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1 chapter 14, problem 1.6

Problem Find real and imaginary parts u, v of *
Solution


mailto:nma@12000.org

Let z = x + iy, then

f(z)=¢*

— ex+iy
— exeiy

= e (cosy + isiny)

=e* cosy + ie* siny

Hence u (x,y) = e cosy and v (x,y) = e* siny

2 chapter 14, problem 1.12

z

Problem Find real and imaginary parts u, v of f (z) = 5

Solution
Let z = x + iy then

Z41=(x+iy?+1
= (x* —y* + 1) +i(2xy)
Hence .
x+iy
(x2—y?+1)+i(2xy)

f@)=
Multiplying numerator and denominator by conjugate of denominator gives

(x +iy) ((x* - y* + 1) — i (2xy))
T (P D+ i @xy) (P -y + D) - i (2xy)
(x (x*—v*+1) +y(2xy)) +i(y (x* —v* + 1) (y(2xy)))
(x2 —y2 + 1)° + (2xy)?
x (2% —y? + 1) + 2xy? +iy(x2—y2+1) - 2x%y
(x2—y? + )%+ (2xy)® (k2 -y + )%+ (2xy)?

f@

Hence

x (x% = y? + 1) + 2xy?

u(x,y) =
(ey) (x2 —y2 + 1) + 2xy

y(r* —y?+1) —2x%y
(x2—y? + 1)2 + (ny)2

v(x,y) =

3 chapter 14, problem 2.22

Problem Use Cauchy-Riemann conditions to find if f (z) = y + ix is analytic.
Solution
CR says a complex function f (z) = u + iv is analytic if

fu_ o
dx Oy
ou Ov
_— = 2
Jdy  Ox @

Here u = y and v = x, since f (z) = z = x + iy. Therefore % =0, g—z = 0 and (1) is satisfied. And g—z =1
and % = 1, hence (2) is NOT satisfied. Therefore not analytic.

4 chapter 14, problem 2.23

Problem Use Cauchy-Riemann conditions to find if f (z) = ;;leyz is analytic.
Solution
CR says a complex function f (z) = u + iv is analytic if

u B
ox Oy
ou Jv
_— = 2
Jdy Ox @



Here f (z) = ﬁyz - iﬁyz, hence

x
U= ———
x% +y?
v = _—y
x% +y?
Therefore
ou 1 x
— = - (2x)
ox  x*+y?  (x%+y2)>
B X%+ y? — 2x7 B Y — x?
x2+y?)° (2 +y?)
And
ou -1 y

= (2y)

— = +
dy  x*+y? (x4 y2)
— (2% +1?) + 29

(x? +y?)”
Y — x°
2y
Hence (1) is satisfied. And
ou —2xy

dy (e +y?)

And
ov 2xy

ax (x4 g

Hence (2) is satisfied also. Therefore f (z) is analytic.

5 chapter 14, problem 2.34

Problem Write power series about origin for f (z) = In(1 — z). Use theorem 3 to find circle of conver-
gence for each series.

Solution

From page 34, for -1 < x < 1

x2 x Xt
In(l+4x)=x——+——-—+---
2 3 4
Hence
-2’ (-2’ (-2
In(1-2)=(-2) - + - 4+
(1-2)= () - b+ 2L -2
2 2 7
-, _Z _Z _..
2 3 4
2 3 4
=—|z+=+=+=+ )
1
-3
n=1 M

To find radius of convergence, use ratio test.

a
L= hm | n+1|
n—oo |an|
=
1 n+1
- r11—>o<> |l|
n
n
= lim
n—oon + 1
=1

Hence R = % = 1. Therefore converges for |z| < 1.



6 chapter 14, problem 2.37

Problem Find circle of convergence for tanh (z)

Solution
tanh (z) = —itan (iz)
Buttanx:x+x?3+%x5+%x7+---,therefore
iz 2, & 17
tanh(z) = —i|iz+ — + — (iz)’ + — (iz)’ +---
(2) ( 22+ o (02)
. iz3 2
=—iliz—— +—iz> +---
3 15
z3 5
=z-—+—2+
3 15

This is the power series of tanh (z) about z = 0. Since tanh (z) = z;‘;}ﬁ(é)) = zﬁ(‘g and cos (iz) = 0 at

iz = +7 then |z| < 7 to avoid hitting a singularity. So radius of convergence is R = 7.

7 chapter 14, problem 2.40

Problem Find series and circle of convergence for ﬁ
Solution
From Binomial expansion

=14+z+22 42+

1-z
For |z| < 1. Hence R = 1.

