapshots were taken at the same time for each
run in order to compare the results. All runs were made with the following parameters:

ℎ = 0.005 𝑚𝑒𝑡𝑒𝑟
Δ𝑡 = 0.1278 𝑚𝑠

𝐶𝑜𝑢𝑟𝑎𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 = 0.8
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 = 0.005 sec

Animations of these runs are available above (in HTML version only).

12For stability, the Courant number must be less than 1.
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sin(10𝜋𝑥) from 𝑥 = 0.4 to 𝑥 =
0.6

sin(20𝜋𝑥) from 𝑥 = 0.4 to 𝑥 =
0.6

triangle function

Simulation using first initial data and reflect from left end only

This simulation used 𝑝(𝑥, 0) = sin(10𝜋𝑥) from 𝑥 = 0.4 to 𝑥 = 0.6. The pressure wave starts
in the middle, and immediately starts to split into two smaller waves, each one became
half the amplitude of the original wave. Each smaller wave traveled in opposite directions.
The wave that reached the left boundary was reflected back while the wave that reached
the right boundary was absorbed into the boundary. After the left wave reflected back and
eventually reached the right boundary, it was also absorbed. This resulted in the original
wave disappearing. As the left wave reflected from the left end, it also flipped upside down,
such that the leading half of the wave remained with positive amplitude and the trailing
half remained with the negative amplitude.

T=0
0.089 ms

0.166 ms
0.294 ms

0.524 ms
1.227 ms

1.751 ms 1.956 ms

3.259 ms

4.691 ms

4.946 ms

5.189 ms

(wave deflect)

Figure 3.65: test typ0 BC 1

Simulation using second initial data and reflect from left end only

These images show the simulation result using 𝑝(𝑥, 0) = sin(20𝜋𝑥) from 𝑥 = 0.4 to 𝑥 = 0.6.
Each frame is taken at the same time as the first simulation. The same result can be seen
as described in the first simulation.
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T=0
0.089 ms

0.166 ms
0.294 ms

0.524 ms
1.227 ms

1.751 ms 1.956 ms

3.259 ms

4.691 ms

4.946 ms

5.189 ms

(wave deflect)

Figure 3.66: test typ2 BC 1

Simulation using third initial data and reflect from left end only

This simulation uses the triangle pulse as the initial data. Each frame is taken at the same
time as the first simulation. The same result can be seen as was described in the first
simulation.
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Figure 3.67: test type 4 BC 1

Simulation using first initial data and reflecting from both ends

The following 3 simulations are a repeat of the first 3, but using boundary conditions
that caused the pressure wave to reflect from both the left and the right boundaries. This
resulted in the wave reflecting back and forth all the time. When both waves met again at
the middle, the original wave form was reconstructed for a very short time but in an upside
down form compared to its original form, and then the whole cycle was repeated. When
the waves met again for the second time in the middle, the original wave was reconstructed
again, but this time with the same shape it was at the initial time. This process continued
again. Since there was no diffusion term present in the PDE, this cycle repeated for the
duration of the simulation and no energy was lost. The times of each frame is the same as
was used in all the previous simulations.
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Figure 3.68: test type 0 BC 2

Simulation using second initial data and reflect from both ends

This simulation used 𝑝(𝑥, 0) = sin(20𝜋𝑥) from 𝑥 = 0.4 to 𝑥 = 0.6, but using boundary condi-
tions that caused the pressure wave to reflect from both the left and the right boundaries.
The same observation can be made as with the previous simulation.
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Figure 3.69: test type 2 BC 2

Simulation using third initial data and reflect from both ends

This simulation used a triangle pressure wave as its initial data but using boundary condi-
tions that caused the pressure wave to reflect from both the left and the right boundaries.
The same observation can be made as with the previous simulation.
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Figure 3.70: test type 4 BC 2

