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1 chapter 9, problem 2.1

Problem

Write and solve the Euler equation to make the following integral stationary
X2 2

Jxl V1 + y2dx

Solution

Let F = (x,y,y’) = Vxy/1 + 2

The Euler equation is

d (HF) OF
— -—=0

dx ('iy' (')y
ol — 6 / 72| —

Hence the Euler equation becomes



mailto:nma@12000.org

This means that g—; = C for some constant C.

Hence
Vi———=C
V1+y”?
o Gl
x
_ CZ + Czy/z
X = 2
y
C2
X = F
72 C2
G
, C
y =
x —C?
2C
y(x) = +Ci
x—C?
yw &1
2C C e — C2
Let % = —b (some constant), and Let % = a (constant), Hence above becomes
1
ay+b=——=
1
X~ 12
2
ay+b= ¢

Vda? x — 1

This is equation of a parabola.

2 chapter 9, problem 2.3

Problem
Write and solve the Euler equation to make the following integral stationary J: xy/1—y"%dx
Solution

Let F = (x,v,y") = x+/1 — y’2. The Euler equation is

d (8F) OF
- —=0

dx ay’ 6y
2 — ¢ 2] —
- — (xw’l y ) =0

Hence Euler equation becomes

d (OF o
dx \oy’)

This means that g—; = C for some constant C.

oF  —xy’
Ay’ 1—y”?




Hence

-xy _c
1- y/2
2 _ CZ (1 B y/Z)
= 2
xZ _ C C2y/2
72
)
C2
2 _ 2
X = F -
2 _ Cz
X2+ C?
, C

- Vx2 + C2
y (x) = Carcsinh (g) +C4

-C
L arcsinh (f)
C C
C
X —sinh (2 -2
C c C
Let % = —b (some constant). Let % = a (some constant). Hence the above becomes

ax =sinh(ay+b)

3 chapter 9, problem 2.6

Problem

Write and solve the Euler equation to make the following integral stationary f;z (y2 + V) dx
Solution

Let F (x,y,y’) = y’* + /. Since F does not depend on x, we change the integration variable to y. Let
y = %, then dx = j—’;dy. Hence the integral becomes

Y2 1 , Y2 1 ,
Ll (W@)" dy:L (?*’“W) ;

Now F (y,x") = (ﬁ + x’\/y) . The Euler equation changes from % (g;,) g}; 0to 7o ( aF) —9F _
OF _

Now, & = 0 since F does not depend on x,Hence the Euler equation reduces to

- _C_\/y
1
x12

o
1 f—
b+\y

1 _dx

\/k+ _d_y

J dx

Vb + \/‘

4

3 (—2b + +fy) (db + \/y) =x+a Where a is constant of integration

(v5 - 2b) (M)zﬁa

where b is a new constant = —C

Hence the solution is

W



4 chapter 9, problem 3.2

Problem

Write and solve the Euler equation to make the following integral stationary L’:IZ le:?dx

Solution

Let F(x,y,y’) = ‘/I;T Since F does not depend on x, we change the integration variable to y. Let

y' = %, hence dx = Z—’y‘dy. The integral becomes

vz \/1+# , Y2 Vx2 +1
| dy= | oy
Y1 y Y1 y

Now F (y,x’) = —“x:z“ The Euler equation changes from d% (3—5,) - g—g =0 to % (%) - g—i = 0.

