HW 13, Math 121 A Spring, 2004 UC BERKELEY

Nasser M. Abbasi

Spring, 2004 Compiled on October 28, 2018 at 4:44pm [public]

Contents

1	chapter 9, problem 2.1	2
2	chapter 9, problem 2.3	3
3	chapter 9, problem 2.6	3
4	chapter 9, problem 3.2	4
5	chapter 9, problem 3.4	5
6	chapter 9, problem 3.6	6
7	chapter 9, problem 3.9	8
8	chapter 9, problem 5.2	9
9	chapter 9, problem 5.6	10
10	chapter 9, problem 6.1	12
11	chapter 9, problem 6.2	14
12	chapter 9, problem 6.5	15
13	chapter 15, problem 8.12	17
14	chapter 15, problem 8.15	18
15	chapter 15, problem 8.17	19
16	chapter 15, problem 8.2	20
17	chapter 15, problem 8.3	21
18	chapter 9, problem 3.1	22

chapter 9, problem 2.1

Problem

Write and solve the Euler equation to make the following integral stationary $\int_{x_1}^{x_2} \sqrt{x} \sqrt{1 + y'^2} dx$ **Solution**

Let $F = (x, y, y') = \sqrt{x}\sqrt{1 + y'^2}$

The Euler equation is

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$$
$$\frac{\partial F}{\partial y} = \frac{\partial}{\partial y}\left(\sqrt{x}\sqrt{1 + y'^2}\right) = 0$$

Hence the Euler equation becomes

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) = 0$$

This means that $\frac{\partial F}{\partial y'} = C$ for some constant C.

$$\frac{\partial F}{\partial y'} = \sqrt{x} \frac{y'}{\sqrt{1 + y'^2}}$$

Hence

$$\sqrt{x} \frac{y'}{\sqrt{1 + y'^2}} = C$$

$$y'^2 = \frac{C^2 (1 + y'^2)}{x}$$

$$x = \frac{C^2 + C^2 y'^2}{y'^2}$$

$$x = \frac{C^2}{y'^2} + k$$

$$y'^2 = \frac{C^2}{x - C^2}$$

$$y' = \frac{C}{\sqrt{x - C^2}}$$

$$y(x) = \frac{2C}{\sqrt{x - C^2}} + C_1$$

$$\frac{y(x)}{2C} - \frac{C_1}{C} = \frac{1}{\sqrt{x - C^2}}$$

Let $\frac{C_1}{C} = -b$ (some constant), and Let $\frac{1}{2C} = a$ (constant), Hence above becomes

$$a y + b = \frac{1}{\sqrt{x - \frac{1}{4a^2}}}$$
$$a y + b = \frac{2a}{\sqrt{4a^2 x - 1}}$$

This is equation of a parabola.

2 chapter 9, problem 2.3

Problem

Write and solve the Euler equation to make the following integral stationary $\int_{x_1}^{x_2} x \sqrt{1 - y'^2} dx$ **Solution**

Let $F = (x, y, y') = x\sqrt{1 - y'^2}$. The Euler equation is

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$$
$$\frac{\partial F}{\partial y} = \frac{\partial}{\partial y}\left(x\sqrt{1 - y'^2}\right) = 0$$

Hence Euler equation becomes

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) = 0$$

This means that $\frac{\partial F}{\partial y'} = C$ for some constant C.

$$\frac{\partial F}{\partial y'} = \frac{-x \ y'}{\sqrt{1 - y'^2}}$$

Hence

$$\frac{-x y'}{\sqrt{1 - y'^2}} = C$$

$$y'^2 = \frac{C^2 (1 - y'^2)}{x^2}$$

$$x^2 = \frac{C^2 - C^2 y'^2}{y'^2}$$

$$x^2 = \frac{C^2}{y'^2} - C^2$$

$$y'^2 = \frac{C^2}{x^2 + C^2}$$

$$y' = \frac{C}{\sqrt{x^2 + C^2}}$$

$$y(x) = C \operatorname{arcsinh}\left(\frac{x}{C}\right) + C_1$$

$$\frac{y - C_1}{C} = \operatorname{arcsinh}\left(\frac{x}{C}\right)$$

$$\frac{x}{C} = \sinh\left(\frac{y}{C} - \frac{C_1}{C}\right)$$

Let $\frac{C_1}{C} = -b$ (some constant). Let $\frac{1}{C} = a$ (some constant). Hence the above becomes

$$a x = \sinh(a y + b)$$

3 chapter 9, problem 2.6

Problem

Write and solve the Euler equation to make the following integral stationary $\int_{x_1}^{x_2} \left(y'^2 + \sqrt{y}\right) dx$ **Solution**

Let $F(x, y, y') = y'^2 + \sqrt{y}$. Since F does not depend on x, we change the integration variable to y. Let $y' = \frac{1}{x'}$, then $dx = \frac{dx}{dy}dy$. Hence the integral becomes

$$\int_{y_1}^{y_2} \left(\frac{1}{x'^2} + \sqrt{y} \right) x' \, dy = \int_{y_1}^{y_2} \left(\frac{1}{x'} + x' \sqrt{y} \right) \, dy$$

Now $F(y, x') = \left(\frac{1}{x'} + x'\sqrt{y}\right)$. The Euler equation changes from $\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$ to $\frac{d}{dy}\left(\frac{\partial F}{\partial x'}\right) - \frac{\partial F}{\partial x} = 0$. Now, $\frac{\partial F}{\partial x} = 0$ since F does not depend on x, Hence the Euler equation reduces to

$$\frac{d}{dy} \left(\frac{\partial F}{\partial x'} \right) = 0$$

$$\frac{d}{dy} \left(-\frac{1}{x'^2} + \sqrt{y} \right) = 0$$

Hence $-\frac{1}{x^2} + \sqrt{y} = C$ where C is some constant

$$-\frac{1}{x^{\prime 2}} = C - \sqrt{y}$$

$$-\frac{1}{C - \sqrt{y}} = x^{\prime 2}$$

$$\frac{1}{b + \sqrt{y}} = x^{\prime 2} \quad \text{where } b \text{ is a new constant} = -C$$

$$\frac{1}{\sqrt{k + \sqrt{y}}} = \frac{dx}{dy}$$

$$\int \frac{dy}{\sqrt{b + \sqrt{y}}} = \int dx$$

$$\frac{4}{3} \left(-2b + \sqrt{y}\right) \left(\sqrt{b + \sqrt{y}}\right) = x + a \quad \text{Where } a \text{ is constant of integration}$$