3.5.1.3 Part(c)

The boundary conditions given in the problem are

𝑝𝑛0 = 𝑝𝑛1
𝑢𝑛0 = −𝑢𝑛1

𝑝𝑛𝑁+1 =
1
2
�𝑝𝑛𝑁 + 𝑢𝑛𝑁�𝑘𝜌 �

𝑢𝑛𝑁+1 =
1
2

⎛
⎜⎜⎜⎝
𝑝𝑛𝑁
�𝑘𝜌

+ 𝑢𝑛𝑁

⎞
⎟⎟⎟⎠

At the left most cell (cell 0), the acoustic perturbation velocity 𝑢 is negative its value on
the inside cell, therefore the average value of 𝑢 right at the left edge (start of the physical
domain) will be zero, as shown by the following diagram
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Average u = 0 at cell edge

Cell 1 Cell 2

Left 
ghost 
cell

Linear interpolation of u 
between last actual cell 

and ghost cell

Figure 3.71: problem 1 left cell

Physically, this represent a barrier or a wall where perturbation velocity is zero at the wall
resulting in deflection. Having zero velocity at the edge means that the momentum of
the wave is zero at the left boundary. Since momentum is conserved, then it must have
a direction which is opposite to what it was in the previous time step. This is similar to
a ball hitting a perfectly elastic wall. For the pressure boundary conditions, having the
acoustic pressure in the left most cell and the ghost cell being the same means that the
pressure drop or gradient is zero between these two cells. Therefore, no sound will be
transmitted through the boundary since sound is transmitted only due to presence of a
pressure gradient between adjacent spatial points in the medium.

On the right side, when taking the average between the right-most cell and the ghost cell
at the right results in

𝑢𝑟𝑖𝑔ℎ𝑡_𝑒𝑑𝑔𝑒 =
3
4
𝑢𝑛𝑁 +

1
4
𝑝𝑛𝑁
�𝑘𝜌

𝑝𝑟𝑖𝑔ℎ𝑡_𝑒𝑑𝑔𝑒 =
3
4
𝑝𝑛𝑁 +

1
4
𝑢𝑛𝑁�𝑘𝜌

Therefore, the perturbation velocity 𝑢 at the right edge is no longer zero, but it has the
same sign as the velocity at the right most cell. Physically this means the acoustic wave will
continue to have momentum in the same direction and will not reflect. For the pressure,
there exists now a pressure gradient, therefore sound will travel across the right boundary.
Physically, this boundary can be thought of as a sound absorbing wall. (For example, a
wall treated with special paint or covering).

3.5.2 Problem 2

Math 228B
Homework 4
Due Thursday, 3/17/11.

1. In one spatial dimension the linearized equations of acoustics (sound waves) are

pt + Kux = 0

ρut + px = 0,

where u is the velocity and p is the pressure, ρ is the density, and K is the bulk modulus of
compressibility.

(a) Show that this system is hyperbolic and find the wave speeds.

(b) Write a program to solve this system using Lax-Wendroff in original variables on (0, 1)
using a cell centered grid xj = (j − 1/2)h for j = 1 . . . N . Write the code to use ghost
cells, so that different boundary conditions can be changed by simply changing the values
in the ghost cells.

Set the ghost cells at the left by

pn
0 = pn

1

un
0 = −un

1 ,

and set the ghost cells on the right by

pn
N+1 =

1

2

(

pn
N + un

N

√

Kρ

)

un
N+1 =

1

2

(

pn
N√
Kρ

+ un
N

)

.

Run simulations with different initial conditions. Explain what happens at the left and
right boundaries.

(c) Give a physical interpretation and a mathematical explanation of these boundary con-
ditions.

2. A scheme is monotone preserving if the solution, un
j , is monotone in j for all n whenever the

initial condition, u0
j , is monotone in j. Show that if a scheme is TVD, then it is monotone

preserving. Assume that the domain is the whole real line, that the solution satisfies the
asymptotic boundary conditions lim

j→±∞

un
j = U±∞, and that the initial condition has bounded

variation.

3. Write a program to solve the linear advection equation,

ut + aux = 0,

on the unit interval using a finite volume method of the form

un+1
j = un

j − ∆t

h

(

Fj+1/2 − Fj−1/2

)

.

