University of California at Irvine
MAE106 Mechanical Systems Laboratory: Lecture 1
Part 1: Overview of the Class
If you work hard, you will leave this class with knowledge and practical experience in three interrelated areas:
1. Physical intuition about how 1* and 2™ order linear, dynamical systems behave
*  You will be exposed to examples of common electrical, vibration, and robotic systems
¢ Basic Idea: The dynamics of a wide variety of physical objects obey 1% and 2™ order linear, differential
equations. These systems respond exponentially, sinusoidally, and exposoidally (OK, that’s not a real
word, but try to get the idea) in the time domain.
* You will learn how to think about their behavior in both the time and frequency domains
2. Basic understanding of how feedback control works
e Feedback is a common way to make cars, planes, robots, etc. respond like we want them too
* You will learn about proportional feedback control (and derivative and integral control)
¢ Basic idea: Measure error and try to reduce by changing the input to the controlled object
3. Familiarity with the components and tools for building mechatronic and robotic systems
® Motors, potentiometers, tachometers, analog computational circuits (op-amps), electrical filters, power
amplifiers, data acquisition systems, oscilloscopes, protoboards, chmmeters

Part 2: Design Exercise
Final Project Competition: Build a robotic soccer player that can do two things:
1. kick a penalty kick
2. goal tend to block a penalty kick by another robot
Your robot will use a small motor. What questions do you need to know the answer to in order to build this robot?

e

o (power

Y
o -
‘ Contemt

1
A “ign T

P

’;\\
A {
geﬂsa'm-ﬁ ey ‘““”lmﬂ
V.

Part 3: Review of Circuit Theory

3.1 Linear circuit elements

Current: think of it as the flow of charge through a circuit element (such as a wire or resistor) Units:
amps=coulombs/sec

Voltage: think of it as the electrical pressure that can cause charge carriers to flow

Current is always measured through something at a point; voltage is always measured between two points
For this class, “ground” is an arbitrarily defined point on a circuit to which we reference all voltages
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Resistor Analysis Exercise:
Abstraction: the act of considering something as a general quality or characteristic apart from any concrete realities,
specific object, or actual instance. It’s the idea of a “black box”
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Potentiometers:
Typically used as voltage dividers. The two resistor values are changed by turning the pot.
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3.2 Operational Amplifiers

¢ important building blocks for circuits; easy to use, cheap Ve
used to build filters, amplifiers, feedback controllers, computational circuits
the “brains” in the analog control circuits that you will build for the class
What are they? High gain, differential, linear voltage amplifiers
Made of > 20 transistors plus resistors and capacitors S
Two input terminals, one output, two power supply lines (five pins total) '
Typically operate over a wide range of supply voltages
By design, they have a high input resistance and a low output resistance - \lc ¢

Described by the fol‘}owing input-output function:
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Golden Rules of Op-amp Circuit design:
1. Input currents are zero (op amps are designed to have a high input resistance)
2. Input voltages are equal (If operating in linear region, and connected with negative feedback)
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3.3 Controlling power needed for devices like motors, light bulbs, etc.

Often we want to control a device that requires a lot of power (e.g. a motor) with signals that have very low power
(e.g. an op amp or computer).

Small DC brushed motor: \/> [0V, R> 2 g2 (: -\é Y WS
Typical Op-amp: V: gy | .
Solutions? r ey 2D we “p
1. Power op-amp
2. Power transistor (e.g power MOSFET - simple and cheap)
Can think of a MOSFET as a voltage controlled resistor that can take a lot of current
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Notes: Input resistance is very high (therefore effectively no current goes into gate)
Low-power MOSFETS are the “switches” used in computers (what is a switch?)
MOSEFETS are very sensitive to static electricity — use a grounding strap when you handle them in lab

Example: use a power transistor to control a motor with a low-power computer output

Hints about motors:

A DC brushed motor spins at a speed proportional to the input voltage, if it is just turning an inertial load.
If you stop the motor, it will produce a torque proportional to the input current
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MAE106 Mechanical Systems Laboratory: Time and Frequency Domain Notes