But% = 0 since F does not depend on x,Hence the Euler equation reduces to

i OF o
dy \ox’]
OF 0
Ax’  Ox’

y2

xl
- y2q/x/2 +1
Hence
d x’ o
dy y*Vx? + 1

4 .
X = C where C is some constant

yZ x/2+1

Hence

x
=Cuy*
x?+1 v
x?+1 1
X2 _Cy4
e 4=
x/Z_Cy4
1 1-cy
x2 Cy4
ey
\1-Cy?
VC ¢? dx
Ji-cyt dy
VC 4
——— = | dx
\1-Cy?
The solution is el
C 3
y =X+C1

341 -Cy*

Where C; is constant of integration. Let C; = a, C = b hence solution can be written as
VB

341 - byt

=x+a

5 chapter 9, problem 3.4

Problem

Write and solve the Euler equation to make the following integral stationary f;z y\y'? + y? dx
Solution

Let F(x,y,y") = y/y’? + y?. Since F does not depend on x, we change the integration variable to y. Let

y = % and dx = ‘;—’;dy. Hence the integral becomes

Y2 1 Y2
J (y,/ﬁ+y2) x'dy:J yy1+x2 y? dy
U1

U1

4



Now F (y,x") = y4/1 + x’? y2. The Euler equation changes from % (3—;) 9F — 0 to % (a—F

~ay
Butg—g = 0 since F does not depend on x,Hence the Euler equation reduces to

d (oF o
dy \ox’|

:99:' - ai' (57 ¥)

_ XY
)
__ Xy

Hence
d x/ y3 o
dy \ 1+ x72 y?

x 3 .
J = C where C is some constant

1+x72 y?

Hence

x PP =CA1+x2 2

x/2 y6 - C2 (1 +x/2 y2)

X2y = Ct 4 O x4
X (48 - C?y?) = C?

72 Cz
X =% )
(y° -C*y?)
, C
x =

e - C

1
Jar=c|——=a
Yyt - C

The solution is (using Mathematica)

1. (—2iC+2
2

ax=—§zlog y

6 chapter 9, problem 3.6

Problem
Write and solve the Euler equation to make the following integral stationary I;z ﬁyy 7
Solution

72

dx

72
Let F(x,y,y’) = --2—. Since F does not depend on x, we change the integration variable to y. Let

1+y vy’
y = % dx = %dy. Hence the integral becomes

w( oy e (y
J yx21 x'dy z,j—(; xldy
Y1 1+ Y Y1

Il
—

K ( )
= dy
Jy, x'+y

Now F (y,x") = ( z ) The Euler equation changes from -2 (aF) 9F — 0to L ( ‘9F) —-9E _ o,

x'+y dx \oy' ] ~ oy dy
OF

5% = 0since F does not depend on x,Hence the Euler equation reduces to
d (OF
- =0
dy \ ox’

OF 0 y

ox’  Ox' \x' +y

_ (_;)
AL
—y

T @ty
5




Hence J
d (—_y) ~ o
dy \(x’ +y)°

Y C where C is some constant

Hencem
—y=C(x' +y)’

Let C = -k

ffrs
J\/j—ydy [

_E+ y %—x+[3

Where f is the integration constant. Let \/LE = @ a new constant

1, 2 3
x=—--y"+-ayz -
U tgayr - p
Let %(x = a a new integration constant, let —f§ = b a new constant, we get

1
x=ay%—§y2+b

7 chapter 9, problem 3.9

Problem

Write and solve the Euler equation to make the following integral stationary IZ;Z V02 +5sin®0 dg ,
r _ dé

0" =35

Solution

Here F (x,y (x),y’ (x)) becomes F (¢, 0 (¢), 0’ (¢)). Sonow x — ¢,y — 0,y — 0’. Since F (0’, ) does

not depend on ¢, we change the integration variable to 6, so we want to change from 6’ = leg to ¢’ = d¢

Let 0’ = %, do = Z—gd@. Hence the integral becomes

JGZ (1/P + sin 9)¢ do = J‘gzwll + ¢’2sin® 0 dO

F(¢',0)=+/1 + ¢2sin’0

d(aF) SF d(aF) OF _ o OF

So now

The Euler equation changes from

ax |\ ay oy =0t g a7) — 55 =0 35 = 0 since F does not
depend on ¢,Hence the Euler equation reduces to

d (0F\ _
E(aqs') )
OF 0 Yy 2
9 = a5 (1/1+¢ sin 9)

