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1 Misc. notes
1. it is OVER !! finals finished.

2. math 121A. reviewHW11 done 11 PMwed. review of HW12...finished 3:20 AM. (4 hrs per
HW to go over!). getting ready to start on HW 13...6 AM, almost finished HW 13 most of
the rest I know, about calculus of variations, studied that before, but need to finish HW13
(may be one more hr). Then start on the HW 10 (Fourier series). will do after wake up.
now going to sleep. 1 pm Thursday.. finishing HW 13 now.... 3:00 PM finished HW 13. This
contained important stuff. 8 hrs study only today
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3. now midnight Thursday. 1 hr study. went over some problem from midterm2, and La-
grange equations physics problem derivations. need to finish review of midterm 2, then
back to HW review. it is 4 AM now, read notes and finished midterm, starting on HW 9,
getting tired, will not be able to review everything before finals, need to try to concentrate
on last stuff only... 4:40 AM finished HW 10 (Fourier series, easy stuff), now starting on
HW 9...5:20 AM Friday, finished HW 9. HW 8 is on Laurent series, so important... 6:40 AM,
ok finished. going to eat something and sleep and wake up for the exam.

4. finals for math 121B over. I made 3 very stupid mistakes., can’t believe I did those. blow
away 3 fairly easy questions I could have full credit on. but I think I can pull a B in the
course. keep fingers crossed.

5. Practice more chapter 7 Fourier series tricks (odd/even) stuff

6. Make sure I remember 𝑑𝑠2 in all coordinates

7. learn better how to evaluate this:�− 1
𝑥
𝑑
𝑑𝑥
�
𝑛
� sin 𝑥

𝑥
�

8. HW’s for 121B went over since midterm exam: HW5 chapter 12, HW 6 done, HW 7 stop
here. Saturday night.., HW11done,HW12working on..finished.Now studying probability
distribution, last HW

9. write down the same space for the 2 die, with the sum, some problems use it.

questions:

1. Why did we use series method to find solution to Legendre ODE, but used generalized
series method to find solution to Bessel ODE? how to know when to use which? Answer:
if ODE has something like (1 − 𝑥)𝑦′′, then at 𝑥 = 0we’ll have problem, then use the gener-
alized power series)

2. The Legendre ODE is solved using series method, assuming 𝑙 is an integer. We get one
solution which is Legendre function of first kind 𝑝𝑙(𝑥). What if 𝑙 is not an integer? A: Leg-
endre 𝑃𝑙 is only defined for integer 𝑙? YES? No, there are tables for non-integer, but these
cases are not important.

3. What if we get a legendre ODE and we want to find solution for 𝑥 > 1 ? Since legendre
functions are only defined for 𝑥 less than one (to have convergence). Physics example?
usually 𝑥 is the cosine of an angle so it is ≤ 1.

4. What if 𝑙 is not an integer in the legendre ODE? how to get a solution? this is special cases,
not important, look up handbooks.

5. problem I solved in HW#6, chapter 12, 16.3. check my solution. I claimed that the second
solution is 𝑁𝑝 but since I found 𝑃 NOT to be an integer, hence the second solution is
one containing log and not a combination of 𝐽−𝑝. When I solved it in mathematica, I get
this solution (notice complex number?), could this second solution be converted to log
function? answer: OK, the solution I did will turn out to have log in it if I put p=integer
and use L’hospital’s rule to evaluate.
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6. When solving for equation 16.1 on page 516, we seem to only take the positive root for the
variables, why? see for example page 516. 𝑏 = 2 but it is really 𝑏 = ±2 answer: OK, any of
these will give a good solution, just pick one.

7. on page 528, can I just set 𝑛 = 0 always to solve for the indical equation as shown in the
example? is it better to solve this using the∑ directly as shown in the example instead of
setting up a table? table seems more clear, but the example method seems shorter.

8. How to solve chapter 16, 4.1 part (c) using Bayes rule? I write: Let A=event first chair is
empty, let B=event second chair is empty. We need to find 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃𝐴(𝐵) = (

1
10 )(

1
9 ) =

1
90 , but the answer should be 1

45 , what is it I am doing wrong? wrong. 𝑃(𝐴) = 1/5 𝑛𝑜𝑡 1/10.

9. for problem HW 12, chapter 16, 4.8, part b. It says given 2 cards drawn from deck, if you
know one is an ace, what it the chance the BOTH are an ace? I know how to solve by the
book. but why can I not say the following: since we KNOW that one card is an ace, then
the chance that both cards are an ace is just the chance the second card being an ace (since
we know the first is an ace). So this should give 3

51

10. random variable is defined as a function on the sample space. however, it is multivalued.
for example, if x= sum of 2 die throw, then more than one event can give the same random
variable. is this OK? I thought a function must be single valued? answer: I am wrong. it is
NOT multivalued.

11. check that my solution for chapter 16, 5.1 MATH 121B is correct, I have solution on paper.
this is the last HW
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2 Table summary of topics to study

2.1 Math 121A

ch. title topics Exam

1 series infinite series, power series,def. of covergence,
tests for convergence,

1

test for alternating series, power series, bino-
mial series

2 complex numbers finding circle of convergence (limit test), Eu-
ler formula

1

power and roots of complex numbers, log, in-
verse log

4 partial differentiation total diffenertials, chain rule, implicit differen-
tiation

1

partial diff for max and minumum, Lagrange
muktipliers,

change of variables Leibniz rule for differneti-
ation of integrals

14 complex functions Def. of analytic fn, Cauchy-Riemann condi-
tions, laplace equation,

1

contour integrals, Laurent series, Residue the-
orm, methods

of finding residues, pole type, evaluating inte-
grals by

residue, Mapping, conformal

7 Fourier series expansion of function in sin and cosin, com-
plex form, how to find

2

coeff, Dirichlet conditions, different intervals,
even/odd, Parseval’s

15 Laplace/Fourier transforms Laplce transform, table, how to use Laplace to
solve

F

ODE, Methods of finding inverse laplace, par-
tial fraction, convolution,

sum of residues, Fourier transform, sin/con-
sine transforms, Direc Delta

Green method to solve ODE using impluse

9 Calculus of variations Euler equation solving, Setting up Lagrange
equations, KE, PE

F

Solving Euler with constrainsts
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2.2 Math 121B

ch. title topics Exam

11 Special functions Gamma, Debta, Error function 1

12 Series solution to ODE Legendre, Bessel, orthogonality 1

13 PDE separation of variables, Laplace (steady
state),

2

Heat (diffusion),Wave equation. Laplce in dif-
ferent coordinates,

Laplacian, Wave in different coord.Poission
equation

16 Probability Baye’s formula, how to find probability, meth-
ods

final

of counting, Random variable concept, mean,
Var, SD,

distributions (Binomial, Gauss, Poisson)
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3 Math 121 A notes

3.1 Chapter 1. Series

𝑎 + 𝑎𝑟 + 𝑎𝑟2 +⋯ + 𝑎𝑟𝑛 +⋯ = 𝑎(1−𝑟𝑛)
1−𝑟 , Now, if |𝑟| < 1, then the above is convergent, hence we get

𝑆𝑛 =
𝑎
1−𝑟 . Always start by looking for a constant term 𝑎 here, and then a term that is multiplied

each time, 𝑟 here.

3.2 Chapter 14. Complex functions

3.2.1 How to find the residue?

seek book page 598

3.3 Chapter 7. Fourier Series

Expand a periodic function (must be periodic) in sin and cos functions.

Let the function angular velocity be 𝜔, which is defined as angles (radian) per second, i.e. 𝜔 =
2𝜋
𝑇 where 𝑇 is the period in time, which is the time to make 2𝜋 angle.