1. Why do engineers analyze systems in both the time and frequency domain?
Why the time domain? We (ive in the time domain.
Typical questions: How does the system respondtoa s input? Example: 0 -60 mph
How does the system respond to a _imaulse.  input? Example buemp suspension
How fast does the system respond? (Useful #: -hme_ccngfaud))

Does it ovevshatf
Does it _ogcitla 7 i y\r)* -
Why the frequency domain? b »La,svm ] _ ctleaoked
a. Intuition 3 AN .
Systems act like Q\\Jw , responding differently to inputs at different frequencnes

Four common types of fllters
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b. Ease —sometimes its easier to solve differential equations in the frequency domain (Laplace
Transform)

2. What is a transfer function and what is a frequency response?

A linear differential equation in the time domain becomes a transfer function in the ‘pfﬁ% __demacn

To see this take the Laplace transform of a differential equation: M e ( X :.f (e \\B
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FACT: The transfer function tells how a system responds to.any input in the frequency domain. The
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The transfer function also tells how a system responds to a sinusoidal input. /_5.4—L=£
FACT: Using Laplace Transforms, it is possible to prove that: sine wave in = sine wade o "z

The transfer function tells how much an input sine wave is _s code) and sLth) asa
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These facts are very useful when combined with two other facts:
FACT: Any signal can be represented as the sum of suw:,m&g . BEontr anede i
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Mechanical Systems Laboratory: Lecture 3
Analysis of a 1¥-order, Low-Pass Filter Circuit in the Time and Frequency Domains
The following circuit is a low-pass filter. It is useful to clean up signals with high frequency noise on it:
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1. Time Domain Analysis &

Let’s analyze the response of this circuit to a step input

We’ll use the method of undetermined coefficients to solve the differential equation. You can remember this

very useful technique for linear, ordinary, differential equations using the following mnemonic:

1. Generals: set the forcing function = 0 and find the general solution to homogenous equation (don’t evaluate
it’s coefficient yet)

2. are Particular: find the particular solution (assume particular soln is same form as forcing function)

3. about Initial Conditions: sum the homogenous and particular solutions and solve for the coefficient to the
homogenous equation that satisfies the initial conditions.
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Summary of important concepts:
e Method of undetermined coefficients for solving a differential equation. Cr 2
e Time constant: a 1% order system has gone 63% of the way to its final value after one time constant —
standard engineering technique for quantifying “how fast” a system responds.

2. Frequency Domain Analysis

Let’s analyze how this system responds to a sinusoidal input. Remember: sine in = sine out (scaled and

shifted), for a linear system. We will use three methods to find the scaling and shifting.

Method 1. Solve differential equation using method of undetermined coefficients (difficult) Acsone Vo= 51@’& T

wt g . o
Homogenous solution: {/, = A€ Vo Mte gy T oo ifg«é@ (T“'ﬂiﬂiéeﬁ’f )
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Useful trig. identity: Acos(8) + Bsin(8) = ,/A> + B* sin(@ + tan™ (—4))
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Method 2: Take Laplace Transform of differential equation that describes circuit, find the transfer function, and
solve for frequency response (easier than Method 1)

Brief review of complex variables:
Complex variables keep track of two pieces of information, real and imaginary part, or magnitude and phase

Semag ,
Can think of complex variables as a point in the complex plane. i ; A S= T4y
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Can write point in Cartesian or polar coordinates. >7 91y d -
To find the magnitude in Cartesian form: ,
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To find the phase in Cartesian form: , . A
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Magnitude of two complex variables divided by each other: 2.c 14 ‘\w E f;} = R, ) &
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Now, find the transfer function and frequency response: ) e’ =) ( o Feve %j ?&;1 s é‘fw‘i’i‘m’g
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Method 3: Use 1mpedances” to flgﬁ’transfer function (easiest)
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Circuit element Time domain Frequency domain Impedance
Resistor V(t) = RI(t) V(s) =R I(s) R
Capacitor 1 ¢. o e
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Inductor V(t) = L di/dt visy= SL 1o S

