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1 chapter 9, problem 2.1

Problem
Write and solve the Euler equation to make the following integral stationary

[ \RT T g

Solution

Let F = (x,y,y’) = Vxy/1 + y2

The Euler equation is

d (HF) OF
-—=0

dx ay’ By
— / 2] —

Hence the Euler equation becomes

d (OF o
dx \oy' |

This means that g—; = C for some constant C.

BF, - y’
dy 1+ y?
Hence
Vi—t—=cC
V1+y”?
oGl
x
CZ + Czy/Z
X = 2
y
C2
X = ﬁ
y/2 - Cz
x —C?
, C
y =
x —C2
2C
y(x) = +Ci
x —C?
yw G 1
2C C = C2
Let % = —b (some constant), and Let % = a (constant), Hence above becomes
ay+b=
1
X~ 12
2
ay+b= S
Vda® x — 1

This is equation of a parabola.



2 chapter 9, problem 2.3

Problem
Write and solve the Euler equation to make the following integral stationary I;z xy/1—y"%dx
Solution

Let F = (x,v,y") = x+/1 — y’2. The Euler equation is
d ( BF) OF
~=—=0

dx \ oy’ Jy
ﬁF 6 P
dy éy( ' ) °

Hence Euler equation becomes

d [OF “o
dx \oy' |

This means that g—; = C for some constant C.

oF  —xvy’
dy’ 1—y”?
Hence
1— y/2
2 C2 (1 — y/2)
, CZ _ C2y12
x y/Z
C2
2 _ 2
X = F -
2 _ Cz
Y T
, C
Vx? + C?

y (x) = Carcsinh (g) + Cy
y—C ) (X)
g1 hiZ

. arcsinh |

C
X sinh y_
C c C
Let % = —b (some constant). Let % = a (some constant). Hence the above becomes

ax =sinh(ay+b)

3 chapter 9, problem 2.6

Problem
Write and solve the Euler equation to make the following integral stationary f;z (¥ +y) dx
Solution



Let F (x,y,y’) = y’* + 1/y. Since F does not depend on x, we change the integration variable to y. Let

’

Yy = xi then dx = fl—’ycdy. Hence the integral becomes

Y2 (1 ' Y2 (1 , p
Jo G an= [ (Grn) a

Now F (y,x") = (& + x"/y) . The Euler equation changes from - (‘9F) 9F — gto 4L 1y (BF) —-9F _,

dx \ oy’ dy
Now, gF = 0 since F does not depend on x,Hence the Euler equation reduces to

d (OF
dy \ ox’

i)

x/2

0

Hence —# +4y=C where C is some constant
1 —_—
- = C—-y
1

e
1 —_—
b+y

1 _dx

\/k+ _d_y

de

\/b + \/_

4

3 (—2b + ) (,/b + @) =x+a Where a is constant of integration

(v - 2b) (W):x+a

72

72

where b is a new constant = —C

Hence the solution is

W |

4 chapter 9, problem 3.2

Problem

Write and solve the Euler equation to make the following integral stationary f ‘1+y,2 dx
Solution

Let F(x,y,y’) = ‘1;2!/2. Since F does not depend on x, we change the integration variable to y. Let
y = xi hence dx = Z—Zdy. The integral becomes

dy

Jyz Vit | Jyz VxZ + 1

2 2
Y1 y Y1 y

Now F(y,x") = 'x:2+1 . The Euler equation changes from dix (g—yF,) - g—}; =0to % (%) - % = 0.



Butg—i = 0 since F does not depend on x,Hence the Euler equation reduces to

d (OF “o

dy \ox’|
OF _ 0 [Vx*+1
ax’  Ox’ y?

’

x
- y?Vx? + 1

Hence
d x’ o
dy y*Vx? + 1
Hence > \/% = C where C is some constant
y X
x/2 .
2+1 Cy
x?%+1 1
X2 - C y4
_ 1
1 1-cy
x2 C yt

——— = | dx
\1-Cy?
The solution is VE
C 3
y =x+C

341 - Cy*

Where C; is constant of integration. Let C; = a, C = b hence solution can be written as
Vb y?