8 chapter 14, problem 2.55

Problem Show that 3x2y - y3 is harmonic, that is, it satisfies Laplace equation, and find a function f (z)
of which this function is the real part. Show that the function v (x, y) which you also find also satisfies
Laplace equation.

Solution

The given function is the real part of f (z). Hence u (x, y) = 3x%y — y>. To show this is harmonic, means
it satisfies V2u = 0 or % + % = 0. But

yZ
ou
Ix = 6xy
0%u B
oz =%
ou ) )
— =3x" -3y
dy
0%u B
a7 =

Therefore % + giy’; = 0, hence u (x, y) is harmonic. Now, we want to find f (z) = u(x,y) + iv (x,y)
and analytic function, where its real part is what we are given above. So we need to find v (x, y). Since
f (2) is analytic, then we apply Cauchy-Riemann equations to find v (x,y) CR says a complex function

f (2) = u + iv is analytic if

fu_ B
ox Oy
_ou_dv o
dy  Ox
But % = 6x1, so (1) gives
6xy = (’)_v
v(x,y) = J6xydy
= 3xy’ +g(x) (3)
From (2) we obtain
3t 43y = OV
v = ox

4



But from (3), we see that % = 3y% + g’ (x), hence the above becomes

—-3x% + 3% = 3¢° + ¢/ (x)

g’ (x) = =3x*
gx) = J —3x2dx
=-x*+C

Therefore from (3), we find that
v(x,y) =3xy° —x>+C

We can set any value to C. Let C = 0 to simplify things. Hence
fE)=u+iv
= (3x"y —y’) +i(3xy" =)

Now we show that v (x, y) is also harmonic. i.e. it satisfies Laplace.

g—z = 3y2 — 3x7
82—0 = —6x

0x?

6—0 = 6xYy

dy

62_0 = 6x

oy?

v | 0%v _
Hence we see that 53 + o = 0. QED.

9 chapter 14, problem 2.55

Problem Show that xy is harmonic, that is, it satisfies Laplace equation, and find a function f (z) of
which this function is the real part. Show that the function v (x, y) which you also find also satisfies
Laplace equation.

Solution
The given function is the real part of f (z). Hence u (x,y) = xy. To show this is harmonic, means it
satisfies V2u = 0 or % + gLy‘; = 0. But
ou
x y
0%u “o
0x?
ou
a_y =x
’u 0
0y?
Therefore % + %’; = 0, hence u (x, y) is harmonic. Now, we want to find f (z) = u(x,y) + iv (x,y)

and analytic function, where its real part is what we are given above. So we need to find v (x, y). Since
f (2) is analytic, then we apply Cauchy-Riemann equations to find v (x,y) CR says a complex function
f (z) = u + iv is analytic if

u B
dox Oy
ou Ov
_— = 2
Jdy Ox @
But % =y, so (1) gives
o
v(xy) = Jydy
2
=L 19 3)
From (2) we obtain
_0v
© Ox

5



But from (3), we see that % = ¢’ (x), hence the above becomes
-x=g'(x)
g(x) = J —xdx

x2

=-Z4C
2

Therefore from (3), we find that
2 2

x
v(x,y):y?—?+c

We can set any value to C. Let C = 0 to simplify things. Hence

f@=u+iv

:(xy)+i(y2;xz)

Now we show that v (x, y) is also harmonic. i.e. it satisfies Laplace.

ov
ox
0%v
ox?
ov
ay
0%v
ay?

= —-x

Hence we see that % + g%f; = 0. QED.

10 chapter 14, problem 2.60

Problem Show that In (x? + y?) is harmonic, that is, it satisfies Laplace equation, and find a function

f (z) of which this function is the real part. Show that the functi
satisfies Laplace equation.
Solution

on v (x, y) which you also find also

The given function is the real part of f (z). Hence u(x,y) = xy. To show this is harmonic, means it

. 2 2
satisfies V2u = 0 or 2% + 9% — o But
dx dy

ou 2x
ox x*+y?

u_o(_1 )y, 1
— =2 x| —— (2x
ox? x? +y? (x2 + y2)°

2 4x?
T 24 V(x4 y2)
2 (x2 + yz) 4x?
@2y
B —2x% + 2y2
(x? +y)°
ou_ 2y
oy x> +y?
& =2 (;) + zy (_—1 (zy))
dy? x% + y? (x? + yz)2
2 4y
Ty (g
_2(x*+y?) -4
)
B 2x? — 2y°
2ty
Therefore
Pu  *u -2 +2yF  2x*-2y°

_—t —— =
ox?  0y? (2 +y)P? (2% +y?)?