Note: All the usual circuit rules till hold in the frequency domain because of superposition (KVL, KCL, Op amp
rules, voltage divider...). So, treat impedances like (frequency dependent) resistors in finding a circuit’s transfer
function. 2.;1 { y A 1
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What do the magnitude response (i.e. scaling or attenuation factor) and phase shift response actually look like?
Fill in the following chart:

Magnitude or Scaling Phase
Small ® / [
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The frequency {/% is called the “corner frequencfy” or “bandw1dth” of the system. For this low-pass filter, input
sinusoids with a frequency higher than the bandwidth are “filtered” or “attenuated”.
Summary of important concepts:
e How to find a transfer function and the frequency response
e [Impedances
o Corner frequency



Mechanical Systems Laboratory: Lecture 4
How DC Brushed Motors Work (Another example of a first-order system)

1. Introduction to DC Brushed Motors
e very common for small jobs (toys, some appliances, robots)
e invented by Michael Faraday in the 1850’s
e Operating principle:
o apply voltage, motor spins
o Polarity of voltage determines motor direction
o Amplitude of voltage determines motor speed
e Other motor types: AC motors (washing machine), DC brushless motors, DC stepper motors

2. Physics of Operation e =

a. Makes use of Lorentz Force Law: F= | ( « R

where F = force, | = unit vector in direction of current flow, B = magnetic flux, i = current into motor
i.e. current-carrying conductors placed in magnetic fields create forces

At what configuration would the following motor get stuck? [—\ Need To suitehy
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Use “commutdtion” to reverse current direction and keep motor turning
Adding enough commutator segments gives: T = Bi, where B = “torque constant”

b. Back EMF
e back EMF” (electromotive force or ‘voltage’)
the voltage produced by motor as a result of its speed
voltage is proportional to speed Ve B é
physical basis: armature windings are an inductor
as motor spins, get di/dt in armature
V = Ldi/dt « angular velocity
Can use a motor as a velocity sensor (i.e. a “tachometer”) by measuring voltage across terminals
This is also the principle used by generators.
Real tachometers have many armature coils to reduce voltage ripple

3. Mathematical Model of a DC Brushed Motor

A motor has a resistance and inductance associated with its coils.
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To see how the model predicts the motor behavior, consider two cases:

Case 1) Hold shaft fixed, apply constant voltage. What is the motor torque as a function of time?

Assume 4'(0>~ o, shafy fxed?@ © S+all BVT
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Observations: Firg K= ifodze = z-f K= K"' a2
The stall torque = the torque you feel if you hold the motor shaft fixed Tevguer T= R
It takes time for a motor to develop torque (describable with a time constant) fr_ Bv t/.r.
After the transient response, the motor acts like a resistor - ( I-€ € )

Case 2) Allow shaft to spin freely, apply constant voltage. What i zs the motor speed as a function of time?
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Observations;
No load speed is independent of inertia and proportional to voltage - é _
Time constant of speed increase depends on inertia at w* -,
Motor requires no power at no load speed (actually does because of friction) V: R.+ B
- Vv C =
Summary: Torque-speed curve for a DC brushed motor V - QL +8 ’B' = L O
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Important Ideas: - : ¥ -

e Lorentz force law ,,}{ o
¢ Commutation 8
e Back EMF Ne load 5,‘:“.4
e Mathematical model of motor (inductor, resistor, back EMF)
¢ Exponential increase in torque if shaft is fixed; in speed if shaft is free to spin
[ ]

Torque-speed curve (no-load speed, stall torque)




Mechanical Systems Laboratory: Lecture 5
Basic Control Concepts; Example of Feedback Control of Motor Velocity
1. Basic Control Concepts
a. The problem of automatic control
Given a system with inputs and outputs (the “plant” — e.g. a car, plane, motor refpgerator
And a desired output yq4 /nPu‘f F
Find an input u to give you the desired output y4 ‘5 %
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b. Block diagrams o 2;?.?,‘:,‘ P ant” 5;;,1

Useful notation for visualizing control systems.
Two common blocks:

1) Gain block _bi..;[éji;(’ "

2) Summer block ’u-—-.-,c/}?-m...qx,f X2 & ——’7%" X=X
2 2

c. Two general approaches to designing the input “u”

Approach 1: Feedforward Control (or “Open Loop” Control)

Choose input to plant based on knowledge of plant (i.e. based on an “inverse model” of the plant).