Hence the solution is

$$\frac{4}{3}\left(\sqrt{y} - 2b\right)\left(\sqrt{b + \sqrt{y}}\right) = x + a$$

4 chapter 9, problem 3.2

Problem

Write and solve the Euler equation to make the following integral stationary $\int_{x_1}^{x_2} \frac{\sqrt{1+y'^2}}{y^2} dx$

Solution

Let $F(x, y, y') = \frac{\sqrt{1+y'^2}}{y^2}$. Since F does not depend on x, we change the integration variable to y. Let $y' = \frac{1}{x'}$, hence $dx = \frac{dx}{dy}dy$. The integral becomes

$$\int_{y_1}^{y_2} \left(\frac{\sqrt{1 + \frac{1}{x'^2}}}{y^2} \right) x' \, dy = \int_{y_1}^{y_2} \frac{\sqrt{x'^2 + 1}}{y^2} \, dy$$

Now $F(y, x') = \frac{\sqrt{x'^2+1}}{y^2}$. The Euler equation changes from $\frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial y} = 0$ to $\frac{d}{dy} \left(\frac{\partial F}{\partial x'} \right) - \frac{\partial F}{\partial x} = 0$.

But $\frac{\partial F}{\partial x} = 0$ since F does not depend on x,Hence the Euler equation reduces to

$$\frac{d}{dy} \left(\frac{\partial F}{\partial x'} \right) = 0$$

$$\frac{\partial F}{\partial x'} = \frac{\partial}{\partial x'} \left(\frac{\sqrt{x'^2 + 1}}{y^2} \right)$$

$$= \frac{x'}{y^2 \sqrt{x'^2 + 1}}$$

Hence

$$\frac{d}{dy}\left(\frac{x'}{y^2\sqrt{x'^2+1}}\right) = 0$$

Hence $\frac{x'}{y^2\sqrt{x'^2+1}} = C$ where *C* is some constant

$$\frac{x'^2}{x'^2 + 1} = C y^4$$

$$\frac{x'^2 + 1}{x'^2} = \frac{1}{C y^4}$$

$$1 + \frac{1}{x'^2} = \frac{1}{C y^4}$$

$$\frac{1}{x'^2} = \frac{1 - Cy^4}{C y^4}$$

$$\frac{\sqrt{C} y^2}{\sqrt{1 - Cy^4}} = x'$$

$$\frac{\sqrt{C} y^2}{\sqrt{1 - Cy^4}} = \frac{dx}{dy}$$

$$\int \frac{\sqrt{C} y^2}{\sqrt{1 - Cy^4}} = \int dx$$

The solution is

$$\frac{\sqrt{C}y^3}{3\sqrt{1-Cy^4}} = x + C_1$$

Where C_1 is constant of integration. Let $C_1 = a$, C = b hence solution can be written as

$$\frac{\sqrt{b}\,y^3}{3\sqrt{1-by^4}} = x + a$$

5 chapter 9, problem 3.4

Problem

Write and solve the Euler equation to make the following integral stationary $\int_{x_1}^{x_2} y \sqrt{y'^2 + y^2} dx$ **Solution**

Let $F(x, y, y') = y\sqrt{y'^2 + y^2}$. Since F does not depend on x, we change the integration variable to y. Let $y' = \frac{1}{x'}$ and $dx = \frac{dx}{dy}dy$. Hence the integral becomes

$$\int_{y_1}^{y_2} \left(y \sqrt{\frac{1}{x'^2} + y^2} \right) x' \, dy = \int_{y_1}^{y_2} y \sqrt{1 + x'^2} \, y^2 \, dy$$

Now $F(y, x') = y\sqrt{1 + x'^2} \frac{y^2}{y^2}$. The Euler equation changes from $\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$ to $\frac{d}{dy}\left(\frac{\partial F}{\partial x'}\right) - \frac{\partial F}{\partial x} = 0$. But $\frac{\partial F}{\partial x} = 0$ since F does not depend on x, Hence the Euler equation reduces to

$$\frac{d}{dy}\left(\frac{\partial F}{\partial x'}\right) = 0$$

$$\frac{\partial F}{\partial x'} = \frac{\partial}{\partial x'} \left(y \sqrt{1 + x'^2 y^2} \right)$$
$$= y \left(\frac{x' y^2}{\sqrt{1 + x'^2 y^2}} \right)$$
$$= \frac{x' y^3}{\sqrt{1 + x'^2 y^2}}$$

Hence

$$\frac{d}{dy} \left(\frac{x' y^3}{\sqrt{1 + x'^2 y^2}} \right) = 0$$

Hence $\frac{x' \ y^3}{\sqrt{1+x'^2 \ y^2}} = C$ where *C* is some constant

$$x' y^{3} = C \sqrt{1 + x'^{2} y^{2}}$$

$$x'^{2} y^{6} = C^{2} (1 + x'^{2} y^{2})$$

$$x'^{2} y^{6} = C^{2} + C^{2} x'^{2} y^{2}$$

$$x'^{2} (y^{6} - C^{2} y^{2}) = C^{2}$$

$$x'^{2} = \frac{C^{2}}{(y^{6} - C^{2} y^{2})}$$

$$x' = \frac{C}{y\sqrt{y^{4} - C^{2}}}$$

$$\int dx = C \int \frac{1}{y\sqrt{y^{4} - C^{2}}} dy$$

The solution is (using Mathematica)

$$a x = -\frac{1}{2}i \log \left(\frac{-2iC + 2\sqrt{-C^2 + y^4}}{y^2} \right)$$

6 chapter 9, problem 3.6

Problem

Write and solve the Euler equation to make the following integral stationary $\int_{x_1}^{x_2} \frac{y \ y'^2}{1+y \ y'} \ dx$ **Solution**

Let $F(x, y, y') = \frac{y y'^2}{1+y y'}$. Since F does not depend on x, we change the integration variable to y. Let