𝑓(𝑥) =
1
2
𝑎0 + 𝑎1 cos𝜔𝑥 + 𝑎2 cos 2𝜔𝑥+

⋯ + 𝑏1 sin𝜔𝑥 + 𝑏2 sin 2𝜔𝑥 +⋯

So, for a function whose period is 2𝜋, i.e. 𝜔 = 1, the above can be written as

𝑓(𝑥) =
1
2
𝑎0 + 𝑎1 cos 𝑥 + 𝑎2 cos 2𝑥+

⋯ + 𝑏1 sin 𝑥 + 𝑏2 sin 2𝑥 +⋯

Now, to find 𝑎𝑛 and 𝑏𝑛

𝑎𝑛 =
2
𝑇 �𝑇

𝑓(𝑥) cos𝜔𝑛𝑥 𝑑𝑥

𝑏𝑛 =
2
𝑇 �𝑇

𝑓(𝑥) sin𝜔𝑛𝑥 𝑑𝑥

So, I only need to remember ONE formula

note: Remember, when finding 𝑎𝑛, for 𝑎0, do it separately, set 𝑛 = 0 in the integral first and
integrate that, do not set 𝑛 = 0 in the result, leave that for 𝑛 ≠ 0. For 𝑏𝑛 we do not need to worry
about this, since for sin series it starts at 𝑛 = 1

note: When will this expansion converge to 𝑓(𝑥)?when the function meet the Dirichlet conditions.
Basically it needs to be periodic of period 2𝜋, single valued, has finite number of jumps. At
jumps, the series converges to average of the function there.

In these kind of problems, we are given a function 𝑓(𝑥) and asked to find its F. series. So need to
apply the above formulas to find the coefficients. Need to know some tricks for quickly evaluating
the integrals.

Now there is a complex form of all the above equations.

𝑓(𝑥) = 𝑐0 + 𝑐1𝑒𝑖𝑥 + 𝑐−1𝑒−𝑖𝑥 + 𝑐2𝑒2𝑖𝑥 + 𝑐−2𝑒−2𝑖𝑥 +⋯ =
∞
�
−∞

𝑐𝑛 =
1
𝑇 �𝑇

𝑓(𝑥) 𝑒−𝑖𝑛𝑥𝜔 𝑑𝑥

Now, 𝜔, is the angular velocity. i.e. 𝜃 = 𝜔𝑡, so for ONE period 𝑇, 𝜃 = 2𝜋, hence 𝜔 = 2𝜋
𝑇 , so 𝑐𝑛 can

be written as
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𝑐𝑛 =
1
𝑇 �𝑇

𝑓(𝑥) 𝑒−𝑖𝑛𝑥
2𝜋
𝑇 𝑑𝑥

Notice that in this chapters we use distance for period (i.e. wave length 𝜆) instead of time as
period 𝑇. it does not matter, they are the same, choose one. i.e. we can say that the function
repeats every 𝜆, or the function repeats every one period 𝑇.

When using 𝜆 for period, say −𝑙, 𝑙 or −𝜋, 𝜋 the above equation becomes

𝑐𝑛 =
1
2𝑙 �

𝑙

−𝑙
𝑓(𝑥) 𝑒−𝑖𝑛𝑥

2𝜋
2𝑙 𝑑𝑥 =

1
2𝑙 �

𝑙

−𝑙
𝑓(𝑥) 𝑒−𝑖𝑛𝑥

𝜋
𝑙 𝑑𝑥

note: Above integral for 𝑐𝑛 is for negative 𝑛 as well as positive 𝑛. In non-complex exponential
expansion, there is no negative 𝑛, only positive.

note: 𝑐−𝑛 = �̄�𝑛
note: there is a relation between the 𝑎𝑛, 𝑏𝑛, and the 𝑐𝑛 which is

𝑎𝑛 = 𝑐−𝑛 + 𝑐𝑛 and 𝑏𝑛 = 𝑖(−𝑐−𝑛 + 𝑐𝑛)

IF given 𝑓(𝑥), defined over (0, 𝐿), The algorithm to find Fourier series is this:

IF asked to find a(n) i.e. the COSIN series, THEN
extend f(x) so that it is EVEN (this makes b(n)=0)
and period now is 2L
ELSE
IF asked to find b(n), i.e. the SIN series, THEN
extend f(x) to be ODD (this makes a(n)=0)
and period now is 2L
ELSE we want the standard SIN/COSIN
period remains L, and use the c(n) formula
(and remember to do the c(0) separatly for the DC term)
END IF
END IF

3.3.1 Parseval’s theorem for fourier series

This theory gives a relation between the average of the square of 𝑓(𝑥) over a period and the
fourier coefficients. Physically, it says that this:

the total energy of a wave is the sum of the energies of the individual harmonics it carries

Average of �𝑓(𝑥)�
2
= � 12𝑎0�

2
+ 1

2
∑∞

1 𝑎
2
𝑛 +

1
2
∑∞

1 𝑏
2
𝑛 over ONE period.

In complex form, Average of �𝑓(𝑥)2� = ∑∞
−∞|𝑐𝑛|

2. Think of this like pythagoras theorem.

For example, given 𝑓(𝑥) = 𝑥, then �𝑓(𝑥)�
2
= 1

2
∫1

−1
𝑥2𝑑𝑥 = 1

3 , then
1
3 = ∑

∞
−∞|𝑐𝑛|

2

In the above we used the standard formula for average of a function, which is

average of 𝑓(𝑥) = 1
𝑇
∫
𝑇
𝑓(𝑥) 𝑑𝑥, here we should need to square 𝑓(𝑥)

3.4 Chapter 15. Integral transforms (Laplace and Fourier transforms)

3.4.1 Laplace and Fourier transforms definitions

𝐹 𝑓(𝑥) = 𝐹(𝑝) = �
∞

0
𝑓(𝑥) 𝑒−𝑝𝑥 𝑑𝑥 𝑝 > 0

𝐹 𝑔(𝑥) = 𝑔(𝛼) =
1
2𝜋 �

∞

−∞
𝑓(𝑥) 𝑒−𝑖𝛼𝑥 𝑑𝑥

Associate Fourier with 1
2𝜋 . (mind pic: Fourier=Fraction i.e.→ 1

2𝜋) and Fourier goes from −∞ to
+∞ (mind pic: Fourier=whole Floor), Fourier imaginary exponent, Laplace real exponent.
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Note: Laplace transform is linear operator, hence 𝐿�𝑓(𝑡) + 𝑔(𝑡)� = 𝐿𝑓(𝑡) + 𝐿𝑔(𝑡) and 𝐿�𝑐 𝑓(𝑡)� =
𝑐 𝐿𝑓(𝑡)

3.4.2 Inverse Fourier and Laplace transform formulas

(We do not really use the inverse Laplace formula directly (called Bromwich integral), we find
inverse Laplace using other methods, see below)

𝑓(𝑥) =
1
2𝜋𝑖 �

𝑐+𝑖 ∞

𝑐−𝑖 ∞
𝐹(𝑧) 𝑒𝑧𝑡 𝑑𝑧 𝑡 > 0 Inverse laplace

𝑓(𝑥) =
1
2𝜋 �

∞

−∞
𝑔(𝛼) 𝑒𝑖𝛼𝑥 𝑑𝛼 Inverse fourier

The Fourier transform has 2 other siblings to it (which Laplace does not), these are the sin and
cos transform and inverse transform. I’ll add these later but I do not think we will get these in
the exam.

Note: To get the inverse Laplace transform the main methods are

1. using partial fractions to break the expression to smaller ones we can lookup in tables

2. Use Convolution. i.e. given 𝑌 = 𝐿�𝑓1� 𝐿�𝑓2� → 𝑦 = ∫
𝑡

0
𝑔(𝑡 − 𝜏) 𝑓(𝜏) 𝑑𝜏 = 𝑔 ⊗ 𝑓 use this as an

alternative to partial fraction decomposition if easier. mind pic: 𝑡 one time, 𝜏 2 times.