Example: Control a motor’s steady state velocity ® using voltage v as the input. What should v be such that

O = 0qy? | " cortreller 'mo'fpf v V = é w . 4 :‘B =, we wi

. :
el % WA Alan estimate

Shortcoming 1 of Feedforward Control: Need to have an accurate model of the plant

1§ B=.58 +hen w=. 5wl

Shortcoming 2 of Feedforward Control: Most systems have unpredicted “disturbances” that affect the output
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Approach 2: Feedback Control (or “Closed Loop” Control)

Refers to measuring a system’s output and “feeding it back” to change the input SOy =Y.

Also called “closed-loop control” because you “close the control loop” by “feeding back” the sensed output.
Usually, you subtract the desired output from the actual output to get an error signal, then apply an input to the
system proportional to the error in the direction that reduces the error (negative feedback). ;

AL}

Example: Control a motor s steady state velocity ® usmg voltage v as the input. |< k- a\
e wt= )=
w, —->< J—»-‘* k BT 15 = S . B
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For feedback control, you don’t need an accurate model of the plant (you just need to know which way to
“push” the plant to reduce error). Feedback control can also handle disturbances because it senses their effects

Vd
on the output. |¢ K228, thea W= wA A’J‘?p>m_—v@_—‘ .

solve: (= k—:g wl + ‘:’r—B J;s'f Ay o L">‘)|,:>/ w= "‘)o'




What are two limitations of feedback control?
1) an ercor has to develop befove condvoller acts
2) de \chf cawes ingtay.l '.4;1
3) Yequives o SenSor
Many control systems use feedforward and feedback control together.

2. Example: Feedback Control of Motor Velocity (Lab 3)

In lab, you will build an op-amp circuit for controlling velocity of a motor using proportional feedback.

To place this lab in a context, imagine that you are designing a control system for “Robbie the Rescue Robot”.
The amplifiers that you use in lab give an output current (and thus motor torque) that is proportional to input
voltage (“current amplifier”). So, a model of the motor and amplifier together is:

. ox w ~=J b;) (inetial /Dﬂd"’) Jw e 374
Js = 2V (evrrent aMPLw;) sls o(
v Vu‘,l\“{a e o am\:l{-;\‘er- __@ = __.j.. e é(ﬁ)
Problem 1: Design a feedback control law relating &, ®, and g, anﬁ verify that it works. v s

vz -kl{w- de{)
Intuitively: If motor turns too fast (& > wy), apply a negative torque to slow it down. If motor turns too slowly
(w < ®y), apply a positive torque to speed it up. Called a “proportional” or “P” control system since motor
torque is proportional to error.
Problem la: Write the differential equation that describes the behavior of the controlled system

V:o—k(w-wd)= ;3_7 @

Problem 1b: Draw a block diagram of the controlled system
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Problem Ic: Find the transfer function for this system L K - 6 CS)
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Problem 1d: Discus the system’s behavior in the time and frequency domains/
+ime Aomain = ISJf order Ss,:&-ft:m w= wy (l-¢ 1'>
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Problem le: You will use the following circuit to implement P-control of the motor. What hardware would you
connect to vl, v2, and v3?