¢’ sin? 0

V1 + ¢72sin® 0

Hence

d ¢’ sin* 0
— =1 =0
d0 \ 1+ ¢’ sin? 0



¢’ sin® 0

vV 1 +¢?sin? 0

= C where C is some constant

¢'sin0 =Cy/ 1 +¢%sin 0
¢*sin* 0 = C* (1 + ¢'*sin®0)
¢ sin* 0 = C* + C* ¢"*sin® 0

Hence

¢/2 — C2
sin* @ — C? sin® 0
, C
¢ =

sin OVsin® 8 — C2

C
d¢ =J do
J sin @Vsin? 6 — C?

-1 \/5@005(9)
C tanh ( \/1—2C2—cos(29))

\V=C?
The last integral value was found using mathematica. Hence

V-C2(p+a) _ V2VC2 cos (0)
—————~ = arctanh
—C V1 —-2C% - cos (26)

p+a=-

Let _v_—g"’ = A, let V2VC? = B, 1 - 2C? = D, then

A (¢ + @) = arctanh M)
D — cos (20)
tanh (A (§ + @) = _Beos®)
D — cos(20)

8 chapter 9, problem 5.2

Problem

Set up Lagrange equations in cylindrical coordinates for a particle of mass m in a potential field V (r, 6, z)
Solution

L =T -V where T is the KE. and V the potential energy. T = %mvz, But

ds® = dr? + r*d0? + dz*

As shown on page 219 equation 4.4 , now differentiate both sides w.r.t. time

d .
zdgd—j:2drf+(r22d0€+2rf’d02) +2dz 2
ds dri+r® d00+rido?+dzz

dt N+ r2d07 + dz?

Hence )
(drf+r2d99+rfd92+dzz)

dr? +r2d0? + dz?

V% =
I used Mathematica to simplify this getting

v = P +r? 0%+ 2

Hence,

K.E.
PE.

1 . ——
L= M (f'2+r2 6 + z"z) -V(r,0,z)

The Lagrange equations are

d (L) oL
5(5)‘5—
),
dt \ 96 00
),
dt \ 0z 0z



Hence, we get

i(mr’)—(mréz—a—v) =0
or

dt
d 9 ov
a(mr 9)+%—0
i(mz’*)+a—V—0
dt 0z

Now differentiating w.r.t. time, and remembering that r (¢) also changes with time.

. ov
mi—-mré*+ — =0
or
m (eré + rzé) + ((99_‘9/ =0
mzZ + —V =0
0z
Hence finally we get
. ov
—_ 2 e
m(r ro ) P
s 10V
m(2r0+r0) =~"%
mzZ = —6—V
9z

9 chapter 9, problem 5.6

Problem

A particle moves on the surface of a sphere of radius a under the action of the earth gravitational field.
Find the 0, ¢ equations of motion. (this is called the spherical pendulum).

Solution

L =T -V where T is the K.E. and V the potential energy. Using spherical coordinates.

x =asinfcos¢, y=asinfsin¢g, z=acosb

Hence a position vector
r=iasinfcos¢ +jasinfsing + k acos

So velocity is

r:i%(asin@cos¢)+j%(asin&sin¢)+k%(acos@)
=i (—asin@sin¢q5+acos@9 cosgi)) +j (asin@cos¢gi§+acos€9 sinqS) +k (—asin@é)

Hence

. . 2 . . 2 N\ 2
F=r|| = \/(—asinesin¢¢+acose 9cos¢) +(asin9€os¢¢+acos€6’ singb) + (—asin9 9)



Then

. . 2 . . 2 N\ 2
vzzfzz(—asin@sin¢¢+acos@0cos¢) +(asin9cos¢¢+acos€9 singb) + (—asin@@)

= [ a® sin® @ sin® ¢ ¢* + a® cos® O 6% cos® ¢ — 2a* sin @ sin ¢ ¢ cos O 6 cos (/5)

+ (a2 sin® 6 cos? ¢ % + a® cos® 0 62 sin® ¢ +2a® sin O cos ¢ cos@ 6 sinp| + (a2 sin® 0 92)

= a*sin® O sin® ¢ ¢ +a? cos? 0 02 cos? ¢ + a® sin® O cos® ¢ §* +a? cos? 6 62 sin® ¢ + a® sin® O H*

=1 =1
— N

= a’¢? sin’ 0 (sin2 ¢ + cos’ ¢) +a%6? cos’ 0 (cos?® ¢ + sin® $) +a%sin’ 0 6?