341 — by

=x+a

5 chapter 9, problem 3.4

Problem

Write and solve the Euler equation to make the following integral stationary L:z y\y”? + y? dx
Solution

Let F (x,y,y") = yyy’? + y2. Since F does not depend on x, we change the integration variable to y. Let

y = % and dx = %dy. Hence the integral becomes

Y2 1 Y2
J (y,/ﬁ+y2) x'dyzj yV1+x?y?dy
Y1

Y1
5



Now F (y,x") = y4/1 + x’? y2. The Euler equation changes from % (3—;) - g—g =0to % ('3—5) - % =0.

Butg—g = 0 since F does not depend on x,Hence the Euler equation reduces to

d (OF “o
dy \ox’)

OF 0
ox’ B ox’ (y 1+x% yz)
_y x/ yZ

Xy
V1+x72y?
Hence
d X, y3 —o
dy \ 1 +x72 y?
= C where C is some constant

Xy =C m

X2y = Ct (1417 g?)

X2y =P+ CE x4
X (48— C2y?) = C?

x' y3
1+x72 y?

Hence

p C?
x"? = 6 22
(y° -C*y?)
, C
x =

yvy' - C?
J'dx=Cj;dy
yvy' - C?

The solution is (using Mathematica)

1. (—2iC+2 —C2+y4)
ax =——ilog 5
2 y

6 chapter 9, problem 3.6

Problem ,
Write and solve the Euler equation to make the following integral stationary f::lz lliyy 7 dx
Solution

72
Let F(x,y,y’) = ﬁyy 5 Since F does not depend on x, we change the integration variable to y. Let




’

Yy = %, dx = ‘;—;dy. Hence the integral becomes

w( oy e (y L

J yle x’dy:\J Z,f; x’dy
U1 1+y?

),
rY2

,Jyl (x’+y

Now F (y,x’) = (x,iy). The Euler equation changes from % (3—5,) - g—}; =0to % (ﬂ) - 9F _
dF

55 = 0since F does not depend on x,Hence the Euler equation reduces to
d ( OF )
R =0
dy \ 0x’

OF 0 y

Ax’  Ox' \x' +y

_ (_;)
Ny
-y

T +y)

d(_-y \_
dy ((x'+y>2) -0

= C where C is some constant

Il
>
IS
—_——
=
Sle oy
* %)
L
~—————
X\
QU
N

B
N —
QU
L

Hence

-y

Hence roP

—y=C(x +y)’
LetC = -k

\/Q_ _dx
k y_dy
J\/%—ydy=de
y* 2

vy _
2+3y k—x+[3

Where f is the integration constant. Let \/LE = o a new constant
1, 2 3
x=—--y’+-ayz -
Sy tzayr—p
Let %a = a a new integration constant, let —f§ = b a new constant, we get
3 1
x=ay? —-y>+b
2
7



7 chapter 9, problem 3.9

Problem

Write and solve the Euler equation to make the following integral stationary fj:: V72 +sin’0de ,

6’ =48
= 9
Solution

Here F (x,y(x),y’ (x)) becomes F (§, 0 (¢), 6" (¢)) . So now x — ¢,y — 6,y" — 6’. Since F (6’, 0) does

not depend on ¢, we change the integration variable to 6, so we want to change from 6’ = %

Let ¢’ = ¢,, d¢ = gd@. Hence the integral becomes
92 92
J ﬁ+sm9 ¢’ do = J \ 1 +¢2sin® 0 do
So now

F(¢',0)=+/1 +¢2sin’0
(%) -

OF

>y

OF

The Euler equation changes from % ( oy 9E —

o

) -9 =oto

depend on ¢,Hence the Euler equation reduces to

d (OF\ _
@(acﬁ’) -

OF 0
= 1+ ¢’%sin? 0
o~ g (V #sin )
¢’ sin® 0
V1 + ¢’%sin? 0
Hence
d ¢’ sin? O
— || =0
d0 \ 1+ ¢ sin” 6
Hence% = C where C is some constant
S’

