
Home Run Derby.

Final project report.
MAE 106. UCI. Winter 2005.

By Nasser Abbasi

March 22, 2005

Table of contents

1 OVERVIEW... 2

2 BLOCK DIAGRAMS OF THE CONTROLLED SYSTEM ... 4

2.1 PITCHER CONTROLLER BLOCK DIAGRAM .. 4
2.2 BATTER CONTROLLER BLOCK DIAGRAM ... 4

3 CIRCUIT DIAGRAMS ... 5

4 EQUATIONS USED .. 7

5 METHODOLOGY USED ... 9

5.1 PITCHER CONTROLLER LOGIC ... 9
5.2 BATTER CONTROLLER LOGIC .. 9

5.2.1 Batter controller steps diagram ... 10
5.2.2 Batter controller algorithm .. 11

6 MECHANICAL DESIGN FEATURES ... 12

6.1 GEOMETRY AND DIMENSIONS OF THE PLAYING FIELD... 12
6.2 GEOMETRY AND DIMENSIONS OF THE BATTING MOUNTING .. 13

7 PARTS LIST .. 14

8 TESTING WITH GRAPHS .. 15

8.1 EXAMPLE OUTPUT OF ONE TEST RUN .. 16

9 APPENDIX .. 17

9.1 BATTER CONTROLLER MATLAB CODE .. 17
9.1.1 nma_motor_auto.m .. 17
9.1.2 nma_motor_manual.m ... 19

9.2 PITCHER CONTROLLER MATLAB CODE ... 19

1 Overview
This is the report for the final project for MAE 106 course, UCI, winter 2005.

The project objective is to design a robotic system to play baseball for the final project for MAE

106. The project description and rules can be found at professor's Reinkensmeyer web site

http://www.eng.uci.edu/~dreinken/MAE106/mae106home.htm

Below is the general setup diagram taken from the project description document found in the

above we site:

There are 2 main components to the project: the pitcher and the batter.

For both parts we used Labjack with Matlab to communicate between the PC and the

mechanical components of the project (Piston and Motor). We used Matlab as the main tool to

implement the control laws.

The basic design criteria we wanted to achieve are a fully automated and controlled batter with

no manual nor visual control. This implied the restriction on the use of a manual controller to

control the motor. We have started with the assumption that one is now allowed to use the

keyboard once the game starts.

Due to this restriction we imposed on our design, the final solution consisted of software

program where the controller was written in Matlab with heavy reliance on the LabJack Matlab

interface calls. This solution produced some technical problems on its own, since this

controller in essence in an open loop controller, we needed to have a good timing analysis

done earlier and impede these timing estimates in the controller software. In addition, the

sampling rate of Labjack was not fast enough to allow us to obtain more readings of the ball
position as it is being hit by the piston; this resulted in less than optimal estimates being made

on the position of the ball. Since it is not possible to track the position of the ball itself,

implementing a feedback control system based on tracking the ball position is not possible

(this would have been the optimal solution).

On the pitcher side, we controlled the speed of the piston by adjusting the voltage delivered to

the piston actuator.

http://www.eng.uci.edu/~dreinken/MAE106/mae106home.htm

On the batter side (which was the more complicated controller), we detect when the ball was hit

and at what speed, this in turn correlated to the amount of time delay before we issue the
signal to start the motor to swing the bat. We also added logic to the bat controller to avoid

attempting to hit balls with low enough speed which we calculated earlier (by running many

tests) to be at such low speeds that the ball will most likely not be arriving in a straight line

and hence will not hit the strike zone.

In addition, on the batter side, we added a mechanical stop mounted on the motor to be able to
set the initial position of the bat to be at a fixed location before the start of each swing. This

was critical to the mechanical design of our batter, since the bat controller is an open loop;

hence having accurate timings is the most important aspect (by definition, an open loop

contains no feedback and must rely on initial accurate timings). Hence, being able to set the

bat at a fixed location before each swing allowed us to achieve this objective.

2 Block diagrams of the controlled system

2.1 Pitcher controller block diagram
The pitcher is an open loop proportional controller with a gain of one. The desired voltage is

supplied, and the controller simply interfaces with Labjack to send this voltage to the piston

(the plant). We add logic to the controller to add some delay and to move the piston back and

forth before the voltage signal is send to the piston (the plant) to try to confuse the batter

controller, but the final voltage send to the piston is the same as the desired voltage.

2.2 Batter controller block diagram
The batter is also an open loop proportional controller with a gain of one. The input to the

batter controller is fixed at 5 volts (which is the maximum voltage labjack can send). This
voltage moves the motor head at the maximum speed.

Initially we wanted the controller to control the speed of the motor. For fastballs, we wanted to

speed up the motor, and for slow balls we wanted to slow down the motor.