=1

= a?§?sin® 0 + a%6? (cos2 6 + sin’ 6)

=d° (gbz sin? 0 + 92)
Hence T = %mvz. For a particle, taking mass as one unit. Hence
Lol 2 32
Tzéa (¢ sin” 0 +0)
The P.E. is mga cos 0. Hence the Lagrangian is

L=T-V

1 . .
L= Eaz (q52 sin® @ + 92) —ga cos6
We have 2 independent variables, hence we need 2 Lagrangian equations

d (aL) oL
=0

dt\pg] 06 ~
d (o) oL _
dt\og) a9 ~
o _ g
00
d (0L .
a(%)—aﬁ
oL

oL _ 22 -
50 = ° (gb sin 0 cos@)+ga sin 0

Hence the first equation becomes

i@%_@zo

dt \ 96 00

a’0 - a® (gbz sinf cos 9) —ga sinf =0
ab-a (gbz sin 0 cosﬁ) —gsinf=0

To find the second equation

g—; =q’ (2¢ sin? 9)

% (g—;) = % (az (2¢> sin? 9))
I _y
99



Hence the second equation is
d (L) oL
itl5g) 3
% (a2 (296 sin’ 9)) =0
%(zésnﬁ@) =0
%(zésm‘?@) =0

10 chapter 9, problem 6.1

Problem

Find surface of revolution formed by rotating the curve around the x-axis that has a minimum area
subject to a curve of give length [ joining 2 points.

Solution

Area is

X

I= J 27yy/1 + y?dx (1)

Since integrand does not depend on x we change the independent variable to y. dx = ‘Zl—’;dy, Yy = %

Hence (1) becomes
Y2 1 J
I= 2 1+ — x’ 1
Ll Y[ R (1)

Y2
= J 2ryVNx”? + 1dy

Y1

Hence F (y, x’, x) = 2nyVx’? + 1. Now finding the constraint

gzjds:l

x
= J‘ V1+y2dx
X1

Since integrand does not depend on x we change the independent variable to y. dx = j—’;dy, Yy = %

Hence
Y2 1 J
= B —
I J;/l x'? *

Y2
= Vx?2 +1 dy

Y1
So G = Vx’? + 1. Hence we get

F+AG = (271'ny’2+ 1) +AVx?2 +1

As the new Euler equation (with constrains). Solving

0 since does not depend on x

—_——
d (0 0
d—y(ax,(F+/1G))— a(F+)LG) =0
d (0
— 72 2 —
ay (ﬁx’ (Zﬂy\/x + 1+ AVx2 + 1)) 0

0

d 2yx’ Ax’
(ﬂyx LM )

dy\vVx2+ 1 Vx2+1

10



Hence

2ryx’ Ax’
+ =c
VxZ+1 VxZ+1
2myx’ + Ax’

Vel
x'Qry+A) =cVx2 +1
x? @2y + 2 = (x*+ 1)
72 g
(x?+1)  (2ry+2)>°
(x?+1) _ @ry+A)°

x/2 cZ
1 (2my + 1)
1+ F = (,‘—2
1 (2ry+ )%= ¢?
x? c?
CZ _ x12
(2ry + A)* = ¢?
¢ ’
=x
@y + 1)% = ¢?
dx c
Y Jory+ 1P —¢

c

dx = dy

J‘ N @y + 1) = ¢?