1

Figure 3.72: Problem statement

Given a sequence 𝑢0𝑗 which is monotone in 𝑗, we need to show that when a TVD scheme is
applied to this sequence, the resulting sequence 𝑢𝑛𝑗 is also monotone at any 𝑛. This is the
same as saying that a TVD is monotone preserving.

We are given that the sequence 𝑢𝑛𝑗 has the fixed boundary conditions at 𝑗 = ±∞ for any 𝑛.
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A monotone sequence can be either monotone increasing or monotone decreasing but
not both. A monotone increasing sequence 𝑢 is one where 𝑢𝑗 ≤ 𝑢𝑗+𝑘 for any 𝑗 and for any
𝑘 > 𝑗. A monotone decreasing sequence is one where 𝑢𝑗 ≥ 𝑢𝑗+𝑘 for any 𝑗 and for any 𝑘 > 𝑗.
In the following discussion, a monotone sequence is taken to mean either an increasing or
a decreasing sequence.

The following diagram illustrates this point. In this diagram the scheme is viewed as a
system or an operator which transforms a sequence to a new sequence. We need to show
that this transformation is monotone preserving when the operator is the TVD scheme.

......
Monotone preserving 

scheme ...

Monotone increasing

u j
0 u j

n

Monotone increasing

(for any n)

... ...

Monotone decreasing

u j
0 u j

n

Monotone decreasing

(for any n)

Monotone preserving 
scheme

Figure 3.73: TVD 1 scheme

Since 𝑢0𝑗 (the initial sequence) can be assumed to be monotone, then the total variation of
𝑢0𝑗 is known, which is

𝑇𝑉�𝑢0𝑗 � = |𝑈+∞ − 𝑈−∞|

The total variation is defined as the sum of the total amount the sequence change (in
absolute values). In other words, the TV of the initial sequence is

𝑇𝑉�𝑢0� = �
𝑗
�𝑢0𝑗 − 𝑢0𝑗−1�

= |𝑈+∞ − 𝑈−∞|

𝑇𝑉�𝑢0𝑗 � = |𝑈+∞ − 𝑈−∞| is valid since 𝑢0 is monotone. We could not have said this if 𝑢0
was not monotone. The following diagram helps illustrate why this is the case, showing a
monotone sequence, and showing that adding all the differences between successive values
in the sequence is the same as the difference between the left-most value and the right-most
values (in absolute values).
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...

...

JJ-1 J+1

U

U

TVu0  
j

uj
0  uj1

0  |U  U |

TVu0

Figure 3.74: TVD 2 scheme

The above is similar to walking up a staircase. If we are told that each step could only
go up (or remain flat), then the total height of the overall staircase is the total variation,
which is the sum of the height difference between each 2 successive steps.

We know that a TVD scheme, by definition, is one in which satisfies the following relation
for any 𝑛

𝑇𝑉(𝑢𝑛) ≤ 𝑇𝑉�𝑢0� (1)

We now need to show, that when 𝑢0 is monotone, then 𝑢𝑛 will also be monotone when
applied to a TVD scheme.

The proof will be by contradiction. The idea is to assume that the scheme is TVD, hence
Eq. (1) is true, and then to assume that the scheme, when applied to an initial monotone
sequence 𝑢0 has resulted in a sequence 𝑢𝑛 which is no longer monotone. Then we show
that this result is a contradiction to the assumption, meaning that 𝑢𝑛 must be monotone.

The following proof below is for a monotone increasing sequence 𝑢0, but the same idea of
the proof can be used for a monotone decreasing sequence.

Proof

Let the scheme be TVD, therefore 𝑇𝑉�𝑢0� ≤ 𝑇𝑉(𝑢𝑛), and let a monotone increasing se-

quence be 𝑢0𝑗 with a total variation 𝑇𝑉�𝑢0� = Δ, where Δ is some constant that does not
change with 𝑛. In this problem this constant is given as |𝑈+∞ − 𝑈−∞|.