¢'sinf = Cy/ 1 +¢"%sin 0
¢"*sin* 0 = C* (1 + ¢”*sin’ 0)
¢ sin* @ = C* + C* ¢"* sin’ 0

¢/2 — Cz
~ sin*6 — C?sin? 0
¢’ = =
sin @ VsinZ 6 — C?
C
" :J do
J sin§Vsin? 6 — C?
-1 [ _2VCZeos(6)
¢ C tanh (m)
+ta=-

Nae

to¢’=%

= 0 since F does not



The last integral value was found using mathematica. Hence

V=C2 (¢ + )  retanh V2VC? cos (6)
—C V1 —2C% - cos (20)

Let __—gz = A, let V2VC? = B, 1 — 2C% = D, then

A (¢ + @) = arctanh

Bcos (0)
D — cos (20)
Bcos(6)

VD — cos(26)

tanh (A (¢ + a)) =

8 chapter 9, problem 5.2

Problem
Set up Lagrange equations in cylindrical coordinates for a particle of mass m in a potential field V (r, 0, z)
Solution
L =T -V where T is the K.E. and V the potential energy. T = %mvz, But
ds* = dr* + r’d0* + dz*

As shown on page 219 equation 4.4 , now differentiate both sides w.r.t. time
ds . 2 5 . 2 .
ZdSE =2drr+(r 2d00+2rrdo ) +2dz 2

ds_drf"+r2 d0 0 +ridd*+dzz
dt Vdr? + r2do? + dz?

Hence 9
(drf+r2d99+rfd02+dzz)

dr? + r2d0? + dz?

v? =
I used Mathematica to simplify this getting

2

=420+ 22

Hence,

K.E.
PE.

1 . ——
L= >m (r'2+r2 0% + 22) -V (r,0,z2)

The Lagrange equations are

A CAN
dt \ or or
LA
dt \ 9o 00
d (0L oL
a(&)‘a—



Hence, we get

i(mr’)—(mréz—a—v) =0
or

dt
d 9 ov
a(mr 9)+%—0
i(mz’*)+a—V—0
dt 0z

Now differentiating w.r.t. time, and remembering that r (¢) also changes with time.

mi—mrf® + (9_V =0
or
m (eré + rzé) + ((99_‘9/ =0
mzZ + —V =0
0z
Hence finally we get
. ov
—_ 2 e
m(r ro ) P
s 10V
m(2r0+r0) =750
mz = —6—V
9z

9 chapter 9, problem 5.6

Problem

A particle moves on the surface of a sphere of radius a under the action of the earth gravitational field.
Find the 0, ¢ equations of motion. (this is called the spherical pendulum).

Solution

L =T -V where T is the K.E. and V the potential energy. Using spherical coordinates.

x =asinfcos¢, y=asinfsin¢g, z=acosb

Hence a position vector
r=iasinfcos¢ +jasinfsing + k acos

So velocity is

r:i%(asin@cos¢)+j%(asin&sin¢)+k%(acos@)
=i (—asin@sin¢q5+acos@9 cosgi)) +j (asin@cos¢gi§+acos€9 sinqS) +k (—asin@é)

Hence

. . 2 . . 2 N\ 2
F=r|| = \/(—asinesin¢¢+acose 9cos¢) +(asin9€os¢¢+acos€6’ singb) + (—asin9 9)

10



Then

. . 2 . . 2 N\ 2
vzzfzz(—asin@sin¢¢+acos@0cos¢) +(asin9cos¢¢+acos€9 singb) + (—asin@@)

= [ a® sin® @ sin® ¢ ¢* + a® cos® O 6% cos® ¢ — 2a* sin @ sin ¢ ¢ cos O 6 cos (/5)