3. Use the above integral (Bromwich) directly (hardly done)

4. To find 𝑓(𝑡) from the Laplace transform, instead of using the above formula, we can write

𝑓(𝑡) = sum of residues of 𝐹(𝑧)𝑒𝑧𝑡 at all poles. For example given 𝐹(𝑧), we multiply it by 𝑒𝑧𝑡,
and then find all the poles of the resulting function (i.e. the zeros of the denominator),
then add these.

Note: To find Fourier transform , 𝑔(𝛼), must carry the integration (i.e. apply the integral directly,
no tables like with Laplace).

Note:we use Laplace transform as a technique to solve ODE.Why dowe need Fourier transform?
To represent an arbitrary function (must be periodic or extend to be period if not) as a sequence
of sin/cosine functions. And why do we do this? To make it easier to analyze it and find what
frequency components it has. For continuous function, use fourier transform (integral).

note: Function must satisfy Dirichlet conditions to use in fourier transform or Fourier series.

note: Fourier series expansion of a function will accurately fit the function as more terms are
added. But in places where there is a jump, it will go to the average value of the function at the
jump.

question: When do we use fourier series, and when to use fourier transform? Why do we need
F. transform if we can use F. Series? We use F. transform for continuous frequencies. What does
this really mean?

3.4.3 Using Laplace transform to solve ODE

Remember

𝐿(𝑦) = 𝑌

𝐿�𝑦′� = 𝑝𝑌 − 𝑦0
𝐿�𝑦′′� = 𝑝2𝑌 − 𝑝𝑦0 − 𝑦′0

note: 𝑝 has same power as order of derivative. do not mix up where the 𝑝 goes in the 𝑦′′ equation.
remember the 𝑦′0 has no 𝑝 with it. mind pic: think of the 𝑦0 as the senior guy since coming from
before so it is the one who gets the 𝑝.

note: if 𝑦0 = 𝑦′0 = 0 (which most HW problem was of this sort), then the above simplifies to
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𝐿�𝑦′� = 𝑝𝑌

𝐿�𝑦′′� = 𝑝2𝑌

So given an ODE such as 𝑦′′ + 4𝑦′ + 𝑦 = 𝑓(𝑡) → �𝑝2 + 4𝑝 + 4�𝑌 = 𝐿(𝑓(𝑡))

i.e. just replace 𝑦′′ by 𝑝2, etc... This saves lots of time in exams. Now we get an equation with 𝑌
in terms of 𝑝, now solve to find 𝑦(𝑡) from 𝑌 using tables. Notice that solution of ODE this way
gives a particular solution, since we used the boundary conditions already.

For an ODE such as

𝐴𝑦′′ + 𝐵𝑦′ + 𝐶𝑦 = ℎ(𝑡)

its Laplace transform can be written immediately as

𝐴𝑝2𝑌 + 𝐵𝑝𝑌 + 𝐶𝑌 = 𝐿 ℎ(𝑡)

𝑌 =
𝐿 ℎ(𝑡)

𝐴𝑝2 + 𝐵𝑝 + 𝐶

whenever the B.C. are 𝑦′0 = 0 and 𝑦0 = 0

3.4.4 Partial fraction decomposition

When denominator is linear time quadratic or quadratic time quadratic PFD is probably needed.

This is how to do PFD for common cases

1
(𝑥 + 𝑐)�𝑥2 + 𝑥 + 6�

=
𝐴

(𝑥 + 𝑐)
+

𝐵𝑥 + 𝐶
�𝑥2 + 𝑥 + 6�

(quadratic in denominator case)

1
�𝑥2 + 3𝑥 + 4��𝑥2 + 𝑥 + 6�

=
𝐴𝑥 + 𝐵

�𝑥2 + 3𝑥 + 4�
+

𝐶𝑥 + 𝐷
�𝑥2 + 𝑥 + 6�

(quadratic in denominator case)

1
(𝑥 + 𝑐)(𝑥 + 𝑑)

=
𝐴

(𝑥 + 1)
+

𝐵
(𝑥 + 𝑑)

𝑥2 + 𝑥 + 𝑏
(𝑥 + 𝑐)(𝑥 − 𝑑)2

=
𝐴

(𝑥 + 1)
+

𝐵
(𝑥 − 𝑑)

+
𝐵

(𝑥 − 𝑑)2
(repeated roots case)

we get some equations which we solve for 𝐴,𝐵, etc... This part can be time consuming in exam.

3.4.5 convolution

Main use of convolution in this class is to find the inverse laplace transform.

If we are given the transform itself (i.e. frequency domain) function, and asked to find the
inverse, i.e. the time domain function. Then look at the function given, if it made of 2 functions
multiplied by each others, then good chance we use convolution.
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Find g(t) 
from 
tables

Find h(t) 
from 
tables

We want to 
find y(t)

Step (1) convert to 
this form. Most of 
the time we use 
Tables here to find 
g(t) and h(t) 

Step (2) Evaluates the 
above convolution by 
computing the convolution 
integration. Done. The 
result is y(t)

Finding the inverse Laplace transform using convolution

Example:

Given this equation

𝑌(𝑝) = 𝐺(𝑝) 𝐻(𝑝)

We first find the inverse of 𝐺(𝑝) and 𝐻(𝑝) separately. i.e. we find 𝑔(𝑡) and ℎ(𝑡). we usually do this
by looking up tables. Once we do this step, the next step is to take the convolution of these 2
time domain functions.

The result, will be 𝑦(𝑡) , i.e. the inverse of 𝑌(𝑧).

Notice that you canNOT just say 𝑦(𝑡) = 𝑔(𝑡) ℎ(𝑡), DONOTDOTHIS. Butwemust use convolution
to find 𝑦(𝑡):

𝑦(𝑡) = 𝑔(𝑡) ⊛ ℎ(𝑡)

𝑦(𝑡) = �
𝑡

0
𝑔(𝜏) ℎ(𝑡 − 𝜏) 𝑑𝜏

= �
𝑡

0
𝑔(𝑡 − 𝜏) ℎ(𝜏) 𝑑𝜏

Notice, choose the simpler function to put the (𝑡 − 𝜏) in. It does not matter if it is the 𝑓 or the ℎ.
remember, the 𝜏 occur 2 times in the integral, the 𝑡 one time.

The above means

ℒ 𝑦 = ℒ 𝑔(𝑡) ℒ ℎ(𝑡) = ℒ� 𝑔(𝑡) ⊛ ℎ(𝑡 )�
𝑦 = 𝑔(𝑡) ⊛ ℎ(𝑡 )

The above comes when we want to solve an ODE. Usually we know 𝑔(𝑡) which is the transfer
function, and ℎ(𝑡) is given (the forcing function of the ODE).

For Fourier transform, convolution can be used as well. it is very similar equation:

𝐹 �𝑔(𝑡)� 𝐹 (ℎ(𝑡)) =
1
2𝜋

ℱ� 𝑔(𝑡) ⊛ ℎ(𝑡 )�

So difference is the 1
2𝜋
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3.4.6 Parseval’s theorem

(total energy in a signal equal the sum of the energies in the harmonics that make up the signal).

�
∞

−∞
�𝑔(𝛼)�2 𝑑𝛼 =

1
2𝜋 �

∞

−∞
�𝑓(𝑥)�2 𝑑𝑥

3.4.7 Dirac delta and Green function for solving ODE

Dirac delta function is a function defined for 𝑡, who has an area of 1 and zero width and∞ value
at 𝑡. (not a real function). Used to represent an impulse force being applied at 𝑡.