Let result of applying the TVD scheme to 𝑢0𝑗 be the sequence 𝑢𝑛𝑗 . Now, assume that 𝑢𝑛𝑗 is
no longer a monotone increasing sequence. Since 𝑢𝑛𝑗 is not monotone sequence, it must
contain at least one local minimum and/or one local maximum. To illustrate this in a
diagram, assume 𝑢𝑛𝑗 had one local minimum. The same idea would apply if we assumed a
local maximum.

...

...

JJ-1 J+1

U

ULocal 

minumum

These 2 distances are 

being added to the total 

variation of the initial 

sequence

TVu0

Figure 3.75: TVD 3 scheme
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Since 𝑢𝑛 has a local minimum, then the total variation of 𝑢𝑛𝑗 is now larger than the total
variation of what it would had been if it did not have this local minimum. In the above
diagram, 𝑢𝑛𝑗 is shown as being monotone increasing, except for the one local minimum
which appeared as a result of applying the TVD scheme.

Due to the presence of this local minimum, the total variation has become larger than
|𝑈+∞ − 𝑈−∞|. The extra amount added to 𝑇𝑉�𝑢0� is seen as 2�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�, as this is the distance
needed to be traversed in going down the local minimum and climbing back up the same
level before meeting this local minimum.

Therefore, having a local minimum (or a local maximum) in a sequence increases its
total variation. Therefore 𝑇𝑉(𝑢𝑛) > 𝑇𝑉�𝑢0�. However, we started by assuming that the

scheme is TVD, which means that 𝑇𝑉(𝑢𝑛) ≤ 𝑇𝑉�𝑢0�, so this result is a contradiction to our
assumption.

Therefore 𝑢𝑛𝑗 can not be a non monotone sequence, hence it must be a monotone sequence.
This completes the proof.

3.5.3 Problem 3

Math 228B
Homework 4
Due Thursday, 3/17/11.

1. In one spatial dimension the linearized equations of acoustics (sound waves) are

pt + Kux = 0

ρut + px = 0,

where u is the velocity and p is the pressure, ρ is the density, and K is the bulk modulus of
compressibility.

(a) Show that this system is hyperbolic and find the wave speeds.

(b) Write a program to solve this system using Lax-Wendroff in original variables on (0, 1)
using a cell centered grid xj = (j − 1/2)h for j = 1 . . . N . Write the code to use ghost
cells, so that different boundary conditions can be changed by simply changing the values
in the ghost cells.

Set the ghost cells at the left by

pn
0 = pn

1

un
0 = −un

1 ,

and set the ghost cells on the right by

pn
N+1 =

1

2

(

pn
N + un

N

√

Kρ

)

un
N+1 =

1

2

(

pn
N√
Kρ

+ un
N

)

.

Run simulations with different initial conditions. Explain what happens at the left and
right boundaries.

(c) Give a physical interpretation and a mathematical explanation of these boundary con-
ditions.

2. A scheme is monotone preserving if the solution, un
j , is monotone in j for all n whenever the

initial condition, u0
j , is monotone in j. Show that if a scheme is TVD, then it is monotone

preserving. Assume that the domain is the whole real line, that the solution satisfies the
asymptotic boundary conditions lim

j→±∞

un
j = U±∞, and that the initial condition has bounded

variation.

3. Write a program to solve the linear advection equation,

ut + aux = 0,

on the unit interval using a finite volume method of the form

un+1
j = un

j − ∆t

h

(

Fj+1/2 − Fj−1/2

)

.

1
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Use the numerical flux function

Fj−1/2 = F up

j−1/2
+

|a|
2

(

1 −
∣

∣

∣

∣

a∆t

h

∣

∣

∣

∣

)

δj−1/2,

where F up

j−1/2
is the upwinding flux,

F up

j−1/2
=

{

a uj−1 if a > 0

a uj if a < 0,

and δj−1/2 is the limited difference. Let ∆uj−1/2 = uj −uj−1 denote the jump in u across the
edge at xj−1/2. The limited difference is

δj−1/2 = φ
(

θj−1/2

)

∆uj−1/2,

where

θj−1/2 =
∆uJup−1/2

∆uj−1/2

,

and

Jup =

{

j − 1 if a > 0

j + 1 if a < 0
.