 $y' = \frac{1}{x'}$, $dx = \frac{dx}{dy}dy$. Hence the integral becomes

$$\int_{y_1}^{y_2} \left(\frac{y \frac{1}{x'^2}}{1 + y \frac{1}{x'}} \right) x' \, dy = \int_{y_1}^{y_2} \left(\frac{y \frac{1}{x'^2}}{\frac{x' + y}{x'}} \right) x' \, dy$$

$$= \int_{y_1}^{y_2} \left(\frac{y \frac{1}{x'}}{x' + y} \right) x' \, dy$$

$$= \int_{y_1}^{y_2} \left(\frac{y}{x' + y} \right) \, dy$$

Now $F(y, x') = \left(\frac{y}{x'+y}\right)$. The Euler equation changes from $\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$ to $\frac{d}{dy}\left(\frac{\partial F}{\partial x'}\right) - \frac{\partial F}{\partial x} = 0$. $\frac{\partial F}{\partial x} = 0$ since F does not depend on x, Hence the Euler equation reduces to

$$\frac{d}{dy} \left(\frac{\partial F}{\partial x'} \right) = 0$$

$$\frac{\partial F}{\partial x'} = \frac{\partial}{\partial x'} \left(\frac{y}{x' + y} \right)$$

$$= y \left(-\frac{1}{(x' + y)^2} \right)$$

$$= \frac{-y}{(x' + y)^2}$$

Hence

$$\frac{d}{dy}\left(\frac{-y}{\left(x'+y\right)^2}\right) = 0$$

Hence $\frac{-y}{(x'+y)^2} = C$ where C is some constant

$$-y = C(x'+y)^2$$

Let C = -k

$$y = k (x' + y)^{2}$$

$$\sqrt{\frac{y}{k}} = x' + y$$

$$\sqrt{\frac{y}{k}} - y = x'$$

$$\sqrt{\frac{y}{k}} - y = \frac{dx}{dy}$$

$$\int \sqrt{\frac{y}{k}} - y \, dy = \int dx$$

$$-\frac{y^{2}}{2} + \frac{2}{3}y\sqrt{\frac{y}{k}} = x + \beta$$

Where β is the integration constant. Let $\frac{1}{\sqrt{k}} = \alpha$ a new constant

$$x = -\frac{1}{2}y^2 + \frac{2}{3}\alpha y^{\frac{3}{2}} - \beta$$

Let $\frac{2}{3}\alpha = a$ a new integration constant, let $-\beta = b$ a new constant, we get

$$x = a y^{\frac{3}{2}} - \frac{1}{2}y^2 + b$$

7 chapter 9, problem 3.9

Problem

Write and solve the Euler equation to make the following integral stationary $\int_{\phi_1}^{\phi_2} \sqrt{\theta'^2 + \sin^2 \theta} \ d\phi$, $\theta' = \frac{d\theta}{d\phi}$

Solution

Here F(x,y(x),y'(x)) becomes $F(\phi,\theta(\phi),\theta'(\phi))$. So now $x\to\phi,y\to\theta,y'\to\theta'$. Since $F(\theta',\theta)$ does not depend on ϕ , we change the integration variable to θ , so we want to change from $\theta'=\frac{d\theta}{d\phi}$ to $\phi'=\frac{d\phi}{d\theta}$ Let $\theta'=\frac{1}{\phi'},d\phi=\frac{d\phi}{d\theta}d\theta$. Hence the integral becomes

$$\int_{\theta_1}^{\theta_2} \left(\sqrt{\frac{1}{\phi'^2} + \sin^2 \theta} \right) \phi' \ d\theta = \int_{\theta_1}^{\theta_2} \sqrt{1 + \phi'^2 \sin^2 \theta} \ d\theta$$

So now

$$F(\phi', \theta) = \sqrt{1 + \phi'^2 \sin^2 \theta}$$

The Euler equation changes from $\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$ to $\frac{d}{d\theta}\left(\frac{\partial F}{\partial \phi'}\right) - \frac{\partial F}{\partial \phi} = 0$. Since F does not depend on ϕ , Hence the Euler equation reduces to

$$\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) = 0$$

$$\frac{\partial F}{\partial \phi'} = \frac{\partial}{\partial \phi'} \left(\sqrt{1 + \phi'^2 \sin^2 \theta} \right)$$
$$= \frac{\phi' \sin^2 \theta}{\sqrt{1 + \phi'^2 \sin^2 \theta}}$$

Hence

$$\frac{d}{d\theta} \left(\frac{\phi' \sin^2 \theta}{\sqrt{1 + \phi'^2 \sin^2 \theta}} \right) = 0$$

Hence $\frac{\phi' \sin^2 \theta}{\sqrt{1 + \phi'^2 \sin^2 \theta}} = C$ where *C* is some constant

$$\phi' \sin^2 \theta = C\sqrt{1 + \phi'^2 \sin^2 \theta}$$

$$\phi'^2 \sin^4 \theta = C^2 \left(1 + \phi'^2 \sin^2 \theta\right)$$

$$\phi'^2 \sin^4 \theta = C^2 + C^2 \phi'^2 \sin^2 \theta$$

$$\phi'^2 = \frac{C^2}{\sin^4 \theta - C^2 \sin^2 \theta}$$

$$\phi' = \frac{C}{\sin \theta \sqrt{\sin^2 \theta - C^2}}$$

$$\int d\phi = \int \frac{C}{\sin \theta \sqrt{\sin^2 \theta - C^2}} d\theta$$

$$\phi + \alpha = -\frac{C \tanh^{-1} \left(\frac{\sqrt{2}\sqrt{C^2} \cos(\theta)}{\sqrt{1 - 2C^2 - \cos(2\theta)}}\right)}{\sqrt{-C^2}}$$

The last integral value was found using mathematica. Hence

$$\frac{\sqrt{-C^2} (\phi + \alpha)}{-C} = \operatorname{arctanh} \left(\frac{\sqrt{2} \sqrt{C^2} \cos(\theta)}{\sqrt{1 - 2C^2 - \cos(2\theta)}} \right)$$

Let $\frac{\sqrt{-C^2}}{-C} = A$, let $\sqrt{2}\sqrt{C^2} = B$, $1 - 2C^2 = D$, then

$$A (\phi + \alpha) = \operatorname{arctanh} \left(\frac{B \cos(\theta)}{\sqrt{D - \cos(2\theta)}} \right)$$
$$\tanh(A (\phi + \alpha)) = \frac{B \cos(\theta)}{\sqrt{D - \cos(2\theta)}}$$

8 chapter 9, problem 5.2

Problem

Set up Lagrange equations in cylindrical coordinates for a particle of mass m in a potential field $V(r, \theta, z)$ Solution

L = T - V where T is the K.E. and V the potential energy. $T = \frac{1}{2}mv^2$, But

$$ds^2 = dr^2 + r^2 d\theta^2 + dz^2$$

As shown on page 219 equation 4.4, now differentiate both sides w.r.t. time

$$2 ds \frac{ds}{dt} = 2dr \dot{r} + \left(r^2 2 d\theta \dot{\theta} + 2r \dot{r} d\theta^2\right) + 2dz \dot{z}$$
$$\frac{ds}{dt} = \frac{dr \dot{r} + r^2 d\theta \dot{\theta} + r \dot{r} d\theta^2 + dz \dot{z}}{\sqrt{dr^2 + r^2 d\theta^2 + dz^2}}$$