To express this as y a function of x we get

2 2y + A
r (x — ¢1) = arccosh ( 4 )
c

2y + A
c

cosh (2_71 (x - cl)) =
c

c cosh (27” (x=cp) —A

21

We have 3 unknowns, ¢, 1, A that we can use boundary conditions, and length [ to determine.

11 chapter 9, problem 6.2

Problem

Find the equation of the curve subject to a curve of give length [ joining 2 points so that the plane area
between the curve and straight line joining the points is a maximum.

Solution

Area is fy dx. Hence areais I = f;z y dx subject to constraint that f ds=1lor g= f;z V1+y2dx =1
Hence the Euler equation with constrains now becomes

F+AG=y + My? +1

Therefore

d [ d d
E( ,(F+AG)) —d—y(F+AG):0

dy
i L —1=0
dy y?+1

11



This simplifies to

de x+c)

—(x+ c)2

y+cp = =A% — (x +c)?

(y+cl)2 =A% — (x +c)

(y + 01)2 + (x + c)2 A2

This is the equation of a circle.

12 chapter 9, problem 6.5

Problem

Given surface area of solid of revolution, finds its shape to make its volume a maximum.
Solution

Volume is f]ryzds where ds is a small segment of the curve length. Hence

X2
I= I ry?1 + y2dx (1)
X1
Constraint is that area is given, say A. Hence

x2
g= J 2ry\1+y?dx = A (2)
x

Since both integrands do not depend on x we change the independent variable to y. dx = j—’;dy, Yy = %

Hence (1) becomes
2 2 1 ld
I= TY 4 [ 1+ —x
Jxl y x’2 y

X
= j Ty?Vx'2 + 1dy
X1

Y2 1 g
=| 2zy\[1+— x
J;fl ™ x/zx Y

Y2
= j 2ryVNx" + 1 dy
U

And (2) becomes

Hence we get

F+AG = (7ry2 Vx’2 + 1) + 2AryVx? + 1

as the new Euler equation (with constrains) to solve.

i 8
dy
di(a (ny Vx’2 + 14 2AryVx? + )) 0

d ( Ty’x’ N Zlnyx’)
Vx?2+1 VxZ+1

0 since does not depend on x
—_——

)— i(F+)LG) =0

0

12



Hence

Ty’x’ N 2Amyx’ _
VxZ+1 VxZ+1
ry?x’ + 2Amyx’
ry?x’ + 2Amyx’ = cVx’2 + 1
x? (my? + 2/1ﬂy)2 =c? (x%+ 1)
52 o2
xZ+1) (my? + 2Amy)?
(x2+1)  (my®+24my)°
2 2
1 (my? + 2Ary) 2

x12 CZ
1 (my? +20my)° - ¢

(my? + 2Amy)? — 2

c ’
=X
\/(nyz + 2Ay)? — 2
dx c
dy \/(ﬂyz + 2Amy)® — 2
J dx = c dy
© \/(er2 + 2Ay)? — 2
x = ¢ dy
* \/(ﬂyz + 2Ary)? —
[ 1
x = dy
b ry+2dny | 2
=
Hence 2
_ c cosh! (™Y + 2Amy
2ym + 2Ax c

13 chapter 15, problem 8.12

Problem
Solve y” +y = f (x) with y (0) = y (¥) = 0 using 8.17:

x 7
y(x)=-— cosx‘[ sin(x) f (x") dx’ — sinx‘[ cos (x') f (x") dx’
0 x
when f (x) = secx
Solution
x 7
y(x) =—cosx J sin (x") secx’ dx’ — sinx J cos (x") secx” dx’
0 x
Since sec x’ = ﬁ we get

X

oy

y(x) = —cosx‘[

tanx’ dx’ — sinxj dx’
0

X

But Lf tanx’ dx” = —log (cos (x)), Hence

y (x) = cos(x)log (cos (x)) — sinx (%n - x)