Note that you will need two ghost cells on each end of the domain. Write your program so
that you may choose from the different limiter functions listed below.

Upwinding φ(θ) = 0

Lax-Wendroff φ(θ) = 1

Beam-Warming φ(θ) = θ

minmod φ(θ) = minmod(1, θ)

superbee φ(θ) = max(0, min(1, 2θ), min(2, θ))

MC φ(θ) = max(0, min((1 + θ)/2, 2, 2θ))

van Leer φ(θ) =
θ + |θ|
1 + |θ|

The first three are linear methods that we have already studied, and the last four are high-
resolution methods.

Solve the advection equation with a = 1 with periodic boundary conditions for the different
initial conditions listed below until time t = 5 at Courant number 0.9.

(a) Wave packet: u(x, 0) = cos(16πx) exp(−50(x − 0.5)2).

(b) Smooth, low frequency: u(x, 0) = sin(2πx) sin(4πx).

(c) Step function: u(x, 0)

{

1 if |x − 1/2| < 1/4

0 otherwise
.

Compare the results with the exact solution, and comment on the solutions generated by
the different methods. How do the different high-resolution methods perform in the different
tests? What high-resolution method would you choose to use in practice?

2Figure 3.76: Problem statement

The PDE
𝑢𝑡 + 𝑎𝑢𝑥 = 0

was solved using finite volumemethod using the 7 flux limiter functions listed in the problem
statement above. The following tables summarize the observations made after running
the simulations using each of these limiter functions. Each method was given a letter
grade based on how close it was to the exact solution and how well the numerical solution
appeared. Numerical solutions that showed ripples around the region of discontinuous data
(corners) or showed more spatial lag relative to the exact solution, or had large amount
of diffusion were graded lower than those which did not show any of these result.
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3.5.3.1 part (a) wave packet as initial conditions

Figure 3.77: Initial conditions

method comment grade

Upwinding Very large diffusion seen at wave crest and trough, but no shift (lag). F

Lax-Wendroff
Some diffusion at wave crest and trough, in addition to significant shift

to the left direction relative to exact solution.
B-

Beam-Warming Similar to Lax-Wendroff, but shift was to the right relative to exact solution. B

minmod Diffusion was present at wave crest and trough, but no shifting. C

superbee No shifting and very small amount of diffusion at crest and trough. B+

MC Similar to superbee, but a little more diffusion at crest and trough. B

Van Leer Similar to MC limited, but much more diffusion at crest and trough. B-

Among the high resolution limiter functions, superbee had the best numerical result.

3.5.3.2 part(b) smooth low frequency

Figure 3.78: Initial conditions for part b
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method comment grade

Upwinding No shifting, but large amount of diffusion at crest and trough of the wave. C

Lax-Wendroff No shifting and no diffusion. A

Beam-Warming Very similar to Lax-Wendroff. A

minmod No shifting, but small amount of diffusion was present near crest and trough. B

superbee
No shift and no diffusion, but at crest and trough, solution appeared to be

less smooth than with Lax-Wendroff.
A-

MC
Similar to Lax-Wendroff, a little better than Superbee around

crest and trough.
A

Van Leer No diffusion and no shifting A

Among the high resolution methods, MC and Van Lee had the best results. Among the
non high resolutions method, Lax-Wendroff and Beam-Warming were the best.

3.5.3.3 Part (c) step function

Figure 3.79: Initial conditions for part C

method comment grade

Upwinding
No ripples, solution followed the general form of the step function

but there was large amount of diffusion near the corners.
C

Lax-Wendroff
Large ripples around the corners on the left of the step function.

Less diffusion than upwinding.
C

Beam-Warming The ripples are larger and have a larger extent than Lax-Wendroff. C-

minmod No ripples and little diffusion. An improved version of upwinding. C+

superbee
The best scheme for the step function. No ripples, very closely

followed the exact solution. Very small diffusion was seen.
A-

MC Similar to superbee, but more diffusion. B

Van Leer Similar to MC limited. B+

Among the high resolution methods, superbee was the best. Among the non high resolu-
tions method, Lax-Wendroff and Beam-Warming are best.
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3.5.3.4 Conclusion

Among the high resolutions methods, I would choose superbee. It handled discontinues
data the best and did well for smooth data, even though MC and Van Leer did a little
better on the low frequency data, superbee had less diffusion in the wave packet data. So,
overall, and in particular since it handled discontinues data better than any other flux
limiter function, it is the method I would choose in practice.