VI -Yo 5 v,z -vi
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Important Ideas: feedforward and feedback (basic idea and limitations), how to implement feedback control
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Mechanical Systems Laboratory: Lecture 6
Integral Control; Introduction to Second Order Systems

1. Integral Control

In lab this week you are building an op-amp circuit for controlling velocity of a motor using proportional
feedback. To place this lab in a context, we imagined in the last lecture that you are designing a velocity control
system for “Robbie the Rescue Robot”. We created a Proportional-type controller for Robbie, and found that

the centrolled system dynamics were as follows:
- = :
4 *, I 1 i 1 i ¢
JH=T= =V Ve "Elw-wdy o W Kw: Kuw f@
e s e ' A
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where v= voltage mput to current amplifier that powers Robbies motors, @ = actual angular velocity of wheels,
sensed with a tachometer, @, = desired angular velocity, K = proportional feedback gain, alpha = proportionality
constant relating v (i.e. current amplifier input) to torque output from motor.

Note that the steady-state error for this system is zero:

coady statey sy w= wf

A more realistic model of Robbie’s dynamics would include some friction in Robbie’s wheels:

U i ) P R
e Jw = - i A ssu e {r= Cowms tont (Shictimy

#

f Let’s assume that we control the torque to the motor directly, and express our control law in terms of torgue.

(Note, we actually control the current into the motor, but this is proportional to torque).

e’

Ve =K (w-wi)

g
W«W’

| We can represent the combined system using a block diagram showing friction as disturbance.
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Problem: Show that there is a steady-state error in velocity due to the friction.
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KEY IDEA: We can get rid of this steady-state error by using a propomonal plus integral (PI) controller:
e ’
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How does I control work? (try to explain it to your neighbor in words).



Integral control works in the following way:

If error e(t) does not equal zero, then J-e(t)dt increases with time, and eventually the torque (which is

proportional to this integral) becomes high enough to overcome friction.

The block diagram for a P-I compensator is:
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What is the transfer function for this system?
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This is an example of second order system, which behaves differently than a first order system.

Typical behaviors in time domain

Typical behaviors in frequency domain
(step response)

First order system Unstable

/

Second order L § 5} f
system / / § |

Important Ideas: integral control can help remove steady state error. However, I-control adds dynamics to the
system, which can lead to non-1"-order phenomena such as oscillation and resonance.




Mechanical Systems Laboratory: Lecture 7
Time and Frequency Response of Second Order Systems

1. A Common Second-Order System: A Mass-Spring-Damper System

In lab next week you will measure how a vibrating beam behaves in the time and frequency domains. The
vibrating beam is an example of a system with a mass, some springiness, and some damping. Many physical
systems have a mass, some springiness, and some damping, in different proportions. We can describe their
behavior with a second order differential equation, and solve the equation to predict responses.

Modeling the Vibrating Beam
Assume the beam only moves in the x direction.

b %}" % T
%35"‘,' ;g j
ggmms
:
- : " .
b ﬁségim s ;: @‘f“{;;‘;@%é@
— ?% ‘
gé%&ﬁﬁ b ; :
f T

The force caused by the unbalanced load m in the x direction is: F=mr whsinG =
So, we can use the unbalanced load to provide a sinusoidal force input into the beam.

What is K for the beam?

The load-deflection relationship for the beam (from any strength of materials book) is:

Where:

F = applied load

X = deflections of beam

E = modulus of elasticity

I = area moment of inertia of beam
LET

For a spring: F=Kx, so K= %& M;x

So, a simple model is:

The differential equation describing thls system is:
My =
M

The transfer function for this system is:
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2. How does this system behave in the time domain?
In lab you will measure the transient response of the beam by “twanging” it. How does a system behave when
you hit it with an impulse input?
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Thus, the ingverse Laplace transfor

What is the impulse response of the vibrating beam?