When multiplied with any other function inside an integral will given that other function at
the time the impulse was applied. i.e. ∫𝑓(𝑡) 𝛿(𝑡 − 𝑡0) 𝑑𝑡 = 𝑓(𝑡0), here 𝑡0 is the time the impulse is
applied.

note: Fourier transform of delta function: 𝑔(𝛼) = 1
2𝜋
∫∞

−∞
𝛿(𝑥 − 𝑥0)𝑒−𝑖𝛼𝑥 𝑑𝑥 = 𝑒−𝑖𝛼𝑥0

note: Green function 𝐺(𝑡, 𝑡′) is the response of a system (solution of an ODE) when the force
(input) is an impulse at time 𝑡 = 𝑡′

How to use Green function to solve an ODE? Given 𝐺(𝑡, 𝑡′), 𝑦(𝑡) = ∫
∞

0
𝐺(𝑡, 𝑡′) 𝑓(𝑡′) 𝑑𝑡′ Where 𝑓(𝑡)

is the force on the system (the RHS to the ODE). Usually we are given the Green function and
asked to solve the ODE. So just need to apply the above integral.

Question: ask about if the above is correct for the finals or is it possible we need to find G as
well?

Solving an ODE using green method Here we are given an ODE, with a forcing function (i.e.
nonhomogeneous ODE). And given 2 solutions to it, and asked to find the particular solution.

Example, 𝑦′′ − 𝑦 = 𝑓(𝑡) and solutions are 𝑦1, 𝑦2 then the particular solution is 𝑦𝑝 = 𝑦2∫
𝑦1 𝑓(𝑡)
𝑊 𝑑𝑡 −

𝑦1∫
𝑦2 𝑓(𝑡)
𝑊 𝑑𝑡where𝑊 =

�
�

𝑦′1 𝑦′2
𝑦1 𝑦2

�
�

3.5 Chapter 2. Complex Numbers

note: When given a problem such as evaluate (−2 − 2𝑖)
1
5 , always start by finding the length

of the complex number, then extract it out before converting to the 𝑟𝑒𝑖𝑛𝜃 form. For example,

(−2 − 2𝑖)
1
5 = 2√2 �

−1

√2
− 𝑖

√2
� , the reason is that now the stuff inside the brackets has length ONE.

So we now get 2√2 �
−1

√2
− 𝑖

√2
� = 2√2 𝑒−

3
4𝜋𝑖 and only now apply the last raising of power to get

�2√2 𝑒−
3
4𝜋𝑖�

1
5
= 2

3
10 𝑒

3
4 𝜋𝑖+2𝑛𝜋

5 for 𝑛 = 0, 1, 2, 3,⋯ make sure not to forget the 2𝑛𝜋, I seem to forget
that.

3.6 Chapter 9. Calculus of variations

3.6.1 Euler equation

How to construct Euler equation 𝑑
𝑑𝑥
� 𝜕𝐹
𝜕𝑦′
�− 𝜕𝐹

𝜕𝑦 = 0. If integrand does not depend on 𝑥 then change

to 𝑦. Example∫
𝑥1

𝑥2
𝑦′2 𝑦 𝑑𝑥 → ∫𝑦1

𝑦2

1
𝑥′2 𝑦 �𝑥

′ 𝑑𝑦� → ∫𝑦1
𝑦2

1
𝑥′ 𝑦 𝑑𝑦 this is done bymaking the substitution

𝑦′ = 1
𝑥′ and 𝑑𝑥 = 𝑥

′ 𝑑𝑦. Now Euler equation changes from 𝑑
𝑑𝑥
� 𝜕𝐹
𝜕𝑦′
� − 𝜕𝐹

𝜕𝑦 = 0 to 𝑑
𝑑𝑦
� 𝜕𝐹
𝜕𝑥′
� − 𝜕𝐹

𝜕𝑥 = 0.

Normally, 𝜕𝐹
𝜕𝑦 will be zero. Hence we end up with 𝑑

𝑑𝑥
� 𝜕𝐹
𝜕𝑦′
� = 0 and this means 𝜕𝐹

𝜕𝑦′ = 𝑐, and so we
only need to do ONE integral (i.e. solve a first order ODE). If I find myself with a 2 order ODE
(for this course!) , I have done something wrong since all problems we had are of this sort.

3.6.2 Lagrange equations

are just Euler equations, but one for each dimension.

𝐹 is now called 𝐿. where 𝐿 = 𝑇 − 𝑉 where 𝑇 = 𝐾.𝐸. and 𝑉 = 𝑃.𝐸., 𝑇 = 1
2𝑚𝑣

2, 𝑉 = 𝑚𝑔ℎ
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So given a problem, need to construct 𝐿 ourselves. Then solve the Euler-Lagrange equations

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇� �

−
𝜕𝐿
𝜕𝑥

= 0

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇� �

−
𝜕𝐿
𝜕𝑦

= 0

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇� �

−
𝜕𝐿
𝜕𝑧

= 0

The tricky part is finding 𝑣2 for different coordinates. This is easy if you know 𝑑𝑠2, so just remem-
ber those

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 (polar)
𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑑𝑧2 (cylindrical)
𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2 (spherical)

So to find 𝑣2 just divide by 𝑑𝑡2 and it follows right away the following

𝑣2 = �̇�2 + 𝑟2�̇�2 (polar)
𝑣2 = �̇�2 + 𝑟2�̇�2 + �̇�2 (cylindrical)
𝑣2 = �̇�2 + 𝑟2�̇�2 + 𝑟2 sin2 𝜃 �̇�2 (spherical)

To help remember these: Note 𝑑𝑠2 all start with 𝑑𝑟2 + 𝑟2𝑑𝜃2 for each coordinates system. So just
need to remember the third terms. (think of polar as subset to the other two). Also see that each
variable is squared. So the only hard think is to remember the last term for the spherical.

Remember that in a systemwith particles, need to find the KE and PE for each particle, and then
sum these to find the whole system KE and PE, and this will give one 𝐿 for the whole system
before we start using the Lagrange equations.

3.6.3 Solving Euler-Lagrange with constraints

The last thing to know is this chapter is how to solve constraint problems. This is just like solving
for Euler, expect now we have an additional integral to deal with.

So in these problems we are given 2 integrals instead of one. One of these will be equal to some
number say 𝑙.

So we need to minimize 𝐼 = ∫
𝑥1

𝑥2
𝐹(𝑥, 𝑦′, 𝑦) 𝑑𝑥 subject to constraint that 𝑔 = ∫

𝑥1
𝑥2
𝐺(𝑥, 𝑦′, 𝑦) 𝑑𝑥 = 𝑙

Follow the same method as Euler, but now we write

𝑑
𝑑𝑥�

𝜕
𝜕𝑦′

(𝐹 + 𝜆𝐺)� −
𝜕
𝜕𝑦
(𝐹 + 𝜆𝐺) = 0

So replace 𝐹 by 𝐹 + 𝜆𝐺

This will give as equation with 3 unknowns, 2 for integration constants, and one with 𝜆, we
solve for these given the Boundary conditions, and 𝑙 but we do not have to do this, just need to
derive the equations themselves.

Some integrals useful to know in solving the final integrals for the Euler problems are these
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�
𝑐

�𝑦2 − 𝑐2
𝑑𝑦 = 𝑐 cosh−1�

𝑦
𝑐
� + 𝑘

�
𝑐

�1 − 𝑐2 𝑦2
𝑑𝑦 = 𝑐 sin−1�𝑐 𝑦� + 𝑘

�
𝑐

𝑦�𝑦2 − 𝑐2
𝑑𝑦 =

1
𝑐
cos−1�

𝑐
𝑦 �

+ 𝑘

4 MATH 121B Notes

4.1 Chapter 12. Series solution of ODE and special functions

Bessel ODE 𝑥2 𝑦′′ + 𝑥 𝑦′ + �𝑥2 − 𝑝2�𝑦 = 0 defined for INTEGER and NON integer 𝑃

first solution 𝑦1 = 𝐽𝑝(𝑥) = ∑
−1𝑛

Γ(𝑛+1)Γ�𝑛+𝑝+1�
� 𝑥
2
�
2𝑛+𝑝

(for 𝑝 an integer or not)

second solution 𝑦2 = 𝑁𝑝(𝑥) = 𝑌𝑝(𝑥) =
cos�𝜋𝑝�𝐽𝑝(𝑥)−𝐽−𝑝

sin𝜋𝑝 (note: 𝑝 here is NOT an integer)

second solution 𝑦𝑥 contains a log function. note: 𝑝 here IS an integer.