However, after some testing, we discovered that the current amplifier we were given to use on

this project was not designed for this purpose, it was only able to generate a constant current

to run the motor at the same speed regardless of the voltage that was sent to it. (Actually the

motor would run at a fixed low speed for voltages below 4 volts, and at fixed high speed for

voltages over 4, but the point is that it was not possible to change the speed of the motor in

direct proportion of the voltage being sent to the current amplifier we used)

For this reason, we designed the controller to delay more for slow balls and to delay less for fast

ones, but to run the motor at the same speed for both cases. The block diagram for this open

loop controller is shown below. In this diagram we show how the controller reads the piston

head position signal from the piston in order to decide when to issue the command to the
motor to start.

3 Circuit diagrams
The following diagram shows the full hardware configuration used with all the connections

needed at the batter side

The batter reads the piston position signal as it arrives at the AI0 port of labjack. The following
diagram combines both the pitcher and the batter circuits to better illustrate how the

connection is achieved.

4 Equations used
Since the controller we used is a proportional controller with fixed gain of one, the control law

is obviously very simple. However, the complexity came about in determining the amount of

delay and in the calculation of the ball speed and in forcing labjack to use a fixed sampling rate

so that our calibration will remain valid across different play stations.

So in what follows we describe how we performed the calibration.

We used a linear relation between the speed of the ball when it was hit and the amount of delay

required before we swing the bat. We performed many experiments, hitting the ball at different

speeds and determined the amount of delay needed to obtain a good swing for this speed
(Please see the testing section for additional data on this).

 The result of this testing is a number of data points. We then did a linear straight-line fit of the

data and obtained the equation of the line. This line equation was used by the controller to

determine the time delay needed based on the ball speed.

THE LINE EQUATION

cxmy

Used in the controller is

 51
6

03.0
525.

 speeddelay

In the above we assumed that the ball speed does not change greatly from the time the

controller detected that the ball was hit until the time the ball arrives to the strike zone. Since
the distance between the pitcher and the batter is small (three feets), and the ball is fairly

smooth, this assumption is reasonable. In addition, the actual speed calculation itself is not

very accurate due to the low sampling rate used by Labjack, which did not allow us to obtain

more accurate estimates of the ball speed.

The speed of the ball was calculated as follows. The batter controller monitors the position of

the piston head continuously by reading the piston head position signal which can vary from 0

volts upto 10 volts. The ball is situated half way between a fully extended and fully contracted

piston. Hence a voltage reading of around 5 volts will indicate that the piston has hit the ball.

The batter controller keeps track of the last 2 positions read from the piston and the amount of

time elapsed between these 2 readings.

When it detects that the piston position has passed the half way mark, indicating that the ball

was hit, it will calculate the speed using the equation

dtimeElapse

onLastPositiitioncurrentPos
speed

This value is then substituted in the delay equation discussed above to give the amount of

delay in seconds needed before starting the motor.

In addition to the above, the batter controller will check if the speed of the ball is below a

certain threshold. If so, the batter will not turn the motor in this case. The reason for this is

that we found by experimentations that a slow ball will most likely not remain in a straight line

and will not arrive to the strike zone. Hence we did not want to take the chance on trying to hit
a ball that is going out anyway and losing a point. This will maximize our chances of winning.

This threshold is currently set at 52 m/s.

5 Methodology used
We will consider the pitcher side and the batter side separately.

5.1 Pitcher controller logic
The logic of the pitcher controller is simple. We apply voltage, which causes the piston head to

move. A voltage over 2.5 will move the head forward, and voltage below 2.5 will move the head

backwards. We varied the speed we hit the ball at, and also moved the piston back and forth

before hitting the ball in order to try to confuse the batter controller.

5.2 Batter controller logic
We have build 2 mountings on top of the motor mounting. One mounting to attach the bat, and
another to attach a mechanical stop.

Controller starts by swinging the bat handle to the initial position, this will cause the bat

handle to hit the mechanical stop mounting attached to the motor mounting. Immediately, the

motor will stall, drawing current but not moving.

The controller will next turn the voltage off the motor and waits for the ball to be hit by the

pitcher. The Batter controller continuously monitors the ball position signal coming from the

pitcher.

The batter controller monitors the position of the piston head and calculates its speed after
each sample reading using Labjack Matlab function calls.

When the batter controller detects that the position of the piston head has hit the ball (recall

that the ball is located at a fixed position), then the speed of the ball will be known at that

moment. It will be the speed of the piston head.

From the speed of the ball, the batter controller decides when to start the bat swing. The

controller will always swing the bat at the maximum (5 volts) level motor speed.

The controller knows when to start the swing by a calibration process that we have performed

prior to the start of the tournament. During calibration we did a number of runs and derived a
line equation that allowed the controller to determine the delay needed given the speed of the

ball.