Use a partial fraction expansion to find the inverse Laplace transform. Basic idea: write the transfer function as

the sum of factors that we know how to take the Laplace transform of. Trick to find numerators: multiply by
factor, chose s to set factor to zero.
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The poles of the transfer function are the zeros of the denominator, and they tell us a lot about the way the
system behaves, because they became the exponents of exponentials in the time domain.
What are the poles of the vibrating beam?
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For {* > 1 the poles are real, and the system does not oscillate when you “twang’” it.
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How do you measure damping given the impulse response? One way that you can estimate the damping is by
using the “logarithmic damping method”
- - ”’5%&?5‘%

R L B

{ £
;
E”&ﬁ

Scaling:
Atsume, (=0
Mt KX = F

)

Phase shift:

&

Py

g s e

&
[

T

Plot on a log-log scale (makes curves into lines)
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Mechanical Systems Laboratory: Lecture 8
Brief Review of Stability; PD Position Control of a Robot Arm
1. Brief Review of Stability
Stability refers to the concept of whether a system’s performance “blows up” or converges to some value.
What are some applications in which stability analysis is very important?
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So the location of the poles in the complex plane determines the type of response of the system.

Exercise I: Label the complex plane with the following words:
stable, unstable, marginally stable, oscillation, no oscillation, faster, slower, higher frequency oscillation, lower
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2. PD Position Control of a Robot Arng (P = proporﬁonal,‘i‘) = Derivative)

Position control — most common industrial control system

Can you think of some applications? gﬁgéﬁé ‘e «5 art, NC m/ i Ny g%gl@i‘fzgﬁ ff’éﬁ%?&ﬁwm 4
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Consider a one-joint robot arm:

Assume: 1) no friction or gravity; 2) we bk e’d controller that can apply any torque that we want; 3) we can
sense O (for example, with a potentiometer)

Exercise 2: Design a proportional feedback controller to position the robot arm at 8=6,, find its transfer
function, and analyze its stability
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Exercise 3: Design a way to fix the problem. What kind of hardware would you need?
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Two approaches to sensing angular velocity:

1) we a “Tachowmeter
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What are the dynamics and transfer function of the robot with the new controller?
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Note: the damping ratio determines whether the system oscillates (i.e. whether the poles have an imaginary part)

Exercise 4: Plot the step response of the system of the system would look like for different values of the
damping ratio and naturg frequency. - = & ‘§ =4
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Notes: Overdamped systems are “sluggish”
Among systems responding without overshoot, critically damped systems exhibit the fastest response.
Underdamped systems with 0.5 <§‘< .8 get close to final value more rapidly than critically damped or
overdamped systems.

The §ttlmg time of an underdamped (or crltlcally damped) system is:
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Exercisé 5: Given a one-joint robot arm (no friction, no gravity) with J = T kgm Design a PD position
controller such that the robot finishes 95% of a commanded step-function movement in .5 seconds, with no
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Mechanical Systems Laboratory: Lecture 9
Systems with Two Modes of Vibration/Design of a Vibration Isolator

1. Experimental Apparatus and Relationship to Vibration Isolation
In th next laboratory e: exer01se you will experiment with the following vibration system:
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e This system is mathematically intereSting because it is a 4™ order system, and because it has a zero in the
transfer function.

e This system is practically interesting because it works much the same way that real vibration isolation
systems do, such as ones used in washing machines or to stabilize a building in an earthquake. The key
observation is that m1 doesn’t move, even though it is being forced with a sinusoidal force, if m2 and k2 are
chosen appropriately. The sinusoidal force could represent an off-balance load in a washing machine, or the
forces from an earthquake on a building. Appropriate choice of m2 and k2 can stop the washing machine or
building from shaking.

Find the equatlons of motlon of the system (Hint: Use a free-body diagram and assume x2>x2>0)
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We can express these equations in matrix format:
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The transfer function of the system is then expressed as follows:
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Now suppose f(t) = sin wt and we want to find x,(t). To do this, we need to find the frequency response:
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At what input frequency will x1 not move? X, ‘ k 24 k3
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Assume k3 = 0 (like in a washing machine vibration isolation system). What is another name for the frequency
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The system also has two resonant frequencies. Find the resonant frequencies.
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How do the masses move at the resonant frequencies? We can gain insight by considering the case of free
vibrations (i.e. f(t) = 0). : =
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roots of characteristic equation < poles of transfer function
free response frequencies < resonant frequencies
at resonant frequencies it is possible to have free response of non-zero amplitudes
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At the resonant frequencies, what is x0? (the amplitude of the free response)
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Mechanical Systems Laboratory: Lecture 10
Data Acquisition; Computer-Based Feedback Control
Note: These notes are derived from Ch. 8 Data Acquisition, Introduction to Mechatronics and
Measurement Systems, 2" Edition, David G. Alciatore and Michael B. Histand, McGraw-Hill 2003