Orthogonality ∫1

0
𝑥 𝐽𝑝(𝑎𝑥) 𝐽𝑝(𝑏𝑥) 𝑑𝑥 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 𝑖𝑓 𝑎 ≠ 𝑏
1
2 𝐽

2
𝑝+1(𝑎) =

1
2 𝐽

2
𝑝−1(𝑎) =

1
2 𝐽

′2
𝑝 (𝑎) 𝑖𝑓 𝑎 = 𝑏

𝑎, 𝑏 are zeros of 𝐽𝑝

recursive formula 𝑑
𝑑𝑥
�𝑥𝑝𝐽𝑝� = 𝑥𝑝𝐽𝑝−1,

𝑑
𝑑𝑥�

1
𝑥𝑝 𝐽𝑝� = −

1
𝑥𝑝 𝐽𝑝+1, 𝐽𝑝−1 + 𝐽𝑝+1 =

2𝑝
𝑥 𝐽𝑝, 𝐽𝑝−1 − 𝐽𝑝+1 = 2𝐽′𝑝

𝐽′𝑝 = −
𝑝
𝑥 𝐽𝑝 + 𝐽𝑝−1 =

𝑝
𝑥 𝐽𝑝 − 𝐽𝑝+1 NOTICE: No Rodrigues formula for Bessel func, since

not polyn.

notes: We used a generalized power series method to find the solutions.

IF 𝑝 is NOT an integer, then 𝐽𝑝 and 𝐽−𝑝 (or 𝑁𝑝) are two independent solutions

IF 𝑝 is an integer, then 𝐽𝑝 and 𝐽−𝑝 are NOT two independent solutions, use log for 𝑦2

𝐽𝑝 is called Bessel function of first kind, and 𝑌𝑝 is called second kind. 𝑝 is called the
ORDER.

IF 𝑝 = 𝑛 + 1
2 , a special case, we get spherical bessel functions 𝑗𝑛(𝑥) and 𝑦𝑛(𝑥)

𝑗𝑛(𝑥) = �
𝜋
2𝑥 𝐽𝑛+ 1

2
(𝑥) = 𝑥𝑛�− 1

𝑥
𝑑
𝑑𝑥
�
𝑛
� sin 𝑥

𝑥
�
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Legendre ODE �1 − 𝑥2� 𝑦′′ − 2𝑥 𝑦′ + 𝑙(𝑙 + 1)𝑦 = 0 defined for INTEGER 𝑙 only

first solution 𝑦1 = 𝑃𝑙(𝑥) examples: 𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) =
1
2
�3𝑥2 − 1�, 𝑃3(𝑥) =

1
2
�5𝑥3 − 3𝑥�

𝑃4(𝑥) =
1
8
�35𝑥4 − 30𝑥2 + 3�, 𝑃5(𝑥) =

1
8
�63𝑥5 − 70𝑥3 + 15𝑥�

second sol. We do not use this. Called Legendre polynomials of second kind 𝑄𝑙(𝑥)

Orthogonality ∫1

−1
𝑃𝑙(𝑥) 𝑃𝑚(𝑥) 𝑑𝑥 = 0 if 𝑚 ≠ 𝑛 , also ∫

1

−1
𝑃𝑙(𝑥) × �any poly degree < 𝑙 � 𝑑𝑥 = 0

Normalization ∫1

−1
[𝑃𝑙(𝑥)]

2𝑑𝑥 = 2
2𝑙+1

Generating function Φ(𝑥, ℎ) = 1

��1−2𝑥ℎ+ℎ2�
, |ℎ| < 1, Φ(𝑥, ℎ) = 𝑃0(𝑥) + ℎ𝑃1(𝑥) + ℎ2𝑃2(𝑥) +⋯ =

∞
�
𝑙=0
ℎ𝑙𝑃𝑙(𝑥)

recursive formula later, see book page 491

Rodrigues 𝑃𝑙 =
1
2𝑙𝑙!

𝑑𝑙

𝑑𝑥𝑙
�𝑥2 − 1�

𝑙

notes: we used series method to find the solution (not generalized series method).

𝑥must be less than 1, this is needed to have convergence. Hence Legendre solution
only defined

over −1, 1. Also, 𝑙 is assumed to be a non-negative integer.𝑙 is called the ORDER of
legendre poly.

Associated Legendre �1 − 𝑥2� 𝑦′′ − 2𝑥 𝑦′ + �𝑙(𝑙 + 1) − 𝑚2

1−𝑥2 �𝑦 = 0

first solution 𝑦1 = 𝑃𝑚𝑙 (𝑥) = �1 − 𝑥2�
𝑚
2 𝑑𝑚

𝑑𝑥𝑚
�𝑝𝑙(𝑥)�

second solution do not use

Orthogonality did not cover, but should be the same as Legendre polynomials 𝑃𝑙

Normalization ∫1

−1
�𝑃𝑚𝑙 (𝑥)�

2
𝑑𝑥 = 2

2𝑙+1
� 𝑙+𝑚!
𝑙−𝑚!

�

example using recursive formula for Legendre: Φ(𝑥, ℎ) = 1

��1−2𝑥ℎ+ℎ2�
, let 𝑦 = 2𝑥ℎ − ℎ2 then

Φ(𝑥, ℎ) = 1

��1−𝑦�
= 1 + 1

2𝑦 +
1
2
3
2

2! 𝑦
2 + ⋯, then sub back for 𝑦, and simplify we get Φ = 1 + 𝑥ℎ +

ℎ2� 32𝑥
2 − 1

2
� +⋯ = 𝑃0 + ℎ𝑃1 + ℎ𝑃2 +⋯, hence 𝑃0 = 1 , 𝑃1 = 𝑥, 𝑃2 = �

3
2𝑥

2 − 1
2
�,etc..

Series solution: 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯

Generalized series solution: 𝑦 = 𝑎0𝑥𝑠 +𝑎1𝑥𝑠+1 +𝑎2𝑥𝑠+2 +⋯ solve for 𝑠, we get indicial eq. for each
𝑠 we solve again to find the 𝑎0 and the 𝑎1 solutions. Final solution is the sum of the solutions for
both 𝑠 values. Will only get 2 solutions in total (for second order ODE).

4.1.1 Leibniz Rule for differentiation of product

𝑑𝑛

𝑑𝑥𝑛
�𝑓𝑔� =

⎛
⎜⎜⎜⎜⎜⎝
𝑛

0

⎞
⎟⎟⎟⎟⎟⎠
𝑑0

𝑑𝑥0
𝑓
𝑑𝑛

𝑑𝑥𝑛
𝑔 +

⎛
⎜⎜⎜⎜⎜⎝
𝑛

1

⎞
⎟⎟⎟⎟⎟⎠
𝑑
𝑑𝑥
𝑓
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑔 +

⎛
⎜⎜⎜⎜⎜⎝
𝑛

2

⎞
⎟⎟⎟⎟⎟⎠
𝑑2

𝑑𝑥2
𝑓
𝑑𝑛−2

𝑑𝑥𝑛−2
𝑔 +⋯ +

⎛
⎜⎜⎜⎜⎜⎝
𝑛

𝑛

⎞
⎟⎟⎟⎟⎟⎠
𝑑𝑛

𝑑𝑥𝑛
𝑓
𝑑0

𝑑𝑥0
𝑔

=
𝑑0

𝑑𝑥0
𝑓
𝑑𝑛

𝑑𝑥𝑛
𝑔 + 𝑛

𝑑
𝑑𝑥
𝑓
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑔 +

𝑛 × 𝑛 − 1
2!

