Part 2: Midterm

Problem 1 (10 Pts Extra Credit)

An oscilloscope is used to measure this:
Answer b
a) resistance b) voltage c) current d) power

The time constant of a first-order system tells when the output has gotten how far along the way to its final value?

Answer C
a) 37%
b) 10%
c) 63%
d) 90%

If you put a sine wave into a linear system, you get the following out
Answer $d \quad$ a) square wave
b) sine wave at different frequency
c) triangle wave
d) sine wave at same frequency, scaled and shifted

A filter scales a sinusoidal input. The amount of scaling is determined by:
Answer $a \quad$ a) the magnitude of the transfer function, evaluated at $\mathrm{s}=\mathrm{j} \omega$
b) the magnitude of the transfer function, evaluated at $\mathrm{s}=\omega$
c) the phase of the transfer function, evaluated at $\mathrm{s}=\mathrm{j} \omega$

A low pass filter attenuates
Answer $b \quad$ a) low frequencies
b) high frequencies
c) a band of frequencies

Problem 2 (25 pts)
How close is $V_{\text {out }}$ to $V_{\text {in }}$ for the following voltage follower circuit, if the op-amp gain is 1,000 ? (Hint, use the fact that $\underline{V}_{0}=K\left(V_{+}-V_{-}\right)$for the op amp)

$$
V_{0}=k\left(V_{+}-V_{-}\right)
$$

since negative feed back

$$
\begin{aligned}
& V_{0}=V_{-} \\
& \text {so } V_{0}=K\left(V_{+}-V_{0}\right) \Rightarrow V_{0}=K V_{+}-K V_{0}
\end{aligned}
$$

$$
\Rightarrow V_{0}(1+k)=k V_{+}
$$

$$
\text { He } V_{0}(1+K)=K V_{\text {in }}
$$

$$
\frac{v_{0}}{v_{\text {in }}}=\frac{K}{1+K}=\frac{1000}{1001} \approx 1
$$

Problem 3 (25 pts)
so Vo alsmot same s V in.
How does the following circuit filter a low frequency input? Specifically, find what the resulting scaling and phase-shift would be for an input sinusoid with a frequency of $\frac{1}{2 \pi}=0.16 \mathrm{~Hz}$.

$$
\begin{gathered}
V=R \dot{2} \\
i=\frac{v}{12} \\
q=C V \\
\frac{d q}{d t}=i=C \frac{d V}{d t} . \\
I=C s V(s) \\
=V(s)=I \frac{1}{c s}
\end{gathered}
$$

Assume $\mathrm{R}=1$ kiloohm and $\mathrm{C}=1 \mathrm{milliFarad}$.

$$
\begin{array}{ll}
V_{i}-R_{i}-V_{0}=0 & q=C V \\
V_{i}-R\left(C \frac{d V_{0}}{d t}\right)-V_{0}=0 & \frac{d q}{d t}=i=C \frac{d V}{d t} \\
I=C s V(s) \\
\hline V V_{(s)}=I \frac{1}{C s}
\end{array}
$$

$$
\begin{aligned}
& V V(s)=I \frac{1}{C s} \\
& R C \frac{d V_{0}}{d t}+V_{0}=V_{i} \\
& \Rightarrow \frac{d V_{0}}{d t}+V_{0} \frac{1}{R C}=\frac{V_{i}}{R C} \\
& \text { To find transfer auction } \\
& V_{i}(s)-Z_{1} I(s)-V_{0}(s)=0 \\
& \text { but } V_{0}^{(s)}=\frac{1}{C s} I(s) \Rightarrow I(1)=V_{0}^{(s)} C_{s} \\
& \text { s. } V_{i}(s)-Z_{1} V_{0}(s)\left(s-V_{0}(s)=0 \Rightarrow V_{i}(s)=V_{0}(s)(1+R(s)\right. \\
& \frac{V_{0}}{V_{\text {in }}}=\frac{1}{1+R C s} \Rightarrow H(s)=\frac{1}{1+R C s} \Rightarrow A\left(\omega_{0}\right)=\frac{1}{1+R C j \omega} \\
& \begin{array}{ll}
\text { as } w \rightarrow \infty,|H(j \omega)| \rightarrow 0 \\
\text { n } w \rightarrow 0,|H(i n)| & \rightarrow 1
\end{array} \text { s. Low pass when } \omega=\frac{1}{2 \pi} \\
& \begin{aligned}
|H(j)|=\frac{1}{\sqrt{1+(R C \omega)^{2}}}=\frac{1}{\sqrt{1+\left(\frac{1}{2 \pi}\right)^{2}}}=\frac{\frac{1}{\sqrt{1+\frac{1}{4 \pi 2}}}}{\approx 1} \cdot \measuredangle H(n) & =0-\tan ^{-1} R C \omega \\
& =-\tan ^{-1} \frac{1}{2 \pi}
\end{aligned}
\end{aligned}
$$

