MAE106: Mechanical Systems Laboratory Winter Quarter 2005

	White Quarter 2005
Catalog Data:	MAE106 Mechanical Systems Laboratory Units: 4
	Experiments in linear systems, including op-amp circuits, vibrations, and control
	systems. Introduction to digital sampling concepts. Emphasis on demonstrating that
	mathematical models are useful tools for analysis and design of electro-mechanical
	systems.
	Prerequisites: MAE140 or MAE147; ECE72
	Course Overlap: MAE170 provides control theory useful for this course
	Cross Listed Course(s): none
	Restrictions: none
	(Design Units: 2)
	Lecture Location: PSCB 120 Tues Thurs 3:30-4:50 Lab Location: EG2102
Textbook:	Modern Control Engineering Fourth Edition Katsuhiko Ogata Prentice Hall 2002
References.	Supplemental course notes will be at the Engineering conv center ET203 Course
Kerer ences.	Web Site: http://www.eng.uci.edu/~dreinken/MAF106/mae106home.htm
Coordinator	Professor David I Reinkensmeyer
coor uniator.	Department of Mechanical and Aerospace Engineering
	Office: EG3225, 824-5218, drainkan@uci.edu
	Office Hours: Tuesday 2.3 PM or by appointment
	TA's: (Office hours to be encounced)
	Deiguke A every decreation and
	Lisvin Livijeviel@uci.edu
	Jiayini Liu jiayini@uci.edu
Caalar	This source course theory and our originants on motor control sustains clostrical
Goals:	This course covers theory and experiments on motor control systems, electrical
	inters, amplifiers, structural resonance and vibration. These topics are important for
	building robots, mechatronic devices, and structures. These systems will be
	described by linear, ordinary, differential equations. A key goal of the class is to
D	use these equations to predict, understand, and control the behavior of machines.
Prerequisites by Topics:	Introduction to Engineering Analysis II (MAE140)
	Vibrations (MAE147)
	Network Theory and Operational Amplifiers (ECE/2)
Lecture Topics:	Week 1 (1/6): No lab scheduled
	Lecture 1: Overview, Design Exercise, Review of Circuit Analysis
	Reading: Section 3-8
	Week 2 (1/11): Lab 1: Laboratory Tools and Motor Control
	Lecture 2: Time and Frequency Domains
	Lecture 3: First-Order Systems: DC Motors and Electrical Filters
	Reading: Chapter 2, Sections 3-1, 3-2, 5-1, 5-2
	Week 3 (1/18): Lab 2: Electrical Filters and First-Order Systems
	Lecture 4: Lab 1 Quiz; Introduction to Control Theory
	Lecture 5: Example of Feedback Control: P-type Velocity Control of a Motor
	Reading: Chapter 1, Section 3-3
	Week 4 (1/25): Lab 3: Feedback I: P-type Velocity Control of a Motor
	Lecture 6: Lab 2 Quiz; Second Order Systems: Time domain
	Lecture 7: Second Order systems: Frequency domain
	Reading: Sections 5-3, 8-1, 8-2
	Week 5 (2/1): Lab 4: Vibration I: Lightly Damped Second Order Systems
	Lecture 8: Lab 3 Quiz and Midterm
	Lecture 9: PD Motor Control
	Reading: Section 5-8
	Week 6 $(2/8)$: Lab 5: Feedback II: P and PD Motor Position Control

	Lecture 10: Lab 4 Quiz; Systems with Two Modes of Vibration
	Lecture 11: Design of a Vibration Isolator
	Reading: Class Notes
	Week 7 (2/15): Lab 6: Vibration II: System with Two Masses
	Lecture 12: Lab 5 Quiz; Advanced Control
	Lecture 13: Advanced Control
	Reading: Class Notes
	Week 8 (2/22): Lab 7: Advanced Control
	Lecture 14: Lab 6 Quiz and Design Exam
	Lecture 15: Design Exam Review
	Week 9 (3/1): No Experiment This Week
	Lecture 16: Lab 7 Quiz/ Final Project Discussion
	Lecture 17: No Class
	Week 10 (3/8): Lecture-free week for working on final projects
	Week 11 (3/15): Finals Week – final project contest on day of scheduled final
Computer Usage:	For laboratory write-ups and data acquisition.
Laboratory Projects:	Laboratory Location: Engineering Gateway 2102
	Laboratory times:
	Section A: Tues 11:00-01:50
	Section B: Tues 06:00-08:50P
	Section C: Wed 04:00-06:50P
	Section D: Thurs 06:00-08:50P
	Section E: Friday 10:00-12:50
	Laboratory Exercises: Handouts that describe the experiments will be made
	available on the course web site, along with their solutions. You should work
	through the lab, referring to the solution. The solution is provided to relieve time
	pressure and to act as a "consultant" if you get stuck. You can also ask the TA for
	help if you are confused. Be creative, explore, and have fun in the lab. This is your
	opportunity to build things that move and see how they work.
	Lab Pre-Quizzes: There will be a brief quiz at the beginning of each lab testing
	whether you have read the experiment handout before coming to laboratory.
	Lab Write-Up: Each student will be required to turn in a brief write-up for the lab.
	The write-up must be typed. You must use a computer graphing program (e.g.
	Microsoft Exel or Matlab) for all graphs. Zero credit if you don't do this!
	Lab Post-Quizzes: There will be a 30-minute quiz in lecture the Tuesday following
	each laboratory.
Final Project	There will be a final project competition involving the design and head-to-head
0	testing of a robotic device. The final project tournament will take place on the day
	of the scheduled final exam, and will replace the final exam. There will be a write-
	up due on the day of the final project.
Design Content	This course requires solution of design problems related to control and vibration, as
Description:	well as design and construction of a robotic device for the final project.
Grading Criteria:	The grading scale will be:
8	Lab Pre-Ouizzes: 7%
	Lab Post-Ouizzes: 14%
	Lab Write-Ups: 14%
	Mid-term exam: 20%
	Design exam: 20%
	Final project: 25%
Estimated ABET Cates	gory Content:
Engineering So	vience: 2 credits or 50%
Engineering D	esign: 2 credits or 50%
Prepared by: Prof.	David Reinkensmeyer Date: 1/6/05
- · ·	F