𝑑2

𝑑𝑥2
𝑓
𝑑𝑛−2

𝑑𝑥𝑛−2
𝑔 +⋯ +

𝑑𝑛

𝑑𝑥𝑛
𝑓
𝑑0

𝑑𝑥0
𝑔

For example 𝑑9

𝑑𝑥9
(𝑥 sin 𝑥) = 𝑥 𝑑9

𝑑𝑥9 sin 𝑥+9×
𝑑
𝑑𝑥𝑥

𝑑3

𝑑𝑥3 sin 𝑥+ rest is ZERO terms, soweget 𝑑9

𝑑𝑥9
(𝑥 sin 𝑥) =

𝑥 cos 𝑥 + 9 sin 𝑥 this is much faster than actually differentiating 9 times !
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This can be remembered since it is the same form as the binomial expansion

�𝑓 + 𝑔�
𝑛
=

⎛
⎜⎜⎜⎜⎜⎝
𝑛

0

⎞
⎟⎟⎟⎟⎟⎠𝑓

0 𝑔𝑛 +

⎛
⎜⎜⎜⎜⎜⎝
𝑛

1

⎞
⎟⎟⎟⎟⎟⎠𝑓

1 𝑔𝑛−1 +

⎛
⎜⎜⎜⎜⎜⎝
𝑛

2

⎞
⎟⎟⎟⎟⎟⎠ 𝑓

2 𝑔𝑛−1 +⋯+

⎛
⎜⎜⎜⎜⎜⎝
𝑛

𝑛

⎞
⎟⎟⎟⎟⎟⎠ 𝑓

𝑛 𝑔0

�𝑓 + 𝑔�
9
= 𝑔9 + 9 𝑓 𝑔8 +

9 × 8
2!

𝑓2 𝑔7 +⋯+ 𝑓9

4.1.2 Finding second solution for ODE

when the indicial equation gives only one value for 𝑠 (from the generalized power seriesmethod),
we can find the second solution by assuming

𝑦2 = 𝑦1 ln(𝑥) +
∞
�
𝑛=0

𝑏𝑛 𝑥𝑛+𝑠

Then find 𝑦′, 𝑦′′, from these, and sub back into ODE and set 𝑛 = 0 to solve for the new indicial
equation, find 𝑠 from it (should get one solution), then most likely you’ll find 𝑏𝑛 = 0 for all
𝑛 > 0 (for the HW’s we did), and so just need to use 𝑏0𝑥𝑛+𝑠 and this gives the complete solution.
𝑦 = 𝐴 𝑦1 + 𝐵 𝑦2 = 𝐴 𝑦1 + �𝑦1 ln(𝑥) + ∑

∞
𝑛=0 𝑏𝑛 𝑥

𝑛+𝑠�

note: IF when solving the indicial equation, 2 values for 𝑠 that differ by an integer from each
others (say 4, 6), then must use the value 6, also when we solve for the second solution, 𝑠 there
must come out to be the first 𝑠which we did not use for the first solution, i.e. 4 in this example
(so I really do not need to solve for 𝑠 again!, expect I need to find the recursive formula).

4.2 Chapter 16. Probability

Let A, B are 2 successive events.

𝑃𝐴(𝐵) is the probability that B will happen KNOWING that A has already happened.

𝑃(𝐴𝐵) is the prob. that A and B will both happen

𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃𝐴(𝐵)
= 𝑃(𝐵)𝑃𝐵(𝐴)

Or

𝑃𝐴(𝐵) =
𝑃(𝐴𝐵)
𝑃(𝐴)

If 𝐴 and 𝐵 are independent, then 𝑃𝐴(𝐵) = 𝑃(𝐵)

Then it follows that

𝑃(𝐴𝐵) = 𝑃(𝐴) (𝐵) If A,B independent

Probability that A OR B will happen is:

𝑃(𝐴 + 𝐵) = 𝑃(𝐴) + (𝐵) − 𝑃(𝐴𝐵)
𝑃(𝐴 + 𝐵) = 𝑃(𝐴) + (𝐵) IF A,B are mutually exclusive

This means that 𝑃(𝐴𝐵) = 0 if they are mutually exclusive (obvious)

𝑃(𝐴 + 𝐵 + 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − {𝑃(𝐴𝐵) + 𝑃(𝐴𝐶) + 𝑃(𝐵𝐶)} + 𝑃(𝐴𝐵𝐶)

note: 𝑃𝑛𝑟 = number of permutations (arrangements) or 𝑛 things taken 𝑟 at a time. 𝑃𝑛𝑟 =
𝑛!

(𝑛−𝑟)! Here
order is important. i.e. ABC is DIFFERENT from CAB, hence this number will be larger than the
one below.
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⎛
⎜⎜⎜⎜⎜⎝
𝑛

𝑟

⎞
⎟⎟⎟⎟⎟⎠ = 𝐶

𝑛
𝑟 =

𝑛!
(𝑛 − 1)! 𝑟!

Number of combinations OR selections of 𝑛 things 𝑟 at a time. here order is NOT important. so
ABC is counted the same as CAB, hence this number will be smaller.

note: In how many ways can 10 people be seated on a bench with 4 seats?

A)

⎛
⎜⎜⎜⎜⎜⎝
10

4

⎞
⎟⎟⎟⎟⎟⎠4! =

10!
6!4!4! =

10!
6! = 10 × 9 × 8 × 7

To understand this:

⎛
⎜⎜⎜⎜⎜⎝
10

4

⎞
⎟⎟⎟⎟⎟⎠ is the number of ways 4 people can be selected out of 10. ONCE those

4 people have been selected, then there are 4! different ways they can be arranged on the bench.
Hence the answer is we multiply these together.

note: Find number of ways of putting 𝑟 particles in 𝑛 boxes according to the 3 kinds of statistics.

Answer

1. For Maxwell-Blotzman (MB) it is 𝑛𝑟

2. For Fermi-Dirac (FM), it is 𝑛𝐶𝑟

3. For Bose-Einstein (BE) it is 𝑛+1𝐶𝑟

note: If asked this: there is box A which has 5 red balls and 6 black balls, and box B which has 5
red balls and 8 white balls, what is the prob. of picking a red ball? Answer:

P(pick box A) P(pick red ball from it) + P(pick box B) P(pick red ball from it)

note: If we get a problem such as 2 boxes A,B, and more than more try picking balls, it is easier
to draw a tree diagram and pull the chances out the tree than having to calculate them directly
in the exam. Tree can be drawn in 2 minutes and will have all the info I need.

note: write down the cancer chance problem.

note: random variable 𝑥 is a function defined on the sample space (for the example, the sum of
2 die throw). The probability density is the probability of each random variable.

average or mean of a random variable 𝜇 = ∑𝑥𝑖 𝑃𝑖 where 𝑃𝑖 is the probability of the random
variable.

The Variance Var measures the spread of the random variable around the average, also called
dispersion defined as

𝑉𝑎𝑟(𝑥) = ��𝑥𝑖 − 𝜇�
2
𝑃𝑖

Standard deviation is another measure of the dispersion, defined as 𝜎(𝑥) = √𝑉𝑎𝑟(𝑥)

Distribution function is just a histogramof the probability density. it tells onewhat the probability
of a random variable being less than a certain 𝑥 value. see page 711.
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4.3 Chapter 13. PDE

𝑃𝐷𝐸 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑡𝑒𝑠

Laplace 𝑢�𝑥, 𝑦, 𝑧� ∇ 2𝑢 = 0 describes steady state (no time) of region with no
source

for example, gravitional potential with nomatter, elec-
trostatic

potential with no charge, or steady state Temp. distri-
bution

Poisson 𝑢�𝑥, 𝑦, 𝑧� ∇ 2𝑢 = 𝑓�𝑥, 𝑦, 𝑧� Same as Laplace, i.e. sescribes steady state, howevere

here the source of the field is present. 𝑓�𝑥, 𝑦, 𝑧� is
called

the source density. i.e. it is a function that describes
the

density distribution of the source of the potential.