+ (a2 sin® 6 cos? ¢ % + a® cos® 0 62 sin® ¢ +2a® sin O cos ¢ cos@ 6 sinp| + (a2 sin® 0 92)

= a*sin® O sin® ¢ ¢ +a? cos? 0 02 cos? ¢ + a® sin® O cos® ¢ §* +a? cos? 6 62 sin® ¢ + a® sin® O H*

=1 =1
— N

= a’¢? sin’ 0 (sin2 ¢ + cos’ ¢) +a%6? cos’ 0 (cos?® ¢ + sin® $) +a%sin’ 0 6?

=1

= a?¢?sin® 0 + a*6? (cos2 6 + sin’ 6)

=a’ (gbz sin® 0 + 92)
Hence T = %mvz. For a particle, taking mass as one unit. Hence
Lol 2 32
Tzéa (¢ sin” 0 +0)
The P.E. is mga cos 0. Hence the Lagrangian is

L=T-V

1 . .
L= Eaz (q52 sin® @ + 92) —ga cos6
We have 2 independent variables, hence we need 2 Lagrangian equations

d (aL) oL
=0

dt\gg) a6
d (o) oL _
dt\og) a9 ~
OL _ 2
00
d (0L .
a(%)—aﬁ
oL

oL _ 22 -
50 = ° (gb sin 0 cos@)+ga sin 0

11



Hence the first equation becomes
dfony_a_,
dt \ 96| 00
a’0 - a® ((/52 sinf cos 9) —ga sinf =0
ab—-a (gbz sin 0 cos@) —gsinf=0

To find the second equation

oL :
8_</5 =a’ (2(/5 sin® 9)
d (OL\ d (,( ;.
T (%) =7 (a (2¢sm 9))
op
Hence the second equation is
dfoy o,
dt \ag) 99 B

%(az (2¢;sin2 0)) =0
%(2¢sin29) =0
%(Zgﬁsin29) =0

10 chapter 9, problem 6.1

Problem
Find surface of revolution formed by rotating the curve around the x-axis that has a minimum area

subject to a curve of give length [ joining 2 points.
Solution
Area is

X

I= J 2my«1 + y"?dx (1)

Since integrand does not depend on x we change the independent variable to y. dx = Z—’;dy, Yy = %

Hence (1) becomes
Y2 1 J
I=] 2 1+ — x’ 1
Ll Y4/ 2 Xy (1)

Y2
= J 2ryVx2 + 1dy

2

Hence F (y, x’, x) = 2ryVx’?> + 1. Now finding the constraint

gzjds:l

x2
= j V1+y2dx
X1

12



Since integrand does not depend on x we change the independent variable to y. dx = ‘;—’;dy, y = L.

X
Hence
Y2 1 ,
g= L 1+ ik dy
1

Y2
= j Vx2 +1 dy
Y1

So G = Vx’? + 1. Hence we get

F+ G = (Zﬂny’2+ 1) + AVx? +1

As the new Euler equation (with constrains). Solving

0 since does not depend on x
——

d (9 d
d—y( (F+/1G))— = (F+26) =0

ox’

d (0
- 72 2 =
ay (8x’ (Zﬂy\/x + 1+ AVx2 + 1)) 0

0

2 ’ ’
d(ﬂyx+Ax )

dy \Vx2+ 1 Va2 +1

13



Hence

2myx’ Ax’
+ =c
Vx2+1 Vx2+1
2myx’ + Ax’
Vx? +1
x'Qry+A) =cVx2 +1
x? @2y +2)7? = (x*+ 1)
x12 (,‘2
(x?+1)  (2my + 1)

(x*+1) _ (2ry+ )7

x/Z cz
1 (ry+ A)?
s a
1 Quy+A)°-c?
X2 c2

C2

(2my + A)? - c?