Hence

$$v^2 = \frac{\left(dr\ \dot{r} + r^2d\theta\ \dot{\theta} + r\ \dot{r}\ d\theta^2 + dz\ \dot{z}\right)^2}{dr^2 + r^2d\theta^2 + dz^2}$$

I used Mathematica to simplify this getting

$$v^2 = \dot{r}^2 + r^2 \, \dot{\theta}^2 + \, \dot{z}^2$$

Hence,

$$L = \overbrace{\frac{1}{2}m \left(\dot{r}^2 + r^2 \dot{\theta}^2 + \dot{z}^2\right)}^{\text{K.E.}} - \overbrace{V(r, \theta, z)}^{\text{P.E.}}$$

The Lagrange equations are

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = 0$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{z}} \right) - \frac{\partial L}{\partial z} = 0$$

Hence, we get

$$\frac{d}{dt}(m\,\dot{r}) - \left(mr\dot{\theta}^2 - \frac{\partial V}{\partial r}\right) = 0$$
$$\frac{d}{dt}\left(mr^2\dot{\theta}\right) + \frac{\partial V}{\partial \theta} = 0$$
$$\frac{d}{dt}(m\dot{z}) + \frac{\partial V}{\partial z} = 0$$

Now differentiating w.r.t. time, and remembering that r(t) also changes with time.

$$m \ddot{r} - mr\dot{\theta}^{2} + \frac{\partial V}{\partial r} = 0$$

$$m \left(2r\dot{r}\dot{\theta} + r^{2}\ddot{\theta} \right) + \frac{\partial V}{\partial \theta} = 0$$

$$m\ddot{z} + \frac{\partial V}{\partial z} = 0$$

Hence finally we get

$$\begin{split} m\left(\ddot{r} - r\dot{\theta}^2\right) &= -\frac{\partial V}{\partial r} \\ m\left(2\dot{r}\dot{\theta} + r\ddot{\theta}\right) &= -\frac{1}{r}\frac{\partial V}{\partial \theta} \\ m\ddot{z} &= -\frac{\partial V}{\partial z} \end{split}$$

9 chapter 9, problem 5.6

Problem

A particle moves on the surface of a sphere of radius a under the action of the earth gravitational field. Find the θ , ϕ equations of motion. (this is called the spherical pendulum).

Solution

L = T - V where T is the K.E. and V the potential energy. Using spherical coordinates.

$$x = a \sin \theta \cos \phi$$
, $y = a \sin \theta \sin \phi$, $z = a \cos \theta$

Hence a position vector

$$\mathbf{r} = \mathbf{i} a \sin \theta \cos \phi + \mathbf{j} a \sin \theta \sin \phi + \mathbf{k} a \cos \theta$$

So velocity is

$$\mathbf{r} = \mathbf{i} \frac{d}{dt} (a \sin \theta \cos \phi) + \mathbf{j} \frac{d}{dt} (a \sin \theta \sin \phi) + \mathbf{k} \frac{d}{dt} (a \cos \theta)$$

$$= \mathbf{i} \left(-a \sin \theta \sin \phi \, \dot{\phi} + a \cos \theta \, \dot{\theta} \, \cos \phi \right) + \mathbf{j} \left(a \sin \theta \cos \phi \dot{\phi} + a \cos \theta \, \dot{\theta} \, \sin \phi \right) + \mathbf{k} \left(-a \sin \theta \, \dot{\theta} \right)$$

Hence

$$\dot{r} = ||\mathbf{r}|| = \sqrt{\left(-a\sin\theta\sin\phi\,\dot{\phi} + a\cos\theta\,\dot{\theta}\cos\phi\right)^2 + \left(a\sin\theta\cos\phi\,\dot{\phi} + a\cos\theta\,\dot{\theta}\,\sin\phi\right)^2 + \left(-a\sin\theta\,\dot{\theta}\right)^2}$$

Then

$$v^{2} = \dot{r}^{2} = \left(-a\sin\theta\sin\phi\dot{\phi} + a\cos\theta\dot{\theta}\cos\phi\right)^{2} + \left(a\sin\theta\cos\phi\dot{\phi} + a\cos\theta\dot{\theta}\sin\phi\right)^{2} + \left(-a\sin\theta\dot{\theta}\right)^{2}$$

$$= \left(a^{2}\sin^{2}\theta\sin^{2}\phi\dot{\phi}^{2} + a^{2}\cos^{2}\theta\dot{\theta}^{2}\cos^{2}\phi - 2a^{2}\sin\theta\sin\phi\dot{\phi}\cos\theta\dot{\phi}\cos\phi\right)$$

$$+ \left(a^{2}\sin^{2}\theta\cos^{2}\phi\dot{\phi}^{2} + a^{2}\cos^{2}\theta\dot{\theta}^{2}\sin^{2}\phi + 2a^{2}\sin\theta\cos\phi\dot{\phi}\cos\theta\dot{\phi}\sin\phi\right) + \left(a^{2}\sin^{2}\theta\dot{\theta}^{2}\right)$$

$$= a^{2}\sin^{2}\theta\sin^{2}\phi\dot{\phi}^{2} + a^{2}\cos^{2}\theta\dot{\theta}^{2}\cos^{2}\phi + a^{2}\sin^{2}\theta\cos^{2}\phi\dot{\phi}^{2} + a^{2}\cos^{2}\theta\dot{\theta}^{2}\sin^{2}\phi + a^{2}\sin^{2}\theta\dot{\theta}^{2}$$

$$= a^{2}\dot{\phi}^{2}\sin^{2}\theta\left(\sin^{2}\phi + \cos^{2}\phi\right) + a^{2}\dot{\theta}^{2}\cos^{2}\theta\left(\cos^{2}\phi + \sin^{2}\phi\right) + a^{2}\sin^{2}\theta\dot{\theta}^{2}$$

$$= a^{2}\dot{\phi}^{2}\sin^{2}\theta + a^{2}\dot{\theta}^{2}\left(\cos^{2}\theta + \sin^{2}\theta\right)$$

$$= a^{2}\left(\dot{\phi}^{2}\sin^{2}\theta + \dot{\theta}^{2}\right)$$

Hence $T = \frac{1}{2}mv^2$. For a particle, taking mass as one unit. Hence

$$T = \frac{1}{2}a^2 \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2 \right)$$