Among the non high resolution methods, Lax-Wendroff and Beam-Warming were very
similar. Upwinding did not do well. All the non high resolution methods did relatively
worst in the step function test compared to the high resolution methods, as they were
not able to handle solution near the discontinues regions as well as the high resolution
methods did.

Numerical solutions using all the above methods have been animated and available to run
at my course web page. All the animations run for 5 seconds each.

3.5.4 References

1. Robert Guy, Lecture notes, Math 228B, Numerical Methods for PDEs. Winter 2011,
UC Davis, CA

2. R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems. SIAM, 2007.

3. R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-
sity Press; August 26, 2002.
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3.6 HW 4 animations

These are HW4 animations.

3.6.1 Problem 1 results, Animation of acoustic wave equation
solution using Lax-Wendroff

The following are animated GIFs showing the finite difference numerical solution to prob-
lem 1 as described in the above HW. The scheme used is Lax-Wendroff.

Clicking on an image will start the animation in a new window.

These simulations only show the pressure wave, 𝑝(𝑥, 𝑡) and not the acoustic perturbation
velocity 𝑢(𝑥, 𝑡).

3.6.1.1 pressure Wave reflecting off both the left and the right boundary

This solution was run with boundary conditions which caused the sound wave to reflect
from both boundaries. This is what would happen inside a room with reflective walls such
as concerete or wood.

3.6.1.2 pressure Wave which reflects off the left boundary only and absorbed at
the right boundary

This solution was run with boundary conditions which caused the sound wave to reflect
from only the left boundary but absorbed into the right boundary. This is what would
happen inside a room with one wall treated with material to absorbe the sound waves
reaching it.

3.6.2 Problem 3 results, solving the advection 1-D using finite
volume method

The following are animations of the numerical solution to 𝑢𝑡 + 𝑎𝑢𝑥 = 0. The solution used
the finite volume method using 7 different numerical flux limiter functions to compare
performance.

These 7 methods are defined in the problem statement in the report above.

The methods are

1. Upwinding

2. Lax-Wendroff

3. Beam-Warming

4. minmod (high resolution)

5. superbee (high resolution)

6. MC limited (high resolution)

7. Van Leer (high resolution)

The following tables show the results of the simulations. 4 tables are given. Each table
is for a different initial conditions. In all of these results, the maximum run time was 5
seconds. In order to reduce the size of the animation file, not every frame was captured
from the simulation run.

Courant number used was 0.9, the advection speed was set at 𝑎 = 1 and grid spacing was
ℎ = 0.005 meters. The domain is [0, 1] using cell centered grid.

These animations will run only once and stop at 5 seconds. To run it again, simply reload
the web page using the browser reload button, this will cause the animation to start from
the beginning again.
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3.6.2.1 Results for wave packet as initial conditions

The wave packet is defined as 𝑢(𝑥, 0) = 𝑐𝑜𝑠(16𝜋𝑥)𝑒𝑥𝑝(−50(𝑥 − 0.5)2)

3.6.2.2 Results for smooth low frequency initial conditions

The wave packet is defined as 𝑢(𝑥, 0) = 𝑠𝑖𝑛(2𝜋𝑥)𝑠𝑖𝑛(4𝜋𝑥)

3.6.2.3 Results for step function

A step function from 𝑥 = 0.25 to 𝑥 = 0.75.

3.6.2.4 Results for mixed step function and smooth function

The initial condition used for this test is 𝑢(𝑥, 0) = (𝑋 > 0.1)(𝑋 < 0.3) + 𝑒𝑥𝑝(−200(𝑋 − 0.75)2)

This test just combines the step function with the low frequency smooth test done above.
Hence, the same comments will apply as above.
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