C
=X

@y + 2)? —¢2 )

dx c

d_y ) \ @y + 2)? = ¢?
_ C

[ - j_ﬂd

c 2y + A
x = — arccosh ( y ) + c1
27 c

To express this as y a function of x we get

2 2y + A
r (x — ¢1) = arccosh ( 4 )
c

2y + A
c

cosh (Z_n (x - cl)) =
c
c cosh (27” (x=cp) =2

21

=Y

We have 3 unknowns, ¢, 1, A that we can use boundary conditions, and length [ to determine.

11 chapter 9, problem 6.2

Problem
Find the equation of the curve subject to a curve of give length [ joining 2 points so that the plane area
between the curve and straight line joining the points is a maximum.

14



Solution

Area is Iy dx. Hence areais I = f;cf y dx subject to constraint that I ds=1lor g= L:Z V1+y?dx =1

Hence the Euler equation with constrains now becomes

F+AG=y +Wy?+1

Therefore
d (0 d
— -—(F+1G)=0
dx (81/ ) dy (F+46)
d Ay ),
dy \\fy? +1
A ’
y__ x+c
Vy?+1
This simplifies to
de (x +¢)
—(x+ c)z

Y+ = —JA? —(x+c)2

(y+cl)2 =2 —(x+c)2

(y+c1)2 +(x+c)2 =2

This is the equation of a circle.

12 chapter 9, problem 6.5

Problem

Given surface area of solid of revolution, finds its shape to make its volume a maximum.

Solution
Volume is I my*ds where ds is a small segment of the curve length. Hence

xz
I= J ry* 1+ y2dx
X1
Constraint is that area is given, say A. Hence

X2
g= J amyT+ g7%dx = A
X1

Since both integrands do not depend on x we change the independent variable to y. dx =

Hence (1) becomes
X2 1
I= j myia 1+ ﬁx'dy
X1

x2
= J 1y*Vx’? + 1dy
X1

15

(2)

Fdy.y' =5



And (2) becomes

Jyz 2 1 ! 'd
= + —
9 " ”y\/ 2 xay

Y2
= J 2ryVx"? + 1 dy

Y1

Hence we get

F+1G = (rryz Vx’2 + 1) + 2AryVx"”? + 1
as the new Euler equation (with constrains) to solve.

0 since does not depend on x

—_——

d (0 0
d—y(axl(F-l‘/lG))— a(F-l—AG) =0
d 2 72 72 —_
d_y(ax’ (ny Vx’? + 1+ 2AmyVx +1))—O

0

d ( Ty’x’ N Zlﬂyx’)

dy \Vx2+1 Vx?+1

16



Hence

Ty’x’ N 2Aryx’
Vx2+1 Vx?+1
ry?x’ + 2Amyx’
myPx’ + 2Amyx’ = cVx? + 1
x? (my? + 2/1ﬂy)2 =c? (x%+ 1)
52 o2
(x2+1) (g2 + 2Amy)?

(x’2 + 1) B (7Tyz + 2/17ty)2

x'2 c2
1 (my? + 2Ary) 2
1+ —=—2 "9
x12 CZ
1 (my? +20my)° - ¢
P c?
02 72

(my? + 2Amy)? — 2
¢

=X
\/(nyz + 2Ay)? — 2
dx _ c
dy \/(ﬂyz + 2Amy)® — 2
J dx = c dy
© \/(er2 + 2Ay)? — 2
x = ¢ dy
¢ \/(ﬂyz + 2Ay)? — 2
[ 1
x = dy

2
b Ty?+2Amy
y(Ee)

Hence

13 chapter 15, problem 8.12

Problem
Solve y” +y = f (x) with y (0) = y (¥) = 0 using 8.17:

.
x 2

sin(x) f (x") dx’ — sinx‘[ cos (x') f (x") dx’

X

y(x) = —cosx‘[

0

when f (x) = secx
Solution

17



z
x 2

sin (x") secx’” dx’ — sinx j cos (x") secx” dx’
X

y(x) = —cost

0
Since sec x’ = ﬁ we get

2
tanx’ dx’ — sinxj dx’