The P.E. is $mqa \cos \theta$. Hence the Lagrangian is

$$L = T - V$$

$$L = \frac{1}{2}a^2 \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2\right) - ga \cos \theta$$

We have 2 independent variables, hence we need 2 Lagrangian equations

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} = 0$$

$$\begin{split} \frac{\partial L}{\partial \dot{\theta}} &= a^2 \dot{\theta} \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) &= a^2 \ddot{\theta} \\ \frac{\partial L}{\partial \theta} &= a^2 \left(\dot{\phi}^2 \sin \theta \, \cos \theta \right) + ga \, \sin \theta \end{split}$$

Hence the first equation becomes

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0$$

$$a^2 \ddot{\theta} - a^2 \left(\dot{\phi}^2 \sin \theta \cos \theta \right) - ga \sin \theta = 0$$

$$a \ddot{\theta} - a \left(\dot{\phi}^2 \sin \theta \cos \theta \right) - g \sin \theta = 0$$

To find the second equation

$$\frac{\partial L}{\partial \dot{\phi}} = a^2 \left(2\dot{\phi} \sin^2 \theta \right)$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) = \frac{d}{dt} \left(a^2 \left(2\dot{\phi} \sin^2 \theta \right) \right)$$

$$\frac{\partial L}{\partial \phi} = 0$$

Hence the second equation is

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} = 0$$

$$\frac{d}{dt} \left(a^2 \left(2\dot{\phi} \sin^2 \theta \right) \right) = 0$$

$$\frac{d}{dt} \left(2\dot{\phi} \sin^2 \theta \right) = 0$$

$$\frac{d}{dt} \left(2\dot{\phi} \sin^2 \theta \right) = 0$$

10 chapter 9, problem 6.1

Problem

Find surface of revolution formed by rotating the curve around the x-axis that has a minimum area subject to a curve of give length l joining 2 points.

Solution

Area is

$$I = \int_{x_1}^{x_2} 2\pi y \sqrt{1 + y'^2} dx \tag{1}$$

Since integrand does not depend on x we change the independent variable to y. $dx = \frac{dx}{dy}dy$, $y' = \frac{1}{x'}$. Hence (1) becomes

$$I = \int_{y_1}^{y_2} 2\pi y \sqrt{1 + \frac{1}{x'^2}} x' dy$$

$$= \int_{y_1}^{y_2} 2\pi y \sqrt{x'^2 + 1} dy$$
(1)

Hence $F(y, x', x) = 2\pi y \sqrt{x'^2 + 1}$. Now finding the constraint

$$g = \int ds = l$$
$$= \int_{x_1}^{x_2} \sqrt{1 + y'^2} dx$$

Since integrand does not depend on x we change the independent variable to y. $dx = \frac{dx}{dy}dy$, $y' = \frac{1}{x'}$.

$$g = \int_{y_1}^{y_2} \sqrt{1 + \frac{1}{x'^2}} x' dy$$
$$= \int_{y_1}^{y_2} \sqrt{x'^2 + 1} dy$$

So $G = \sqrt{x'^2 + 1}$. Hence we get

$$F + \lambda G = \left(2\pi y \sqrt{x'^2 + 1}\right) + \lambda \sqrt{x'^2 + 1}$$

As the new Euler equation (with constrains). Solving

0 since does not depend on x

$$\frac{d}{dy} \left(\frac{\partial}{\partial x'} (F + \lambda G) \right) - \underbrace{\frac{\partial}{\partial x} (F + \lambda G)}_{=0} = 0$$

$$\frac{d}{dy} \left(\frac{\partial}{\partial x'} \left(2\pi y \sqrt{x'^2 + 1} + \lambda \sqrt{x'^2 + 1} \right) \right) = 0$$

$$\frac{d}{dy} \left(\frac{2\pi y x'}{\sqrt{x'^2 + 1}} + \frac{\lambda x'}{\sqrt{x'^2 + 1}} \right) = 0$$

Hence

$$\frac{2\pi y x'}{\sqrt{x'^2 + 1}} + \frac{\lambda x'}{\sqrt{x'^2 + 1}} = c$$

$$\frac{2\pi y x' + \lambda x'}{\sqrt{x'^2 + 1}} = c$$

$$x' (2\pi y + \lambda) = c\sqrt{x'^2 + 1}$$

$$x'^2 (2\pi y + \lambda)^2 = c^2 (x'^2 + 1)$$

$$\frac{x'^2}{(x'^2 + 1)} = \frac{c^2}{(2\pi y + \lambda)^2}$$

$$\frac{(x'^2 + 1)}{x'^2} = \frac{(2\pi y + \lambda)^2}{c^2}$$

$$1 + \frac{1}{x'^2} = \frac{(2\pi y + \lambda)^2}{c^2}$$

$$\frac{1}{x'^2} = \frac{(2\pi y + \lambda)^2 - c^2}{c^2}$$

$$\frac{c}{(2\pi y + \lambda)^2 - c^2} = x'^2$$

$$\frac{c}{\sqrt{(2\pi y + \lambda)^2 - c^2}} = x'$$

$$\frac{dx}{dy} = \frac{c}{\sqrt{(2\pi y + \lambda)^2 - c^2}}$$

$$\int dx = \int \frac{c}{\sqrt{(2\pi y + \lambda)^2 - c^2}} dy$$

$$\int dx = \int \frac{1}{\sqrt{\left(\frac{2\pi y + \lambda}{c}\right)^2 - 1}} dy$$

$$x = \frac{c}{2\pi} \operatorname{arccosh}\left(\frac{2\pi y + \lambda}{c}\right) + c_1$$

To express this as y a function of x we get

$$\frac{2\pi}{c}(x-c_1) = \operatorname{arccosh}\left(\frac{2\pi y + \lambda}{c}\right)$$

$$\cosh\left(\frac{2\pi}{c}(x-c_1)\right) = \frac{2\pi y + \lambda}{c}$$

$$\frac{c\cosh\left(\frac{2\pi}{c}(x-c_1)\right) - \lambda}{2\pi} = y$$

We have 3 unknowns, c, c_1 , λ that we can use boundary conditions, and length l to determine.

11 chapter 9, problem 6.2

Problem

Find the equation of the curve subject to a curve of give length l joining 2 points so that the plane area between the curve and straight line joining the points is a maximum.

