University of California at Irvine MAE106 Midterm Review Sheet

The Midterm is scheduled for Tuesday, February 1, 2005. There are several practice midterms on the course web site: http://www.eng.uci.edu/~dreinken/MAE106/mae106home.htm

Circuit Analysis

Charge, voltage, current
Kirchoff's current and voltage laws
Power
Resistors
Ohm's law
Parallel and series resistances
Voltage Divider Circuit
Potentiometers
Operational Amplifiers
Input/output relationship (i.e high-gain differential amplifier)
Golden rules (true only if op-amp has appropriately-connected negative feedback and is not saturated)
Design of op-amp circuits for amplifier, inverter, buffer, addition, subtraction, filters
Capacitors, Inductors
RC circuits, time constants, cut-off frequency for low-pass and high-pass filters
Solving a Linear Differential Equations
Generals: Finding general solution to homogeneous equation
Particular: Solving particular equation
Initial Condition: Finding total solution by solving for initial conditions
Doing the above steps for a $1^{\text {st }}$ order differential equation
DC Brush Motors
How they work (Lorentz force law, commutation)
Torque/ Current Relationship
Mathematical model, back EMF, use as tachometer
Torque versus velocity relationship, stall torque, no load speed, mechanical power
Power Control
MOSFETS - (n-type) voltage controlled resistor characteristic; gate resistance
Use as a voltage-controlled switch
Physical structure, basic description of how it works
Control Theory
Block Diagrams
Basic concepts of feedforward control and feedback control
Using negative feedback for disturbance rejection and to compensate for plant variations
Positive feedback/instability
Time Domain Analysis
Time constant of a first-order system
Frequency Domain Analysis
Basic idea of frequency response; sine wave in \Rightarrow sine wave out, amplitude scaled and phase shifted
$1^{\text {st }}$ order low-pass and high-pass filter characteristic, corner frequency and relationship to time constant
Complex variables
Laplace Transform (of step function, exponential, sinusoid, derivative, integral)
Transfer Functions (what are they how do you find them?)
Impedances (of resistors, capacitors, and inductors)
You should also review your lecture notes and laboratory exercises 1-3.