X

X

y(x) = —cost

0

But f: tanx’ dx” = —log (cos (x)), Hence

y (x) = cos(x)log (cos (x)) — sinx (%77.’ - x)

1
= cos (x)log (cos (x)) — 37 sinx + x sin x

14 chapter 15, problem 8.15

Problem
Use Green function method and the given solutions of the homogeneous equation to find a particular
solution to y”” — y = sec h(x), where y; (x) = sinh (x), v, (x) = cosh(x)

Solution
Yp = Y2 J %dx -y %dx (1)
Where f = sech(x)
WYY
Uy Y2

coshx sinhx

sinhx coshx
= cosh? x — sinh® x

=1

So from (1) we get
Yy, = cosh (x) I sinh (x) sec h(x) dx — sinh (x) J cosh (x)sech (x) dx

But sech(x) = ﬁ Hence

1
cosh x

1

d
cosh x x

yp = cosh (x) J sinh (x) dx — sinh (x) J cosh (x)
= cosh (x) J tan sh (x) dx — sinh (x) J dx

But I tan sh (x) dx = log(cosh (x)), Hence

yp = cosh (x)log (cosh (x)) — x sinh (x)

18



15 chapter 15,

problem 8.17

Problem
Use Green function me
solution to y”’ — 2 (csc?
Solution

_ cos(x)

thod and the given solutions of the homogeneous equation to find a particular
(x)) y = sin®* (x) , where y; (x) = cotx, y2(x) =1—x cot(x)

__1 _ 1
Note cot (x) = TnG) = s ©5C (x) = STIES)
Yp = Y2 I %dx — U J %dx (1)
Where f = sin? (x).
y; = 4 (cot(x)) = —cot’x — 1
1™ dx
_ 1
sin? (x)
And
-4 (1 - x cot(x))
Y = dx
_ cos(x) x
sin(x)  sin? (x)
Therefore
wol v oY
Y1 Y2
1 _cos(x) x
_ sin?(x) sin(x)  sin®(x)
- cos(x) 1-X cos(x)
sin(x) sin(x)
1 x cos(x) cos (x) x cos (x)
=l-—|11-—— | = -
sin? (x) sin (x) sin(x)  sin®(x)) sin(x)
—_——— —_—
3 1 x cos(x) cos?(x) xcos(x)
~ sin?(x)  sin®(x)  sin?(x)  sin®(x)
3 1 cos? (x)
sin? (x)  sin® (x)
So from (1) we get
.2
B (1 xcosx) (95X sin (x) cos x (1 B ili?if) sin® (x)
Y= sinx / J ___1 cos?(x) sin x __1 o)
sin(x)  sin®(x) sin?(x)  sin?(x)
_ (4 xcosx\ [ cosx sinx cosx [ sin®x —x cosx sinx d
_(  sinx ) —ltcos? x  sinx —ltcos? x x
N sin®(x) sin?(x)
(1 xcosx) [ cosx sin’ x cosxjsin“x—x cosx sin®x d
—(1_ - X
sinx /) —1+cos?x sin x -1+ cos?x

19



3 3 .
butl = J cosx SILX — f cosx S X — f—cosx sinx = 1 cos? x And
cos® x—1 —sin® x 2
I [ sin* x — x cosx sin®x
J -1+ cos?x
[ sin* x — x cosx sin®x
J —sin? x
r
= | —sin®x + x cosx sinx
o
=- J sin? (x) dx + Jx cos (x) sin(x) dx
) _x 1 . _ 1 1.
But Ism (x) dx = 3 — sin(2x) and Ix cos (x) sin(x) dx = —3x cos(2x) + g sin (2x), therefore

- J sin® (x) dx + Ix cos (x) sin(x) dx = (—g + 4—11 sin (2x)) + (—;Lx cos (2x) + % sin (2x)

x 1 1 1
= —— + —sin(2x) — —=x cos(2x) + = sin (2x
~ -+ sin (2x) - Jxcos (2x) + = sin (2)