Solution

Area is $\int y \ dx$. Hence area is $I = \int_{x_1}^{x_2} y \ dx$ subject to constraint that $\int ds = l$ or $g = \int_{x_1}^{x_2} \sqrt{1 + y'^2} dx = l$. Hence the Euler equation with constrains now becomes

$$F + \lambda G = y + \lambda \sqrt{y'^2 + 1}$$

Therefore

$$\frac{d}{dx} \left(\frac{\partial}{\partial y'} \left(F + \lambda G \right) \right) - \frac{d}{dy} \left(F + \lambda G \right) = 0$$

$$\frac{d}{dy} \left(\frac{\lambda y'}{\sqrt{y'^2 + 1}} \right) - 1 = 0$$

$$\frac{\lambda y'}{\sqrt{y'^2 + 1}} = x + c$$

This simplifies to

$$\int dy = \int \frac{(x+c)}{\sqrt{\lambda^2 - (x+c)^2}} dx$$

$$y + c_1 = -\sqrt{\lambda^2 - (x+c)^2}$$

$$(y+c_1)^2 = \lambda^2 - (x+c)^2$$

$$(y+c_1)^2 + (x+c)^2 = \lambda^2$$

This is the equation of a circle.

chapter 9, problem 6.5 **12**

Problem

Given surface area of solid of revolution, finds its shape to make its volume a maximum.

Volume is $\int \pi y^2 ds$ where ds is a small segment of the curve length. Hence

$$I = \int_{x_1}^{x_2} \pi y^2 \sqrt{1 + y'^2} dx \tag{1}$$

Constraint is that area is given, say A. Hence

$$g = \int_{x_1}^{x_2} 2\pi y \sqrt{1 + y'^2} dx = A \tag{2}$$

Since both integrands do not depend on x we change the independent variable to y. $dx = \frac{dx}{dy}dy$, $y' = \frac{1}{x'}$. Hence (1) becomes

$$I = \int_{x_1}^{x_2} \pi y^2 \sqrt{1 + \frac{1}{x'^2}} x' dy$$
$$= \int_{x_1}^{x_2} \pi y^2 \sqrt{x'^2 + 1} dy$$

And (2) becomes

$$g = \int_{y_1}^{y_2} 2\pi y \sqrt{1 + \frac{1}{x'^2}} x' dy$$
$$= \int_{y_1}^{y_2} 2\pi y \sqrt{x'^2 + 1} dy$$

Hence we get

$$F + \lambda G = \left(\pi y^2 \sqrt{x'^2 + 1}\right) + 2\lambda \pi y \sqrt{x'^2 + 1}$$

as the new Euler equation (with constrains) to solve.

0 since does not depend on \boldsymbol{x}

$$\frac{d}{dy} \left(\frac{\partial}{\partial x'} (F + \lambda G) \right) - \underbrace{\frac{\partial}{\partial x} (F + \lambda G)}_{} = 0$$

$$\frac{d}{dy} \left(\frac{\partial}{\partial x'} \left(\pi y^2 \sqrt{x'^2 + 1} + 2\lambda \pi y \sqrt{x'^2 + 1} \right) \right) = 0$$

$$\frac{d}{dy} \left(\frac{\pi y^2 x'}{\sqrt{x'^2 + 1}} + \frac{2\lambda \pi y x'}{\sqrt{x'^2 + 1}} \right) = 0$$

Hence

$$\frac{\pi y^2 x'}{\sqrt{x'^2 + 1}} + \frac{2\lambda \pi y x'}{\sqrt{x'^2 + 1}} = c$$

$$\frac{\pi y^2 x' + 2\lambda \pi y x'}{\sqrt{x'^2 + 1}} = c$$

$$\pi y^2 x' + 2\lambda \pi y x' = c\sqrt{x'^2 + 1}$$

$$x'^2 \left(\pi y^2 + 2\lambda \pi y\right)^2 = c^2 \left(x'^2 + 1\right)$$

$$\frac{x'^2}{(x'^2 + 1)} = \frac{c^2}{(\pi y^2 + 2\lambda \pi y)^2}$$

$$\frac{(x'^2 + 1)}{x'^2} = \frac{(\pi y^2 + 2\lambda \pi y)^2}{c^2}$$

$$1 + \frac{1}{x'^2} = \frac{(\pi y^2 + 2\lambda \pi y)^2}{c^2}$$

$$\frac{1}{x'^2} = \frac{(\pi y^2 + 2\lambda \pi y)^2 - c^2}{c^2}$$

$$\frac{c^2}{(\pi y^2 + 2\lambda \pi y)^2 - c^2} = x'^2$$

$$\frac{dx}{dy} = \frac{c}{\sqrt{(\pi y^2 + 2\lambda \pi y)^2 - c^2}}$$

$$\int dx = \int \frac{c}{\sqrt{(\pi y^2 + 2\lambda \pi y)^2 - c^2}} dy$$

$$x = \int \frac{1}{\sqrt{(\pi y^2 + 2\lambda \pi y)^2 - c^2}} dy$$

$$x = \int \frac{1}{\sqrt{(\pi y^2 + 2\lambda \pi y)^2 - c^2}} dy$$

Hence

$$x = \left(\frac{c}{2y\pi + 2\lambda\pi}\right)\cosh^{-1}\left(\frac{\pi y^2 + 2\lambda\pi y}{c}\right)$$

13 chapter 15, problem 8.12

Problem

Solve y'' + y = f(x) with $y(0) = y(\frac{\pi}{2}) = 0$ using 8.17:

$$y(x) = -\cos x \int_0^x \sin(x') f(x') dx' - \sin x \int_x^{\frac{\pi}{2}} \cos(x') f(x') dx'$$

when $f(x) = \sec x$

Solution

$$y(x) = -\cos x \int_0^x \sin(x') \sec x' \, dx' - \sin x \int_x^{\frac{\pi}{2}} \cos(x') \sec x' \, dx'$$

Since $\sec x' = \frac{1}{\cos x'}$ we get

$$y(x) = -\cos x \int_0^x \tan x' \, dx' - \sin x \int_x^{\frac{\pi}{2}} dx'$$

But $\int_0^x \tan x' dx' = -\log(\cos(x))$, Hence

$$y(x) = \cos(x)\log(\cos(x)) - \sin x \left(\frac{1}{2}\pi - x\right)$$
$$= \cos(x)\log(\cos(x)) - \frac{1}{2}\pi\sin x + x\sin x$$

14 chapter 15, problem 8.15

Problem

Use Green function method and the given solutions of the homogeneous equation to find a particular solution to $y'' - y = \sec h(x)$, where $y_1(x) = \sinh(x)$, $y_2(x) = \cosh(x)$