1
cos (x)log (cos (x)) — 37 sinx + x sin x

13



14 chapter 15, problem 8.15

Problem
Use Green function method and the given solutions of the homogeneous equation to find a particular
solution to y”” — y = sec h (x), where y; (x) = sinh (x), y; (x) = cosh(x)

Solution
Yp = U2 %dx — 1 %dx (1)
Where f = sech(x)
wol¥ ¥
Yr Y2

coshx sinhx

sinhx coshx
= cosh® x — sinh® x
=1
So from (1) we get
Yy, = cosh (x) f sinh (x) sec h(x) dx — sinh (x) | cosh(x)sech(x) dx

But sech(x) = ﬁ Hence

1 [ 1
yp = cosh (x) J sinh (x) dx — sinh (x) | cosh (x)

cosh x cosh x

= cosh (x) J tan sh (x) dx — sinh (x) J dx

But J tan sh (x) dx = log(cosh (x)), Hence
yp = cosh (x)log (cosh (x)) — x sinh (x)

15 chapter 15, problem 8.17

Problem
Use Green function method and the given solutions of the homogeneous equation to find a particular
solution to y”’ — 2 (csc? (x)) y = sin® (x) , where y; (x) = cotx, yz(x) =1 —x cot(x)

Solution

Note cot (x) = —4— = cos(x)

tan(x) ~ sin(x)’

1
sin(x)

Yp = Yo J %dx -y J %dx (1)

csc(x) =

Where f = sin? (x).

d
y; = I (cot(x)) = —cot?x — 1

_ 1
sin? (x)
And
=L (1-x cot ()
= — — X cot(x
y2 dx
_cos(x) x
- sin(x)  sin® (x)
Therefore
wel¥ ¥
Y1 Y2
1 __cos(x) x
_ sin?(x) sin(x) * sin®(x)
- cos(x) x cos(x)
sin(x) ~ Tsin(x)

_ ( 1 ) (1 X cos(x)) ~ (_cos(x) Lx cos (x)

" sin? (x) sin (x) sin(x)  sin?(x)) sin(x)
—_—— —_——
1 x cos(x) cos?(x) _ xcos (x)

- sin? (x)  sin®(x) sin?(x)  sin®(x)
1 cos? (x)

sin?(x) | sin? (x)

14



So from (1) we get

A COSX 3-2 — XCOSx in®
( X cosx) e Sin” (x) cosx (1 sin(x) ) S (x)d
= - - — X
yp sSin x 1 COSZ(X) sin X _ 1 cosz(x)
T sin?(x) | sin?(x) sin?(x)  sin?(x)
_ Xxcosx  cosx sinx cosx ([ sin’x —x cosx sinx
- sin x —1+cos? x sin x —1+cos’ x
sin?(x) sin?(x)
( X COS x) " cosx sin®x cosx [ sin*x —x cosx sin®x
= —_ - X
sin x —1+4cos?x sin x -1+ cos?x
-3 -3 .
but I = f T = f ISR = f—cosx sinx = 1 cos’ x And
I [ sin*x — x cosx sin®x
J -1+ cos?x
" sin* x — x cosx sin®x
J —sin® x
R
= | —sin?x + x cosx sinx
Ky,
=- J sin? (x) dx + Jx cos (x) sin(x) dx
.2 _x 1 . _ 1 1.
But Jsm (x) dx = % — 7 sin(2x) and fx cos (x) sin(x) dx = —7x cos(2x) + § sin (2x), therefore