Since the batter always starts from the same position (due to the use of the mechanical stop),

this process resulted in a reasonable accurate swings designed to hit the ball at 90 degrees to
the direction of the ball to obtain the maximum force on the ball.

At the end of each swing the bat handle will hit the mechanical stop on the other side, causing

the motor to stall again. Controller will switch the voltage sign again, causing the bat to quickly

swing back, hitting the mechanical stop again from the other side, and resting there until the

next pitch.

This process will continue automatically. To help illustrate this process, the following diagram

shows the main steps for the batter controller.

5.2.1 Batter controller steps diagram

5.2.2 Batter controller algorithm

We have used Matlab to implement the batter controller logic. The following is the algorithm for

this controller.

LOOP

 reverse motor voltage to swing clockwise to hit the mechanical

stop.

 start reading the piston signal -- use LABKACK Matlab call.

 Calculate the position and speed of the piston head.

 WHILE piston has not hit the ball

 read next sample from the piston signal

 update position and speed of the piston.

 END WHILE

 determine delay needed based on ball speed. (use linear fitting)

 pause the delay needed.

 issue a control signal to the motor to swing at maximum speed.

 delay for known amount of time (calibrated) to allow bat to swing

 fully.

 END LOOP

6 Mechanical design features

6.1 Geometry and dimensions of the playing field

To be able to build the mounting for the bat handle and the bat itself, we needed exact

dimensions of the playing field.

6.2 Geometry and dimensions of the batting mounting
The dimensions of the batting and mechanical stop mounting are shown below. We initially

designed the mounting to allow us to add a potentiometer if we had to.

7 Parts list
 Pittman DC gearhead motor P/N GM8714F560

 Series SRX stainless Steel body air cylinders with position feedback.

 Motor mounting (The size and dimensions are provided to us by the instructor).

 Mechanical stop mounting L-shaped.

 One mechanical bat arm to hit the ball with.

 2 LU12 labjack’s with USB connection.

 2 PC’s running windows and Matlab

 One current amplifier.

 A number of wires to connect current amplifier to motor and to labjack

 2 screws and bolts to attach the motor mounting to the table.

 Power supply for the current amplifier (we used +12V DC provided by the training kit).

8 Testing with graphs

Since we implemented an open loop controller for the batter, most of the testing concentrated

on calibration of the bat controller. We needed to able to estimate the amount of delay before a

swing based on the speed of the ball. To accomplish this, as we discussed above in the
methodology section, we ran many tests and collected many data points. This is a partial

listing of data collected for calibration.

Voltage to piston

(Volts)

Calculated speed of ball (speed

units)

Amount of delay needed

(milliseconds)

4 51.04 79

 49.97 81

 55.60 75

 61.52 69

 56.07 74

3.9 50.26 80

 52.03 78

 49.25 81

 52.92 78

 52.76 82

3.8 53.08 83

 47.52 84

 56.00 83

For each piston voltage, the average of the speed was taken and the average of the amount of

the delay needed was also taken. This resulted in a number of yx, data points that we fitted

a straight line through to obtain the line equation.

We also needed to fix the sampling rate of Labjack, and for this purpose we used one Labjack
Matlab call that allowed us to specify the sampling rate to be used. Instead of using the

standard call EAnalogIn() to read the piston position signal from AI0, we used the call AIBurst

that also can read AI0, but in addition allowed us to specify a scan rate from 400 up to 8192

hz. We used 8192 Hz to be able to avoid the possibility of having one labjack running at

different sampling rates at different play stations.

8.1 Example output of one test run
When the bat controller runs, it continuously displays basic results showing the speed of the

ball being hit and the amount of delay. It will also show if the ball we is too slow, which in this

case the batter will not attempt to hit. These messages made it easier to debug and calibrate
the program. Below is such example output

>> nma_motor

detected ball was hit.....

elapsedTime=62.000000 ms

last position=2.153320, currentPosition=5.410156

speed=52.529612

delay=0.517352

detected ball was hit.....

elapsedTime=63.000000 ms

last position=2.211914, currentPosition=5.048828

speed=45.030382

delay=0.554848

ball too slow, will not try to hit...

detected ball was hit.....

elapsedTime=64.000000 ms

last position=2.192383, currentPosition=5.668945

speed=54.321289

delay=0.508394

detected ball was hit.....

elapsedTime=67.000000 ms

last position=4.619141, currentPosition=8.447266

speed=57.136194

delay=0.494319

9 Appendix
In the appendix we show the Matlab code used for the bat and pitcher controller.

9.1 Batter controller Matlab code
For the batter it was not clear if the rules of the game allow one to touch the keyboard once the

game starts.