Solution

$$y_p = y_2 \int \frac{y_1 f}{W} dx - y_1 \int \frac{y_2 f}{W} dx$$
 (1)

Where $f = \sec h(x)$

$$W = \begin{vmatrix} y_1' & y_2' \\ y_1 & y_2 \end{vmatrix}$$
$$= \begin{vmatrix} \cosh x & \sinh x \\ \sinh x & \cosh x \end{vmatrix}$$
$$= \cosh^2 x - \sinh^2 x$$
$$= 1$$

So from (1) we get

$$y_p = \cosh(x) \int \sinh(x) \sec h(x) dx - \sinh(x) \int \cosh(x) \sec h(x) dx$$

But $\sec h(x) = \frac{1}{\cosh x}$, Hence

$$y_p = \cosh(x) \int \sinh(x) \frac{1}{\cosh x} dx - \sinh(x) \int \cosh(x) \frac{1}{\cosh x} dx$$
$$= \cosh(x) \int \tan x h(x) dx - \sinh(x) \int dx$$

But $\int \tan sh(x) dx = \log(\cosh(x))$, Hence

$$y_p = \cosh(x) \log(\cosh(x)) - x \sinh(x)$$

15 chapter 15, problem 8.17

Problem

Use Green function method and the given solutions of the homogeneous equation to find a particular solution to $y'' - 2(\csc^2(x))y = \sin^2(x)$, where $y_1(x) = \cot x$, $y_2(x) = 1 - x \cot(x)$

Solution

Note cot $(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$, csc $(x) = \frac{1}{\sin(x)}$

$$y_p = y_2 \int \frac{y_1 f}{W} dx - y_1 \int \frac{y_2 f}{W} dx$$
 (1)

Where $f = \sin^2(x)$.

$$y_1' = \frac{d}{dx} \left(\cot(x) \right) = -\cot^2 x - 1$$
$$= -\frac{1}{\sin^2(x)}$$

And

$$y_2' = \frac{d}{dx} (1 - x \cot(x))$$
$$= -\frac{\cos(x)}{\sin(x)} + \frac{x}{\sin^2(x)}$$

Therefore

$$W = \begin{vmatrix} y_1' & y_2' \\ y_1 & y_2 \end{vmatrix}$$

$$= \begin{vmatrix} -\frac{1}{\sin^2(x)} & -\frac{\cos(x)}{\sin(x)} + \frac{x}{\sin^2(x)} \\ \frac{\cos(x)}{\sin(x)} & 1 - \frac{x\cos(x)}{\sin(x)} \end{vmatrix}$$

$$= \left(-\frac{1}{\sin^2(x)} \right) \left(1 - \frac{x\cos(x)}{\sin(x)} \right) - \left(-\frac{\cos(x)}{\sin(x)} + \frac{x}{\sin^2(x)} \right) \frac{\cos(x)}{\sin(x)}$$

$$= -\frac{1}{\sin^2(x)} + \frac{x\cos(x)}{\sin^3(x)} + \frac{\cos^2(x)}{\sin^2(x)} - \frac{x\cos(x)}{\sin^3(x)}$$

$$= -\frac{1}{\sin^2(x)} + \frac{\cos^2(x)}{\sin^2(x)}$$

So from (1) we get

$$y_{p} = \left(1 - \frac{x \cos x}{\sin x}\right) \int \frac{\frac{\cos x}{\sin x} \sin^{2}(x)}{-\frac{1}{\sin^{2}(x)} + \frac{\cos^{2}(x)}{\sin^{2}(x)}} dx - \frac{\cos x}{\sin x} \int \frac{\left(1 - \frac{x \cos x}{\sin(x)}\right) \sin^{2}(x)}{-\frac{1}{\sin^{2}(x)} + \frac{\cos^{2}(x)}{\sin^{2}(x)}} dx$$

$$= \left(1 - \frac{x \cos x}{\sin x}\right) \int \frac{\cos x \sin x}{\frac{-1 + \cos^{2} x}{\sin^{2}(x)}} dx - \frac{\cos x}{\sin x} \int \frac{\sin^{2} x - x \cos x \sin x}{\frac{-1 + \cos^{2} x}{\sin^{2}(x)}} dx$$

$$= \left(1 - \frac{x \cos x}{\sin x}\right) \int \frac{\cos x \sin^{3} x}{-1 + \cos^{2} x} dx - \frac{\cos x}{\sin x} \int \frac{\sin^{4} x - x \cos x \sin^{3} x}{-1 + \cos^{2} x} dx$$

but
$$I = \int \frac{\cos x \sin^3 x}{\cos^2 x - 1} = \int \frac{\cos x \sin^3 x}{-\sin^2 x} = \int -\cos x \sin x = \frac{1}{2} \cos^2 x$$
 And
$$I = \int \frac{\sin^4 x - x \cos x \sin^3 x}{-1 + \cos^2 x}$$

$$= \int \frac{\sin^4 x - x \cos x \sin^3 x}{-\sin^2 x}$$

$$= \int -\sin^2 x + x \cos x \sin x$$

$$= -\int \sin^2 (x) dx + \int x \cos(x) \sin(x) dx$$

But $\int \sin^2(x) \ dx = \frac{x}{2} - \frac{1}{4}\sin(2x)$ and $\int x \cos(x) \sin(x) \ dx = -\frac{1}{4}x\cos(2x) + \frac{1}{8}\sin(2x)$, therefore

$$-\int \sin^2(x) \ dx + \int x \cos(x) \sin(x) \ dx = \left(-\frac{x}{2} + \frac{1}{4}\sin(2x)\right) + \left(-\frac{1}{4}x\cos(2x) + \frac{1}{8}\sin(2x)\right)$$
$$= -\frac{x}{2} + \frac{1}{4}\sin(2x) - \frac{1}{4}x\cos(2x) + \frac{1}{8}\sin(2x)$$
$$= \frac{3}{8}\sin 2x - \frac{1}{2}x - \frac{1}{4}x\cos 2x$$