3 . 1 1
—sin2x — —x — =X COs 2x
8 4

Hence (2) becomes

xcosx\ (1 cosx (3 . 1 1
yp(x): (1— - ) —cos’ x| — — —sin2x — —x — —X COS 2Xx
sin x sinx \8 2 4
r ., 1xcos®x 3. cosx 1 cosx 1 SXx
=|=-cos"x — —— — | = sin2x— - =X— — —X COS 2X—
2 2 sinx sinx 2 sinx 4 sin x
1 9 1xcos®x 3 . cosx 1 cosx 1 CcoS X
= —Cos° X — —— — — sin 2x — —X— + —X COS 2Xx—
2 2 sinx 8 sinx 2 sinx 4 sin x

1 .
1 cotx (x — cosx sinx)

16 chapter 15, problem 8.2

Problem
Solve y”’ + w?y = f (t) using y (t) = fot i sinw (t —t") f(t') dt’ when f () = sin wt
Solution

y(t) = r ésina}(t -t f(t) dt’

0

t
1
=J‘ —sinw (t —t')sinwt’ dt’
0 W

But sina sin f = % cos(a—p) - % cos (& + f), hence

1 1
sinw (t — t’) sin wt’ 5 ¢os (w(t—t)—owt") - 5 ¢os (w(t=t)+ ot

1 1
Ecos(tw—Za)t)— Ecoswt
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Hence (1) becomes

11 L1 )
y(t)=‘[ —=cos (ot — 2wt") — = cos wt dt
0 @2 2

1 (! 1 t
= — J cos (wt — 2wt’) dt’ — = cos th dt’
2w J 2 0

1 [sin(ot - 20t")]" 1
=—|——| ——tcostw
2w 20 0o 2
-1 . . 1
= — (sin (ot — 2wt) — sin (wt)) — ~t cos tw
4w 2
1

1
= —2 > sintw — Etcos tw
w

1.
=2 (sintw — wt cos tw)
1)

1
1) = — (sintw — wt costw
vt = )

17 chapter 15, problem 8.3

Problem
Solve y”’ + w’y = f (t) using y (t) = Iot % sinw (t —t') f(t') dt’ when f (t) = e™!
Solution

y(t) = Lt é sinw (t —t") f(t') dt’

1(f ,
= —J‘ sinw (t—t') e dt’ (1)
W Jo

t
Let I = J‘ sinw (t—t') et dt’
0

Integrate by part, let u = sin (ot — wt’) ,v = —e~*

t
I=[sinw(t-t) (—e_t,)]é - coj cos(wt — wt’) et dt’
0

t
=sinwt — wJ‘ cos(wt —wt’) et dt’
0

Integrate by parts again. u = cos (ot — wt’) ,v = —e™*

t

I'=sinot - ([COS (0t = wt’) (—e_t,)](t) + wJ‘ sinw (t—t') e dt’
0

I =sinwt —w ([—e”" + cos (wt)] + wI)

t

I = sinwt + we™" — wcos(wt) — W’

I+’ = sinwt + we™ — wcos (wt)
- sin wt + we™! — w cos (wt)
1+ w?
Hence from (1)
y () = 1 we™ ! — wcos (wt) + sin (wt)
1) 1+ w?
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18 chapter 9, problem 3.1

Problem
Change the independent variable to simplify the Euler equation and then find the first integral of it.
fxl y%ds
X2
Solution
(dx)* + (dy)* = dxA /1 + =dx+1+ y’2
Hence

1
I=J y;S—I 21+ y%dx
X9 X9

Since integrand does not depend on x, changing the independent variable to y in order to simplify
solution. Using dx = g—’;dy -y = xi The integral now becomes

I=I H[l%——/zx dy
x

J % Vx2 + 1dy

()

F(y,x',x) = y% Vx2 +1

The Euler equation is

Simplifying gives

We can stop here as the problem did not ask to fully solve the integral.
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