=0



Hence u (x, y) is harmonic. Now, we want to find f (z) = u (x, y) + iv (x, y) and analytic function, where
its real part is what we are given above. So we need to find v (x, y). Since f (z) is analytic, then we apply
Cauchy-Riemann equations to find v (x, y) CR says a complex function f (z) = u + iv is analytic if

Ju Ov
ox "oy M
c’)x ay
Ju Ov
Ty ox 2
y Ox
But % = #xyz, so (1) gives
2x _ a'v
xz + yZ N 6y
2x
) = | =——d
v (x y) J RO y2 Yy
= 2 arctan (2) +g(x) 3
X
From (2) we obtain
2y  0Ov
xz + y2 - ax
But from (3), we see that % = __yzzi/xz + ¢’ (x), hence the above becomes
2y 2y ,
_ _ N
x2 +y? 2 + X2 g (x)
g (x)=0
gx)=C

Therefore from (3), we find that
v(x,y) = 2arctan (2) +C
X

We can set any value to C. Let C = 0 to simplify things. Hence
_ y
v (x,y) = 2arctan | =
x
And therefore

f@)=u+iv
=1In (x* + y?) +1i (2 arctan (}%))

Now we show that v (x, y) is also harmonic. i.e. it satisfies Laplace. We find that

v 4xy
Ox% " (x2+ y2)’
d*v 4xy

Iy (2 +y?)’
Hence we see that % + ‘(%2’ = 0. QED.

11 chapter 14, problem 3.3(b)

Problem Find ff;zzdz over the half unit circle arc shown.

C
Solution

Since f (z) = 22 is clearly analytic on and inside C and no poles are inside, then by Cauchy’s theorem
§zzdz =0
C

12 chapter 14, problem 3.5

Problem Find I e “dz along positive part of the line y = 7. This is frequently written as f;:ri” e %dz
Solution



Let z = x + iy, then

co+iT
I= I e “dz
153
co+iT )
= j e e Ydz
LT
But dz = dx + idy, the above becomes
SEN /4 )
I= e e 'Y (dx + idy)
JIiT
(00 154

=| e e ¥dx+ ij e e Wdy
im

S

=| e *e VYdx

JO

But y = 7 over the whole integration. The above simplifies to

I= e_i”J e Ydx
0

=—e T (0-1)

13 chapter 14, problem 3.17

2z—-1

Problem Using Cauchy integral formula to evaluate jg sinz 12 where (a) C is circle |z| = 1 and (b) C is

C
circle |z| = 2

Solution

For part (a), since the pole is at z = 7, it is outside the circle |z| = 1 and f (2) is analytic inside and on
C, then by Cauchy theorem 3@Siﬂdz =0.
C

2z—1

For part(b), since now the pole is inside, then

3€ Sz dz = 2miResidue (%)

2z—1
C
But
T .
Residue (—) = lim (z— —) f(2)
2 z—>% 2
. ( 71') sin z
= lim (z— —
z—Z 2/ 2z—m
n (z- %)
= sin (—) |
2) zZ 2Zz—T
Applying L’Hopital
. T LT . 1
Residue (—) = sm(—) lim -
2 2 z—)% 2
_ 1
)
Hence )
§ sinz dz = mi
2z—1
C

14 chapter 14, problem 3.18

Problem Integrate f]gzlzn_zif dz over circle |z| = 3

C
Solution



The pole is at z = %. This is inside |z| = 3. Hence

in 2
§ S 22 dz = 2miResidue (%)

6z—1
C
But
. T . T\ sin2z
Residue (—) = lim ( - —)
6 z—Z 6/ 6z—1
z—Z
= sin (E) li ( 6)
3/ z05Z 6z—1
Applying L’Hopitals
. T LT 1
Residue (—) = sm(—) im —
6 3/ .5z 6
1 . (n)
= —sin|—
6 3
Hence
sin 2z 1 .z
3€ dz = 2mi | - sin (—)
6z —1 6 3
C
- (m) _ V3 . .
But sin (3) = - and the above simplifies to
2 1vV3
3€ S ez dz = 2ri (—i)
6z—1
C
i