Hence (2) becomes

$$y_{p}(x) = \left(1 - \frac{x \cos x}{\sin x}\right) \left(\frac{1}{2} \cos^{2} x\right) - \frac{\cos x}{\sin x} \left(\frac{3}{8} \sin 2x - \frac{1}{2}x - \frac{1}{4}x \cos 2x\right)$$

$$= \left(\frac{1}{2} \cos^{2} x - \frac{1}{2} \frac{x \cos^{3} x}{\sin x}\right) - \left(\frac{3}{8} \sin 2x \frac{\cos x}{\sin x} - \frac{1}{2}x \frac{\cos x}{\sin x} - \frac{1}{4}x \cos 2x \frac{\cos x}{\sin x}\right)$$

$$= \frac{1}{2} \cos^{2} x - \frac{1}{2} \frac{x \cos^{3} x}{\sin x} - \frac{3}{8} \sin 2x \frac{\cos x}{\sin x} + \frac{1}{2}x \frac{\cos x}{\sin x} + \frac{1}{4}x \cos 2x \frac{\cos x}{\sin x}$$

$$= \frac{1}{4} \cot x \ (x - \cos x \sin x)$$

16 chapter 15, problem 8.2

Problem

Solve $y'' + \omega^2 y = f(t)$ using $y(t) = \int_0^t \frac{1}{\omega} \sin \omega (t - t') f(t') dt'$ when $f(t) = \sin \omega t$ **Solution**

$$y(t) = \int_0^t \frac{1}{\omega} \sin \omega (t - t') f(t') dt'$$
$$= \int_0^t \frac{1}{\omega} \sin \omega (t - t') \sin \omega t' dt'$$
(1)

But $\sin \alpha \sin \beta = \frac{1}{2} \cos (\alpha - \beta) - \frac{1}{2} \cos (\alpha + \beta)$, hence

$$\sin \omega (t - t') \sin \omega t' = \frac{1}{2} \cos (\omega (t - t') - \omega t') - \frac{1}{2} \cos (\omega (t - t') + \omega t')$$
$$= \frac{1}{2} \cos (t\omega - 2\omega t') - \frac{1}{2} \cos \omega t$$

Hence (1) becomes

$$y(t) = \int_0^t \frac{1}{\omega} \frac{1}{2} \cos(\omega t - 2\omega t') - \frac{1}{2} \cos \omega t \, dt'$$

$$= \frac{1}{2\omega} \int_0^t \cos(\omega t - 2\omega t') \, dt' - \frac{1}{2} \cos \omega t \int_0^t dt'$$

$$= \frac{1}{2\omega} \left[\frac{\sin(\omega t - 2\omega t')}{-2\omega} \right]_0^t - \frac{1}{2} t \cos t\omega$$

$$= \frac{-1}{4\omega^2} (\sin(\omega t - 2\omega t) - \sin(\omega t)) - \frac{1}{2} t \cos t\omega$$

$$= \frac{1}{2\omega^2} \sin t\omega - \frac{1}{2} t \cos t\omega$$

$$= \frac{1}{2\omega^2} (\sin t\omega - \omega t \cos t\omega)$$

$$y(t) = \frac{1}{2\omega^2} (\sin t\omega - \omega t \cos t\omega)$$

17 chapter 15, problem 8.3

Problem

Solve $y'' + \omega^2 y = f(t)$ using $y(t) = \int_0^t \frac{1}{\omega} \sin \omega (t - t') \ f(t') \ dt'$ when $f(t) = e^{-t}$ **Solution**

$$y(t) = \int_0^t \frac{1}{\omega} \sin \omega (t - t') f(t') dt'$$

$$= \frac{1}{\omega} \int_0^t \sin \omega (t - t') e^{-t'} dt'$$

$$\text{Let } I = \int_0^t \sin \omega (t - t') e^{-t'} dt'$$
(1)

Integrate by part, let $u = \sin(\omega t - \omega t')$, $v = -e^{-t'}$

$$I = [\sin \omega (t - t') \left(-e^{-t'} \right)]_0^t - \omega \int_0^t \cos (\omega t - \omega t') e^{-t'} dt'$$
$$= \sin \omega t - \omega \int_0^t \cos (\omega t - \omega t') e^{-t'} dt'$$

Integrate by parts again. $u = \cos(\omega t - \omega t')$, $v = -e^{-t'}$

$$I = \sin \omega t - \omega \left[[\cos (\omega t - \omega t') \left(-e^{-t'} \right)]_0^t + \omega \int_0^t \sin \omega (t - t') e^{-t'} dt' \right]$$

$$I = \sin \omega t - \omega \left([-e^{-t} + \cos (\omega t)] + \omega I \right)$$

$$I = \sin \omega t + \omega e^{-t} - \omega \cos (\omega t) - \omega^2 I$$

$$I + \omega^2 I = \sin \omega t + \omega e^{-t} - \omega \cos (\omega t)$$

$$I = \frac{\sin \omega t + \omega e^{-t} - \omega \cos (\omega t)}{1 + \omega^2}$$

Hence from (1)

$$y(t) = \frac{1}{\omega} \frac{\omega e^{-t} - \omega \cos(\omega t) + \sin(\omega t)}{1 + \omega^2}$$

chapter 9, problem 3.1 18

Problem

Change the independent variable to simplify the Euler equation and then find the first integral of it. $\int_{x_2}^{x_1} y^{\frac{3}{2}} ds$ Solution

$$ds = \sqrt{(dx)^2 + (dy)^2} = dx\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = dx\sqrt{1 + y'^2}$$

Hence

$$I = \int_{x_2}^{x_1} y^{\frac{3}{2}} ds = \int_{x_2}^{x_1} y^{\frac{3}{2}} \sqrt{1 + y'^2} dx$$

Since integrand does not depend on x, changing the independent variable to y in order to simplify solution. Using $dx = \frac{dx}{dy}dy \rightarrow y' = \frac{1}{x'}$. The integral now becomes

$$I = \int_{x_2}^{x_1} y^{\frac{3}{2}} \sqrt{1 + \frac{1}{x'^2}} x' dy$$
$$= \int_{x_2}^{x_1} y^{\frac{3}{2}} \sqrt{x'^2 + 1} dy$$

$$F(y, x', x) = y^{\frac{3}{2}} \sqrt{x'^2 + 1}$$

The Euler equation is

$$\frac{d}{dy} \left(\frac{\partial F}{\partial x'} \right) - \overbrace{\frac{\partial F}{\partial x}}^{0} = 0$$

$$\frac{d}{dy} \left(\frac{\partial F}{\partial x'} \right) = 0$$

$$\frac{\partial F}{\partial x'} = c$$

$$y^{\frac{3}{2}} \frac{x'}{\sqrt{x'^{2} + 1}} = c$$

Simplifying gives

$$x' = \frac{c}{\sqrt{y^3 - c^2}}$$

$$\frac{dx}{dy} = \frac{c}{\sqrt{y^3 - c^2}}$$

$$x = \int \frac{1}{\sqrt{\frac{y^3}{c^2} - 1}} dy$$

We can stop here as the problem did not ask to fully solve the integral.