1. Experimental Apparatus

For the next laboratory exercise, you will use a computer to control amotor. Up until now, you have used
op-amp circuits as analog computers to implement the computations you need for feedback control.
Another common way to implement controllersis digitally by using computers. A common set-up is:

digrital
E signals
'ﬂ_’fﬂ g £ analog
signal signal

ASD DA
convertey i comverier T

Figure 8.13 Computer controd hargware

The computer could be:

e aPCwith adataacquisition card installed. A dataacquisition card is sort of like a*“video card”,
except it inputs and outputs arbitrary analog signals instead of avideo signals. The Labjack is
essentially a data acquisition card that communi cates with the computer through the USB port.

e amicrocontroller, which isacomputer on asingle chip. A digital signal processing chip is similar
to amicrocontroller.

e aprogrammable logic controller (PLC), which isa specialized industrial device for interfacing to
analog and digital devices. PLC saretypically programmed with ladder logic, whichisa
graphical language for connecting inputs, outputs, and logic.

¢ Digital circuits, made with logic gates (e.g. AND, OR, NOT gates), or programmable logic
arrays, which allow you to set-up arrays of logic gates.

2. Sampling, the Nyquist Frequency, and Aliasing

Many types of sensors (e.g. potentiometers, tachometers, accelerometers, force transducers) provide
analog (i.e. continuous) voltage outputs, and many types of actuators (e.g. dc brushed motors) require
analog inputs. Computers represent numbers using sequences of digital voltages (i.e. sequences of
“bits’). Digital voltages (or “bits’) can take only two discrete values, logical O (typically corresponding
to O volts) and logical 1 (typically corresponding to 5 volts). Getting analog signalsinto digital forms
usable by computers requires two processes. sampling and quantization.

Sampling refers to evaluating an analog signal at discrete instants in time. The sampling frequency (or
sampling “rate”) is how many times per second the signal is sampled.
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Figure 8.1 Analog signal and sampled equivalen



The sampling theorem states that you must sample asignal at a frequency that is twice the maximum
frequency in the signal (i.e. at the “Nyquist Frequency”), in order to preserve all of the information in the
signal. If asignal issampled at less than this frequency, “aliasing” happens. The result of aiasing isthat
ahigh frequency signal looks like alower frequency signal.

I -

sempled point
original signal
— aliased signal

Figure 8.2 Aliasing.

3. Quantizing Theory
Quantizing transforms a continuous, analog input into a set of discrete output states. Codingisthe
assignment of adigital code word or number to each output state.
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4. Analog-to-Digital Conversion (A/D)
An A/D converter quantizes an analog signal at some sampling rate, which is determined by a “trigger
signal” from the computer. The resolution of the A/D converter isthe number of bitsthat isusesto
represent the analog value of the input. The number of possible states N is equal to the number of bit
combinations that can be output from the converter: N=2". Most commercial A/D converters are 8, 10, or
12 bit devices that resolve 256, 1024, and 4096 output states, respectively. Hereisaflash AD converter:
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S. Digital-to-Analog (D/A) Conversion
A D/A converter takes the binary representation of a signal and converts it into an analog output signal.
A ladder D/A Converter works like this:

Figure 8,11 4-tit resistoe ladder D¥A corverter,

7. Effect of Sampling Rate on Control Stability

Sampling introduces delays into a control system. If the sampling rate is high enough, the delay is
negligible. But if sampling rate is low (e.g. < 100Hz for a robot), then the associated delay can make the
control system unstable, especially for large feedback gains. Delay essentially causes “the right
information” to be delivered at the wrong time. As an example, consider a proportional feedback control
of a first-order system (such as the motor velocity control lab that you did). When there is no delay in this
system, the system is stable for all positive values of the gain. What happens when we add delay?
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SCIENCE AND TECHNOLOGY

Robomoths

NSECTS are not nearly as biddable as

dogs or horses. Although they can per-
form amazing feats of strength and dexter-
ity on their own scale, that scale is somuch
smaller than humanity’s that it is not sur-
prising they have been overlooked. With
rare exceptions, such as bees and silk-
worms, the insect world is a source of pests
rather than of pets or pack animals.