15 chapter 14, problem 3.19

eSz

34z if C is square with vertices +1, +i

Problem Integrate fﬁ

C
Solution

The pole is at z = In 2 = 0.693 so inside C. Hence

3z
§ ¢ dz = 2miResidue (In 2)

z—1In2
c
But
Residue (In2) = lim (z—-1n2) f(2)
z—In2
_ A2y 2T In2
z—n2z—1In2
— 63 In2
Hence

eSz
i; dz = 2rie’ "2
z—1In2

=27i (2)°
= 167i

16 chapter 14, problem 3.20

Problem Integrate 3@;1‘;52 -~ dz if C is (a) circle with |z| = 1 and (b) Circle with |z| = 2

o)
Solution

Part (a). Pole is at z = 2In2 = 1.38. Hence pole is outside C. Therefore 3€2C1‘;f£‘_zz dz = 0 since f(z) is

C
analytic on C

Part(b). Now pole is inside. Hence

h

jggdz = 2miResidue (21n 2)
2In2 -z

C



But

Residue (2In2) = lirrll (z—2In2) f(2)
z—2In2

cosh z

= lim (z-2In2)——
z—2In2 21112—2
z—2In2

=cosh(2In2) lim ——
z—n22ln2 -2z

= —cosh(2In2)

Therefore

h

jggdz = —2micosh(21n2)
2In2 -z

C

= —4.25mi

17 chapter 14, problem 3.23

eSz

mdz if C is square between +1, +i

Problem Integrate §

c
Solution

The pole is at z = In 2 = 0.69 which is inside the square. The order is 4. Hence

e3z
§—4dz = 2mi Residue (In 2)
2 (z—-1n2)

To find Residue (In 2) we now use different method from earlier, since this is not a simple pole.

_ o 1d s
Re51due(ln2)—ZE)IIIQZQE(Z—InZ) f(z)
1 3 4 3z
= lim ——(z—-In2)*| ——
oin2 31 dz3 (z-In2) ((z—ln2)4)
1 &

: - 3z
z—1>1i1;112 3! dZ3 (6 )
2
(3¢™)

1 d
lim —9—e3*
z—Iln2 3! dz

lim ——
z—In2 3! dz?

1
lim —27e%*
z—In2 3!

I
=
=
(3}

Il
—_
[N}
~
~
—
| oo
~———

Hence

e3z
3€—4dz = 2mi36
2 (z=1In2)

=72mi

18 chapter 14, problem 4.6

1

Problem Find Laurent series and residue at origin for f (z) = Py

Solution
There is a pole at z = 0 and at z = —1. We expand around a disk of radius 1 centered at z = 0 to find
Laurent series around z = 0. Hence
f@=5—
)= 5——
2% (1 + 2)?

10



1
(1+2)°

For |z| < 1 we can now expand using Binomial expansion

1 z? z3
fz)= =z 1+ (=2)z+(-2)(-3) ot (=2)(=3)(-4) ETIR

;(1—22+322—423+---)

1 2
——l 34zt
2z

Hence residue is —2. To find Laurent series outside this disk, we write

i 1

Z2 (1 + z)2
i
2 (z(1+1))"
1 1

f @

4 2
e

1

(1417

And now we can expand for |%f < 1or|z| > 1 using Binomial and obtain

2 3
m;(l(z)lw(l) D () )
ESERERS
=S [1-=+3|=] —4|=) +
y4 z V4 z
1 2 3 4
A

We see that outside the disk, the Laurent series contains only the principal part and no analytical part
as the case was in the Laurent series inside the disk.

19 chapter 14, problem 4.7

2—-z

Problem Find Laurent series and residue at origin for f(z) = =5

Solution
There is a pole at z = +1. So we need to expand f (z) for |z| < 1 around origin. Here there is no pole at
origin, hence the series expansion should contain only an analytical part

f@=2
_ 2—-z
(-2 (1+2)
A B

“U-2 (+2
1131
T 20-2 "2a+2

1 3
E(1+z+z2+z3+-~-) +5(1—z+z2—z3+z4—---)
=2-z+22 -2 +22t -2+ ...

No principal part. Only analytical part, since f (z) is analytical everywhere inside the region. For |z| > 1
we write

1 +§ 1
(1-2 2(1+2)
i1 3 1
22(%—1) 22(%+1)
-1 1 3 1
—_— +_
2z (1-1)  2z(L+1)

—_ N =

f@)

We see that outside the disk, the Laurent series contains only the principal part and no analytical part.