For this reason, we have 2 versions of the bat program. One is called nma_motor_auto.m, and
the other is called nma_motor_manual.m.

The first program above is the one discussed in details in this report, since it is the fully

automated version and requires no manual intervension once it starts. The second version is a

modified version that requires the user to hit the keyboard to start the motor running resulting
is the bat moving.

Below is the code for both version of the controller.

9.1.1 nma_motor_auto.m
%

% MAE Final project. UCI, winter 2005

% motor controller script.

% by Nasser Abbasi

%

% This script implements the open loop bat controller

% See the project report for background information

% about this project.

%

% define some constants used in the program

LEFT=5;

RIGHT=0;

HIGH_V=5;

LOW_V=0;

DEBUG=1;

TRUE=1;

FALSE=0;

BALL_POSITION=5;

SAMPLE_RATE=8192; %Hz

LOW_SPEED_THRESHOLD=0;

SLOPE=(0.25-0.12)/(65.33-51);

pistonLastPosition=0; %set the piston last position to be fully retracted

while TRUE

 EAnalogOut(0,0,HIGH_V,RIGHT); %set the handle

 pause(0.1); %wait to reach mechanical stop.

 EAnalogOut(0,0,LOW_V,RIGHT); %turn off motor

 BallHit=FALSE;

 [count tnow err id]=ECount(0,0,0);

 while ~BallHit

 % replace the call below by AIBurst. To allow better control

 % on the sampling rate.

 % [currentPosition o err id]=EAnalogIn(0,0,0,0);

 tlast=tnow;

 [pistonCurrentPosition s scans over err id]=…

 AIBurst(0,0,0,0,0,1,0,0,SAMPLE_RATE,0,0,0,1,1,0);

 if err~=0

 fprintf('Failed AIBusrt call. error is %s\n',GetErrorString(err));

 return;

 end

 [count tnow err id]=ECount(0,0,0);

 %if DEBUG fprintf('currentPosition=%f\n',currentPosition); end;

 %if DEBUG fprintf('tnow=%f, tlast=%f\n',tnow,tlast); end;

 % if(DEBUG)

 % if(currentPosition>2) fprintf('currentPosition=%f\n',currentPosition); end

 % end

 if(pistonCurrentPosition>BALL_POSITION)

 if pistonLastPosition<=BALL_POSITION

 if DEBUG fprintf('detected ball was hit by piston.....\n'); end;

 elapsedTime=tnow-tlast;

 fprintf('elapsedTime=%f ms\n',elapsedTime);

 speed=(pistonCurrentPosition-pistonLastPosition)*1000/elapsedTime;

 if DEBUG fprintf('ball speed=%f\n',speed); end;

 fprintf('piston last position=%f, piston currentPosition=%f\n',...

 pistonLastPosition,pistonCurrentPosition);

 if speed>LOW_SPEED_THRESHOLD

 BallHit=TRUE;

 else

 fprintf('ball too slow, will not try to hit...\n*********************\n');

 end

 end

 end

 pistonLastPosition=pistonCurrentPosition;

 end %while waiting for ball to be hit

 if(speed<51)

 delay=0.25+SLOPE*(51-speed);

 else

 delay=0.25-SLOPE*(speed-51);

 end

 if DEBUG fprintf('motor delay=%f\n',delay); end;

 pause(delay);

 EAnalogOut(0,0,HIGH_V,LEFT); %HIT the ball.

 pause(0.5); %wait for bat to reach mechanical stop.

 EAnalogOut(0,0,LOW_V,LEFT); %stop the motor

 fprintf('**************************************\n');

end

9.1.2 nma_motor_manual.m

%

% MAE Final project. UCI, winter 2005

% motor controller script.

% by Nasser Abbasi

%

% This script implements the open loop bat controller

% for the manual version of the batter,

%

% See the project report for background information

% about this project.

%

% define some constants used in the program

LEFT=5;

RIGHT=0;

HIGH_V=5;

LOW_V=0;

DEBUG=1;

TRUE=1;

FALSE=0;

while TRUE

 EAnalogOut(0,0,HIGH_V,RIGHT); %set the handle

 pause(0.1); %wait to reach mechanical stop.

 EAnalogOut(0,0,LOW_V,RIGHT); %turn off motor

 fprintf('hit any key to turn bat.....\n');

 pause;

 EAnalogOut(0,0,HIGH_V,LEFT); %HIT the ball.

 pause(0.5); %wait for bat to reach mechanical stop

 EAnalogOut(0,0,LOW_V,LEFT); %stop the motor

End

9.2 Pitcher controller Matlab code

EAnalogOut(0,0,5,0);

EAnalogOut(0,0,0,0);

Attached floppy disk contains more examples of the pitcher code and the code for the batter.

This is the content of the flopy disk attached showing all the matlab .m files used.