Diffusion or 𝑢�𝑡, 𝑥, 𝑦, 𝑧� ∇ 2𝑢 = 1
𝛼2

𝜕𝑢
𝜕𝑡 Here 𝑢 is usually the temperature 𝑇 function. Now

time

heat equation is involved. So this equation is alive.

Wave equation 𝑢�𝑡, 𝑥, 𝑦, 𝑧� ∇ 2𝑢 = 1
𝑣2

𝜕2𝑢
𝜕𝑡2 Here 𝑢 is the position of a point on the wave at time 𝑡.

Notice the wave equation has second derivative w.r.t.
time

while the diffusion is first derivative w.r.t. time

Helmholtz 𝐹�𝑥, 𝑦, 𝑧� ∇ 2𝐹 + 𝑘2𝐹 = 0 The diffusion and wave equation generate this. This
is the

equation SPACE only solution of the wave and heat equations.
i.e.

𝑢 = 𝐹�𝑥, 𝑦, 𝑧�𝑇(𝑡) is the solution for both heat andwave
eq.

Each of these equations has a set of candidate solutions, which we start with and try to fit the
boundary and initial condition into to eliminate some solution of this set that do not fit until we
are left with the one candidate solution. We then use this candidate solution to find the general
solution, which is a linear combination of it. We use fourier series expansion in this part of the
solution.

In table below I show for each equation what the set of candidate solutions are. Use these to start
the solution with unless the question asks to start at an earlier stage, which is the separation of
variables.

So the algorithm for solving these PDE is

Select THE PDE to use ---->
Obtain set of candidate solution ---->
Eliminate those that do not fit ----->
obtain the general solution by linear combination
(use orthogonality principle here)
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PDE candidate solutions notes

∇ 2𝑢 = 0 𝑢�𝑥, 𝑦� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒𝑘𝑦 cos 𝑘𝑥

𝑒𝑘𝑦 sin 𝑘𝑥

𝑒−𝑘𝑦 cos 𝑘𝑥

𝑒−𝑘𝑦 sin 𝑘𝑥

for 2 dimensions

∇ 2𝑢 = 𝑓�𝑥, 𝑦, 𝑧� 𝑢�𝑥, 𝑦, 𝑧� = − 1
4𝜋
∫∫∫

𝑓�𝑥′,𝑦′,𝑧′�

�
(𝑥−𝑥′)2+�𝑦−𝑦′�

2
+(𝑧−𝑧′)2+

𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′ 𝑓�𝑥′, 𝑦′, 𝑧′� is a function

that describes mass density

distribution evaluated at point

𝑥′, 𝑦′, 𝑧′. The point 𝑥, 𝑦, 𝑧 is

where we are calculating the

potential 𝑢 itself

∇ 2𝑢 = 1
𝛼2

𝜕𝑢
𝜕𝑡 𝑢(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑒−𝑘2𝛼2𝑡 cos 𝑘𝑥

𝑒−𝑘2𝛼2𝑡 sin 𝑘𝑥

for one space dimension

∇ 2𝑢 = 1
𝑣2

𝜕2𝑢
𝜕𝑡2 𝑌 = 𝑋𝑇, where 𝑋(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

cos 𝑘𝑥

sin 𝑘𝑥
𝑇(𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

cos𝜔𝑡

sin𝜔𝑡
𝑣 is the wave velosity, 1D

𝑌(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cos 𝑘𝑥 cos𝜔𝑡

cos 𝑘𝑥 sin𝜔𝑡

sin 𝑘𝑥 sin𝜔𝑡

sin 𝑘𝑥 cos𝜔𝑡

x

y

𝑍 = 𝑋𝑌𝑇, where 𝑋(𝑥) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos 𝑘𝑥𝑥

sin 𝑘𝑥𝑥
𝑌(𝑥) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos 𝑘𝑦𝑥

sin 𝑘𝑦𝑥
2D case in rectangular coord

𝑇(𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

cos𝜔𝑡

sin𝜔𝑡

∇ 2𝐹 + 𝑘2𝐹 = 0

Now the solutions in different coordinates systems

𝑋(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

cos 𝑘𝑥

sin 𝑘𝑥

𝑇(𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

cos𝜔𝑡

sin𝜔𝑡
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4.3.1 Laplace equation in cylindrical coordinates

The Laplacian in cylindrical is ∇ 2𝑢 = 1
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 � +

1
𝑟2

𝜕2𝑢
𝜕𝜃2 +

𝜕2𝑢
𝜕𝑧2 = 0, the solution can be written as

𝑢 = 𝑅(𝑟)Θ(𝜃)𝑍(𝑧)

Cylindrical coordinates

𝑍(𝑧) =

⎧⎪⎪⎨
⎪⎪⎩
𝑒𝑘𝑧

𝑒−𝑘𝑧
, we quickly eliminate the 𝑒𝑘𝑧 since we do not want the potential to blow up as

𝑧 becomes larger. Θ(𝜃) =

⎧⎪⎪⎨
⎪⎪⎩

sin 𝑛𝜃

cos 𝑛𝜃
, 𝑅(𝑟) = 𝐽𝑛(𝑘𝑟) where 𝐽𝑛(𝑘𝑟) is Bessel function of order 𝑛, we

do not use 𝑁𝑛(𝑘𝑟) solutions since we origin is on base of cylinder. see book for more details, all
problems we will get will be like this. We find 𝑘 from boundary conditions, it will turn out to be
the zeros of 𝐽𝑛. From above, the set of candidate solutions for Laplace on cylindrical is

𝑢(𝑟, 𝜃, 𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝐽𝑛(𝑘𝑟) sin 𝑛𝜃 𝑒−𝑘𝑧

𝐽𝑛(𝑘𝑟) cos 𝑛𝜃 𝑒−𝑘𝑧

Now usually we eliminate the 𝜃 dependency if boundary condition is such that it is not de-
pendent of angle. So we get 𝑢(𝑟, 𝜃, 𝑧) = 𝐽0(𝑘𝑚𝑟) 𝑒−𝑘𝑚𝑧 and from this we need to solve 𝑢 =
∑∞

𝑚=1 𝑐𝑚 𝐽0(𝑘𝑚𝑟) 𝑒−𝑘𝑚𝑧, now we use boundary condition to find 𝑐𝑚, for example if given that
base (𝑧 = 0) was at temp (or potential) = 100, then we need to solve 100 = ∑∞

𝑚=1 𝑐𝑚 𝐽0(𝑘𝑚𝑟) and
here to use orthogonality of bessel functions to expand RHS.

4.3.2 Laplace equation in spherical coordinates

The Laplacian in spherical is ∇ 2𝑢 = 1
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑢𝜕𝑟 � +

1
𝑟2 sin𝜃

𝜕
𝜕𝜃
�sin𝜃 𝜕𝑢

𝜕𝜃
� + 1

𝑟2 sin𝜃
𝜕2𝑢
𝜕𝜙2 = 0. Separate

using 𝑢 = 𝑅(𝑟)Θ(𝜃)Φ�𝜙�
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The solutions are Φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin𝑚𝜙

cos𝑚𝜙
and Θ = 𝑃𝑚𝑙 (cos𝜃) and 𝑅(𝑟) =

⎧⎪⎪⎨
⎪⎪⎩
𝑟𝑙

𝑟−𝑙−1
here 𝑙 is an integer

(came from separation of constants by setting 𝑘 = 𝑙(𝑙 + 1)), Here 𝑃𝑚𝑙 is the associated Legendre
function.