11



20 chapter 14, problem 4.9

Problem Determine the type of singularity at the point given. If it is regular, essential or pole (and
indicate the order if s0). (a) f(z) = S22,z = 0 (b) f(z) = 5z =0,(c) f(2) = = =1, (d)

)3 s
f(Z) - ﬁaz =1
Solution
(a) There is a singularity at z = 0, but we will check if it removable

—z z _
f(Z): 3! 5!
_ 22 24
= _E a_

So the series contain no principal part (since all powers are positive). Hence we have pole of order 1
which is removable. Therefore z = 0 is a regular point.
(b) There is a singularity at z = 0, but we will check if it removable

2 4
1_Z_+Z__...
_ 21 T
f(z)_ Z3
_ 1 1 z
3 2z 4

Hence we could not remove the pole. So the the point is a pole of order 3.
(c) There is a singularity at z = 1,

2 -1
fo=
_(z—l)(z +1+2z)
ICE
(z2+1+z)
IR
Hence a pole of order 2.
@ ]
e
o=

There is no cancellation here. Hence z = 1 is a pole or order 1.

21 chapter 14, problem 4.10

Problem Determine the type of singularity at the point given If it is regular, essential, or pole (and
indicate the order if so0). (a) f (z) = z=2i(b) f(z) =tan’z,z = Z. 7.0 f(2) = 1_%48(2),2 =0, (d)
f(z)= cos(z_”) LZ=T

Solution

(a) To find if the point is essential or pole or regular, we expand f (z) around the point, and look at the
Laurent series. If the number of b, terms is infinite, then it is essential singularity. If the number of b,
is finite, then it is a pole of order that equal the largest order of the b, term. If the series contains only
analytical part and no principal part (the part which has the b, terms), then the point is regular.

So we need to expand % e around z = 2i. For the numerator, this gives

zz+4 >

2i
. . e
ez=ezl+(z—2i)e21+(z—2i)2?+---

For
1 1
22+4  (z-2i)(z+2i)
i 1 1
== +— 4+ —(z—2i) — — (z - 2i)* -
4(z—2i) 16 (z 2 256(2 i
Hence
F@=[1-et 4 cm2iyet 4 z-2ip o s (2o 20) =z - 20
z)=|1—e z—2i)e z=2)°—+---|[-- ———1——2—1—
2! 4(z—2i) 16 256

We see that the resulting series will contain infinite number of b,, terms. These are the terms with
Hence the point z = 2i is essential singularity.

1
(z=2i)"™"

12



(b) We need to find the series of tan? z around z =

. 2 _E
2

2 cos? (z -

INTE

So we see that the number of b,, terms will be 2 if we simplify the above. We only need to look at the
first 2 terms, which will come out as

fo=— P LT

Since the order of the b, is 2, from ﬁ, then this is a pole of order 2. If the number of b,, was infinite,
2*7 -
this would have been essential singularity.

© f(»)= 1—%45@)’ Hence expanding around z = 0 gives

2! 4! 6!
(z) =
f pon
22 24 4
_aTatat
Z4
11 1 2
222 41 6

Since b, = %ﬁ and highest power is 2, then this is pole of order 2.
d) f(2) = cos (ﬁ) We need to expand f (z) around z = x and look at the series. Since cos (x)
expanded around 7 is
1 1
cos(x)=—1+§(x—7t)2—ﬁ(x—ﬂ)4+---

s
z—’

() =1 (155 ) - () ) e

The series diverges at z = r so it is essential singularity at z = x. One can also see there are infinite

number of b,, terms of the form (_;n
z—1)

Replacing x = the above becomes

22 chapter 14, problem 5.1

Problem If C is circle of radius R about z,, show that

§ dz ) 2mi n=1
2 (z = zp)" 0 otherwise

Solution

13



Since z = z + Re'? then dz = Rie'? and the integral becomes

2 i0 2 _n
J Rie 4o = J Rlele) do
0 (Re’9

27
— (R)l—n J iei@(l—n)de
0
When n = 1 the above becomes
27 Ri i0 27
J L _gp= J idf

0 (Rie’e) 0

= 2mi

And when n # 1, then (1) becomes

27 Rigif i0(1-n) 127
J 4o =i(R)"" [‘34 }
0 (Re ) i(1-n) 0

_ R'™" [eiem—n)] 2
0

1—-n
_ R'™" (ei27r(1—n) _ 1)
1—n

But e’27(=") = {1 since 1 — n is integer. Hence the above becomes

27 Riei@ Rl—
do = 1-1
) o0 = 1 0
=0

QED.
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