In an age of miniaturisation, however,
afew researchers are wondering if more in-
sects might be hamessed to the service of
man. One is John Hildebrand, a neurobiol-
ogist at the University of Arizona. As part
of a project run by America’s Defence Ad-
vanced Research Projects Agency (DARPA),
he and his colleagues have been working
with thegiantsphinx moth to create a “bio-
bot’—an animal that can be controlled
electronically by a human. They have de-
signed a radio transmitter small enough to
attach to a sphinx moth without impairing
its ability to fly. The next stageis toadd a re-
ceiver to tell the moth where to go.

Moths may not be that bright, but Dr
Hildebrand believes they can be manipu-
lated in rather the same way as adonkey is
bydangling a carrotin frontofits head. The
“carrot” he proposes is a sex phero-
mone—a mixture of chemicals that female
sphinx moths give off to attract males. It is
potent stuff. Previous research has shown
thatafew molecules areenough to attracta
male’s attention, and that, given a favour-
able wind, an amorous male can find a
mate who is several kilometres away.

One of the team’s ideas is to fit male
sphinx moths with small, radio-controlled
pheromone dispensers. A moth’s phero-

mone-detectors are its antennae. It can

work out where pheromone molecules are-

coming from by comparing the signals
from each antenna, in the same way thata
person works out the direction of a sound
by comparing signals from each ear. A
moth’s senses could be subverted by puff-
ing suitable molecules from a dispenser to
steer it towards a chosen target.

Thatis a rather crude approach. Dr Hil-
debrand hopes to be more subtle. He has
spent much of his career examining how a
moth’s nervous system responds to the
pheromone, and he thinks he knows
enough to steer a moth directly, without
the need for the chemicals themselves. He
plans to do it by attaching electrodes to the
nerves involved and stimulating them ap-
propriately—turning the moth into a genu-

Now, where’s my backpack?

ine, radio-controlled biobot.

That would be an interesting demon-
stration of mankind's powers over nature
Coulditalso be useful? Brian Smithand
colleagues at Ohio State University haver.
cently shown that sphinx moths can be
manipulated like dogs as well as donkeys,
Pavlov’s early experiments on reflexes
trained dogs (o salivate at the sound of a
bell, by ringing one every time they were
fed with meat. Dr Smith’s team has mim-
icked Pavlov by training moths to stick
their tongues out in response to a chemical
called cyclohexanone, which was puffed
at them while they were fed sugared water.

The reason that this trick might be use-
ful—and the reason for parpA’s inter-
est—is that cyclohexanone is a wvolatile
component of TNT, an explosive often
used in landmines. By releasing a swarm of
trained moths over a minefield, and ob-
serving where they stuck their tongues out,
it should be possible to locate mines with-
out risk either to people or to expensive
mine-detecting machinery.

It is hard to see if a moth is sticking its
tongue out at a range of several hundred
metres. But Dr Smith has thoughtofa way |
round that. He can sense when a moth is |
blowing a raspberry by attaching a wire to
the muscle thatcontrols the insect’s tongue,
and using it to transmit a signal via one of
Dr Hildebrand’s tiny electronic backpacks.

If lepidopteran mine detectors work...
they could be the start of a new indust
The rate at which video cameras are beil.,
miniaturised means that they, o, may
soon be light enough for insects to carry.
That would have obvious military applica-
tions, even if one countermeasure is obvi-
ous, too: surrounding sensitive installa-
tions with giant candles.
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