- J sin? (x) dx + ‘[x cos (x) sin(x) dx

1 1
—sin2x — —x — —x cos 2x
8 2 4

Hence (2) becomes

x 1 1 1
——+ -=sin(2x)]| + | ——x cos (2x) + — sin (2x
(2 ; sin )) (4 (2x) + 2 sin (2%)

x 1 1 1
—— 4+ —sin(2x) — —x cos (2x) + — sin (2x
~ -+ sin (2x) - Jxcos (2x) + 2 sin (2)

xcosx\ (1 cosx (3 . 1 1
Yyp (x) = (1— - ) —cos“ x| — — —sin 2x — =x — —Xx C0S 2x
sin x 2 sinx \8 2 4
1 9 1xcos® x 3 . cosx 1 cosx 1 CcoS X
=|=-cos*x ———— | — | = sin2x— — —X— — —X COS 2X—
2 2 sinx sinx 2 sinx sin x
1 9 1xcos®x 3 cosx 1 cosx 1 cosx
= —C08“’X — ——— — —sin 2x— —X— + —X COS 2x—
2 2 sinx 8 sinx 2 sinx 4 sin x
1
= Zcotx (x — cosx sinx)

16 chapter 15, problem 8.2

Problem
Solve y” + w?*y = f (t) using y (t) = Iot %
Solution

y () = Jt é sino (t—t') F(¢) dt’

0

t
1
= J —sinw (t — t')sinowt’ dt’
0 W
B — % cos (a + f), hence

But sin a sin f§ = § cos (a —

sinw (t —t") f(t') dt’ when f () = sin wt

1 1
sinw (t —t")sinwt’ = 5 Cos (w(t—-t)—owt') - 5 Cos (w(t=1t")+ ot

1 1
Ecos(tw—Zwt )— Ecosa)t

15



Hence (1) becomes

F11 o1 ,
y(t)=| —=cos(wt—-2wt")— - coswt dt
0 w2 2

1 (t 1 !
= — J cos (wt — 2wt”) dt’ — = cos a)tJ dt’
20 0 2 0

1 [sin(wt - 20t)]"
=—|——| ——tcostw
2w —2w 0o 2

-1 1
= — (sin (wt — 2wt) — sin (wt)) — =t costw
40? 2
1

1
= F sintw — Etcos tow
W

1.
=53 (sintw — wt cos tw)
1)

1
y () = — (sintw — wt cos tw)
200?

17 chapter 15, problem 8.3

Problem
Solve y” + w?y = f (t) using y (t) = fot % sinw (t —t') f(t') dt’ when f (t) = e™!
Solution

y(t) = Jt Leno@—t) £t ar
0 w
1 jt sinw (t—t') e dt’ (1)

w

0

t
Let I = J sinw (t —t') e dt’
0

Integrate by part, let u = sin (ot — wt’) ,v = —e~*

t
I=[sinw(t-1t") (—e_t,)]é - a)‘[ cos (ot — wt’) et dt’
0

t
=sinwt — a)J cos(wt — wt’) et dt’
0

Integrate by parts again. u = cos (ot — wt’) ,v = —e~*

t
1= st o (ot - o) (") o [ 6= )6
0

I =sinwt —w ([—e”" + cos (wt)] + wI)
I = sinowt + we™' — wcos (wt) — w1

I+’ = sinwt + we™ — wcos (wt)

_ sinwt + we™" — w cos (wt)
B 1+ w?
Hence from (1)
) = 1 we™! — wcos (wt) + sin (wt)
v = 1) 1+ w?

18 chapter 9, problem 3.1

Problem
Change the independent variable to simplify the Euler equation and then find the first integral of it.

2 yzds
Solution

2 2 dy 2
ds = (dx) + (dy) =dxy|1+ d_ =dx+1 + ylz
x

Hence

X1 X1
I:J ygds:‘[ y%\/1+y’2dx
X2 X2

16



Since integrand does not depend on x, changing the independent variable to y in order to simplify
solution. Using dx = g—;dy -y = % The integral now becomes

X1 1
I=J Y1+ —;x" dy
X9 X

X1
:I y%Vx’Z+1dy

X2

(N[

F(y,x',x) = yg Vx’2 +1

The Euler equation is

Simplifying gives

dx c

dy o
1
x=J dy
V& -1

We can stop here as the problem did not ask to fully solve the integral.

17
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