Problem 4: 25 pts
a. Shown below is a diagram of a DC brushed motor. Assume that the commutation stops working, such that current flows only in the direction shown. At what angle θ will the
 armature come to rest? Assume the armature is initially at $\theta=0^{\circ}$ as shown when the commutation fails, and that positive θ is defined clockwise looking into the page, as shown.

$$
\theta=90^{\circ}
$$

b. For the rest of this problem, assume the commutation is working. Draw the circuit model, and write the circuit equation describing the motor:

$$
\begin{aligned}
& C=B i \\
& i=\frac{T}{B}
\end{aligned}
$$

b. Solve this differential equation for the current through the motor as a function of time when:

- the shaft of the motor is held fixed
- a constant voltage v is applied across the motor at time $=0$
- the initial current $\mathrm{i}(\mathrm{t}=0)$ through the inductor is zero
when shaft fixed $\Rightarrow \dot{\theta}=0$.
s. $V_{i n}-L \frac{d_{i}}{d t}-R_{i}=0$.
so $L \frac{d h^{\prime}}{d t}+R_{i}=V_{i n} \Rightarrow \frac{d_{i}}{d t}+\frac{R_{i}}{L} i=\frac{V_{\text {in }}}{L}$

$$
\begin{aligned}
& \text { homosenors: } i(t)=A e^{-\frac{R}{L} t}, \quad \text { partionlar } \quad i=\frac{V_{\text {in }}}{R} \\
& \text { sc } i(t)=A e^{-\frac{R}{2} t}+\frac{V_{\text {in }}}{R} \text { at } t=0 ; i(t) \Rightarrow 0 \Rightarrow A+\frac{V_{\text {in }}}{R} \Rightarrow A=\frac{-V_{\text {in }}}{R} \\
& \text { so } i(t)=\operatorname{Vin}\left(\frac{1}{R}-\frac{1}{R} e^{-\frac{R}{L} t}\right)=\frac{V_{i n}}{R}\left(1-e^{-\frac{R}{L} t}\right) \\
& =\Delta(t)=\frac{\frac{1}{2}\left(1-e^{-R_{2}} t\right.}{2} \quad \therefore \tau=\frac{B}{R} v_{i}\left(1-e^{-t}\right.
\end{aligned}
$$

Problem 5: 25 pts

1) You want to control the speed of a motor. You are using a current amplifier with the motor, so the speed is related to the input voltage to the current amplifier by the following transfer function:

where v is the voltage input to the motor and ω is the angular velocity of the shaft and K_{m} is a constant.
a) Shown below is a block diagram of an open-loop (ie. feedforward) controller for the motor, where ω_{d} is the desired output of the motor. What transfer function should the controller box have to make the output equal the desired output? Write this function controller box.

$$
\text { since } \begin{aligned}
& V=\omega_{d} \frac{s}{k_{m}} \\
& \text { so } \omega=V \frac{k_{m}}{s}=\omega_{d} \frac{8}{k_{m}} \cdot \frac{k_{m}}{8} \\
&=\omega_{d}
\end{aligned}
$$

b) One of the major benefits of feedback is its ability to cancel the effects of unmodeled "disturbances". Assume you build a feedback controller, but there is a disturbance force F_{d} affecting the motor:

Derive an expression that relates $\omega_{\text {actual }}$ to ω_{d} and F_{d}, then prove that the disturbance is cancelled if K is large enough.

$$
\begin{aligned}
& F_{c}=k\left(\omega_{d}-\omega_{a}\right), F=F_{c}-F_{d}=k\left(\omega_{d}-\omega_{a}\right)-F_{d} \\
& \omega_{\text {acted }}=F \frac{K_{m}}{s}=\left[k\left(\omega_{d}-\omega_{a}\right)-F_{d}\right] \frac{K_{m}}{s} \\
& \omega_{a}=\left[K \omega_{d}-k \omega_{a}-F_{d}\right] \frac{k_{m}}{s}=\frac{K k_{m}}{s} \omega_{d}-\frac{K k_{m}}{s} \omega_{a}-\frac{K_{m}}{s} F_{d} \\
& \frac{\left\lvert\, \omega_{a}\left[1+\frac{K K_{m}}{s}\right]\right.}{\left\lvert\, \frac{K K_{m}}{s} \omega_{d}+\frac{K_{m}}{s} F_{d}\right.} \quad \text { when } K \gg K_{m} \text { Then } \frac{K K K_{m}}{s} \gg \frac{K_{m}}{5}
\end{aligned}
$$

