MAE-186
 FORTRAN Examination Spring 2006

Problem 1

Write a FORTRAN program to create the following two-dimensional array: The first row is composed of 59,049 columns. The entries in the first row go from 1 to 7 repeatedly. Namely,
$123456712345671234567 \ldots 1234567$
The second row is composed of 19683 columns. The first entry in the sencond row is equal to the sum of the first 3 columns of the first row. The second entry in the second row is equal to the sum of the next 3 columns of the first row. Namely, the second row is:
$6151012 \ldots 918$
The third row is composed of 6561 columns. The first entry on the third row is equal to the sum of the first 3 columns of the second row. The second entry in the third row is equal to the sum of the next 3 columns of the second row.

The fourth row is composed of 2187 columns. In the same fashion of rows 2 and 3.
The fifth row is composed of 729 columns. In the same fashion of rows 2,3 and 4.
Continue computing until row number 10 . Note: $\left.3^{10}=59,049\right)$. The program should only print elements in the tenth row. (15 pts)

Problem 2

Write a function program to evaluate the following series. Terminating the sum when the value of a term is less than 10^{-8} (10 points)

$$
f(x)=1-\frac{1}{3} x+\frac{1 \dot{4}}{3 \dot{6}} x^{2}-\frac{1 \dot{4} \dot{7}}{3 \dot{\operatorname{g}} \dot{9}} x^{3}+\ldots
$$

Problem 3

Write a program subroutine MULT ($M, N, N U M B E R$) that returns the number of multiples of N that are found between 1 and M. This value is returned in the variable NUMBER. (10 points)

For example, a CALL MULT (99,10 , NUMBER) would return NUMBER equal to 9 (since there are 9 multiples of 10 between 0 and 99).

Problem 4

Write a subroutine whose input is an integer N . As output it returns a vector of size N with the first N elements of the Fibonacci sequence. (10 pts)

Problem 5

State if each of the following statements is true or false. You will get 2 pts for each correct answer. HOWEVER, if your answer is incorrect you will get -1 pts. Of course, you have the option not to answer any of the extra credit questions. In that case, there will not be any positive or negative credit.

1. PARAMETER (PI $=\operatorname{ACOS}(-1)$.$) will not produce any compilation errors.$
2. in FORTRAN it is perfectly valid to GO TO a CONTINUE statement.
3. in FORTRAN, FUNCTION subprograms and the main program may use the same identifier.
[^0]
[^0]: "I crave mental exaltation."