Now we quickly discard solution 𝑟−𝑙−1 because we want solution inside the sphere, so our set of

candidate solutions are 𝑢 = 𝑅(𝑟)Θ(𝜃)Φ�𝜙� = 𝑟𝑙 𝑃𝑚𝑙 (cos𝜃)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin𝑚𝜙

cos𝑚𝜙
. For symmetry w.r.t. 𝜙 we

set𝑚 = 0 and solution reduces to 𝑟𝑙 𝑃𝑙(cos𝜃) and then the general solution is 𝑢 = ∑𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃)

4.3.3 Wave equation in polar coordinates

5 General equations

sin 𝑛𝑥 =
𝑒𝑖𝑛𝑥 − 𝑒−𝑖𝑛𝑥

2𝑖

cos 𝑛𝑥 =
𝑒𝑖𝑛𝑥 + 𝑒−𝑖𝑛𝑥

2

�
sin 𝑥
cos 𝑥

𝑑𝑥 = ln(sin 𝑥)

csc 𝑥 =
1

sin 𝑥

average value of 𝑓(𝑥) over [𝑏, 𝑎] =
∫𝑏

𝑎
𝑓(𝑥)𝑑𝑥

𝑏 − 𝑎

cos2 𝑘𝑥 =
1 + cos(2𝑘)

2

sin2 𝑘𝑥 =
1 − cos(2𝑘)

2

sin𝐴 sin𝐵 =
1
2
[ cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵)]

cos𝐴 cos𝐵 =
1
2
[ cos(𝐴 − 𝐵) + cos(𝐴 + 𝐵)]

sin𝐴 cos𝐵 =
1
2
[ sin(𝐴 − 𝐵) + sin(𝐴 + 𝐵)]
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I need a geometric way to visualize these equations, but for now for the exam remember them
as follows: they all start with 𝐴 − 𝐵 , and when the functions being multiplied are different on
the LHS, we get sin on the RHS, else we get cos (think of cos as nicer, since even function :).

� tanh(𝑥) = ln(cosh 𝑥)

� tan 𝑥 = − ln(cos 𝑥)

∫𝑏

𝑎
cos2 𝑘𝑥 𝑑𝑥 = 𝑏−𝑎

2 . if 𝑘(𝑏 − 𝑎) is an integer multiple of 𝜋. (the same for sin2 𝑘𝑥), for example

∫1

−1
cos2 𝜋𝑥 𝑑𝑥 = 1 , ∫

1

−1
cos2 5𝜋𝑥 𝑑𝑥 = 1, ∫

1

−5
cos2 7𝜋𝑥 𝑑𝑥 = 3 , ∫

1

−1
sin2 𝜋𝑥 𝑑𝑥 = 1, etc... this can be very

useful so remember it!

∫𝑏

𝑎
cos 𝑘𝑥 𝑑𝑥 = 0 if over a complete period. same for sin 𝑥, for example ∫

𝜋

−𝜋
cos 𝑘𝑥 𝑑𝑥 = 0

sinh 𝑥 = −𝑖 sin(𝑖𝑥)
cosh 𝑥 = cos(𝑖𝑥)
tanh 𝑥 = −𝑖 tan(𝑖𝑥)

𝑒ln 𝑧 = 𝑧
𝑧𝑏 = 𝑒𝑏 ln 𝑧

1
1 − 𝑥

= 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯

1
1 + 𝑥

= 1 − 𝑥 + 𝑥2 − 𝑥3 +⋯

arctan 𝑥 = 𝑥 −
𝑥3

3
+
𝑥5

5
−⋯

sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−⋯

cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−⋯

sinh 𝑥 = 𝑥 +
𝑥3

3!
+
𝑥5

5!
+⋯

cosh 𝑥 = 1 +
𝑥2

2!
+
𝑥4

4!
+⋯

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
−⋯

ln(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
−⋯ − 1 < 𝑥 ≤ 1

(1 + 𝑥)𝑝 = 1 + 𝑝𝑥 +
𝑝�𝑝 − 1�
2!

𝑥2 + ⋯+ |𝑥| < 1

Leibinz rule for differentiation of integrals

𝑑
𝑑𝑥 �

𝑣(𝑥)

𝑢(𝑥)
𝑓(𝑥, 𝑡) 𝑑𝑡 = 𝑓(𝑥, 𝑣(𝑥))

𝑑
𝑑𝑥
𝑣(𝑥) − 𝑓(𝑥, 𝑢(𝑥))

𝑑
𝑑𝑥
𝑢(𝑥) +�

𝑣

𝑢

𝜕
𝜕𝑥
𝑓(𝑥, 𝑡) 𝑑𝑡

example:
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𝑑
𝑑𝑥 �

2𝑥

𝑥

𝑒𝑥𝑡

𝑡
𝑑𝑡 =

𝑒𝑥(2𝑥)

2𝑥
𝑑
𝑑𝑥
(2𝑥) −

𝑒𝑥(𝑥)

𝑥
𝑑
𝑑𝑥
(𝑥) +�

2𝑥

𝑥

𝜕
𝜕𝑥�

𝑒𝑥𝑡

𝑡 �
𝑑𝑡

=
𝑒2𝑥2

𝑥
−
𝑒𝑥2

𝑥
+�

2𝑥

𝑥

𝑡𝑒𝑥𝑡

𝑡
𝑑𝑡

=
𝑒2𝑥2

𝑥
−
𝑒𝑥2

𝑥
+ �

𝑒𝑥𝑡

𝑥 �
2𝑥

𝑥

To help remember the above 2 formulas, notice that when +𝑥 we get a − shown (i.e. terms flip
flop), but whenwe have −𝑥 the series is all positive terms. These are very important to remember
for problems when finding Laurent expansion of a function.

Expansion of cos and sin around a point different than 0

expand cos(𝑧) around 𝑎, we get

⎛
⎜⎜⎜⎝cos(𝑎) −

cos(𝑎)(𝑧 − 𝑎)2

2!
+
cos(𝑎)(𝑧 − 𝑎)4

4!
−⋯

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝− sin(𝑎)(𝑧 − 𝑎) +

sin(𝑎)(𝑧 − 𝑎)3

3!
⋯
⎞
⎟⎟⎟⎠

For example to expand cos(𝑥) about 𝜋we get

⎛
⎜⎜⎜⎝cos(𝜋) −

cos(𝜋)(𝑧 − 𝜋)2

2!
+
cos(𝜋)(𝑧 − 𝜋)4

4!
−⋯

⎞
⎟⎟⎟⎠ +

=0

���������������������������������������������������⎛
⎜⎜⎜⎝− sin(𝜋)(𝑧 − 𝜋) +

sin(𝑎)(𝑧 − 𝜋)3

3!
⋯
⎞
⎟⎟⎟⎠

= −1 +
1
2
(𝜋 − 𝑧)2 −

1
24
(𝜋 − 𝑧)4 + ⋯

so above is easy to remember. The cos(𝑧) part is the same as around zero, but it has cos(𝑎)
multiplied to it, and the sin part is the same as the sin(𝑧) about zero but has sin(𝑎)multiplied to
it, and the signs are reversed.

For expansion of sin(𝑧) use

⎛
⎜⎜⎜⎝sin(𝑎) −

sin(𝑎)(𝑧 − 𝑎)2

2!
+
sin(𝑎)(𝑧 − 𝑎)4

4!
−⋯

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝cos(𝑎)(𝑧 − 𝑎) −

cos(𝑎)(𝑧 − 𝑎)3

3!
⋯
⎞
⎟⎟⎟⎠

This is the same as the expansion of cos(𝑧) but the roles are reversed and notice the cos part start
now with positive not negative term. SO all what I need to remember is that expansion of cos(𝑧)
starts with cos(𝑎) terms while expansion of sin(𝑧) start with the sin(𝑎) term. This is faster than
having to do Taylor series expansion to find these series in the exam.

Γ�
1
2�
= √𝜋

Γ(𝑃 + 1) = 𝑃Γ(𝑃)
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