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1 Answer 1.

I have tried a number of runs with di¤erent proportional and derivative gain constants running at 1
Hz. This plot below shows few of the tests I�ve run, and below them the one I think achieved the
best tracking.
Derivative gain=0.4
Proportional gain=0.4



2 Answer 2

First I need to derive the transfer function. I can decide to control the speed of the motor shaft, or
its angular position. I need to decide on this since this a¤ect what the transfer function will be. i.e.
wither I will select the position or the speed to be the output. In both cases I will take the motor
voltage supply as the input.

I selected to use position as the controller variable.

First, I show the model of the motor itself, then the block diagram. Next I show the block diagram
with a delay element added in the feedforward path, and the compare the transfer functions with
and without delay and show that with delay, it is possible for the output to become unstable.
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From the diagram below, using Kircho¤ law around the motor circle, we get

Vi = L
di

dt
+Ri+ Vb

Take Laplace transform we get

Vi (s) = sL+RI (s) + Vb (s) (1)

Now, we know that the backemf voltage Vb produced is proportional to the angular speed of the
shaft. Let this proportionality constant be called Bb then we write

Vb = B
d�

dt

Take Laplace transform of the above, we get

Vb (s) = Bbs� (s) (2)

Substitute equation (2) into (1) we get

Vi (s) = sL+RI (s) +Bbs� (s) (3)

Now consider the dynamic equation for the motor shaft, we get

T � cd�
dt
= J

d2�

dt2

Where J is the moment of inertial of the motor shaft around its axis of rotation. Take Laplace
transform of the above we get

T � cs� (s) = Js2� (s) (4)



We also know that the torque produced is proportional to the current in the motor. Lets call the
proportionality constant Bt hence we write

T = Bti (5)

Take Laplace transform of (5) we get

T = BtI (s) (6)

Substitute (6) into (4) we get

BtI (s)� cs� (s) = Js2� (s)

I (s) =
Js2� (s) + cs� (s)

Bt

=
� (s) (Js2 + cs)

Bt
(7)

Now substitute (7) into (3) we get

Vi (s) = sL+R
� (s) (Js2 + cs)

Bt
+Bbs� (s)

= sL+ � (s)

�
R (Js2 + cs)

Bt
+ sBb

�
(8)

Now L is usually very small compare to R so equation (8) can be written as

Vi (s) = � (s)

�
R (Js2 + cs)

Bt
+ sBb

�
Hence the transfer function between Vi and � is

� (s)

Vi (s)
=

1
R(Js2+cs)

Bt
+ sBb

=
Bt

R (Js2 + cs) + sBbBt

=
Bt
RJ

s2 + s
�
c
J
+ BbBt

RJ

�
This transfer function is in the standard form. It is a second order system. The above is the

transfer function of the plant itself. Now I put the above into the loopback block diagram, assuming
the controller we used is PD controller of the form Kp + kds we get this

Kp + Kds VÝsÞSd
eÝsÞ

±
S

Bt
RJ

s2+s c
J +

BbBt
RJ



Nowwe do block simpli�cation to obtain the closed loop transfer function. Let P (s) =
Bt
RJ

s2+s
�
c
J
+
BbBt
RJ

� ,
hence the feedforward transfer function is Go (s) = (Kp +Kd)P hence the closed loop transfer func-
tion is Gc (s) = Go

1+Go
= (Kp+Kd)P

1+(Kp+Kd)P

Let Kp +Kd = K then we write Gc (s) = KP
1+KP

The charaterstic equation is 1 +KP = 0. The closed loop poles are the roots of this equation.

Replace P above to be able to solve for the roots, we get

1 +K
Bt
RJ

s2 + s
�
c
J
+ BbBt

RJ

� = 0

s2 + s

�
c

J
+
BbBt
RJ

�
+K

Bt
RJ

= 0

the roots are

s =
�b�

p
b2 � 4ac
2a

=
�
�
c
J
+ BbBt

RJ

�
2

�

q�
c
J
+ BbBt

RJ

�2 � 4K Bt
RJ

2

We see from the above, that independent of the values under the psign, the system will have its
poles in the left hand side. This is because the quantity c

J
+ BbBt

RJ
is positive.

Hence the system is always stable no matter how large the gain K is.

Now let see what happens when we add the e¤ect of Labjack into the system, model this e¤ect
as a time delay, which in the Laplace transform becomes e�sT where T is the time it takes Labjack
to sample one data point, i.e. T is the sampling period. Hence now the block diagram becomes

Kp + KdsSd
eÝsÞ

±
Se?sTVÝsÞ VdÝsÞ

Bt
RJ

s2+s c
J +

BbBt
RJ

Where I wrote Vd as the output from the labjack. (delayed voltage).

Now, since ex = 1 + x+ x2

2
+ x3

3!
� � � �

Then e�sT = 1 + (�sT ) + (�sT )2
2

+ (�sT )3
3!

� � � � = 1� sT + s2T 2

2
� s3T 3

3!
� � � �

Now for very small T ; all terms with sn for n > 1 can be ignored. Hence we get an approximation
e�sT = 1� sT

Hence the above system becomes



Kp + KdsSd
eÝsÞ

±
S

VÝsÞ VdÝsÞ
Bt
RJ

s2+s c
J +

BbBt
RJ

1 ? sT

Now obtain the closed loop transfer function.

The open loop transfer function is Go (s) = (Kp +Kd) (1� sT )P (s)

As before, let (Kp +Kd) = K, hence we get Go (s) = K (1� sT )P (s)

Then the closed loop transfer function is

Gc (s) =
Go

1 +Go
=

K (1� sT )P (s)
1 +K (1� sT )P (s)

The characteristic equation is

1 +K (1� sT )P (s) = 0

1 +K (1� sT )
Bt
RJ

s2 + s
�
c
J
+ BbBt

RJ

� = 0

s2 + s

�
c

J
+
BbBt
RJ

�
+K (1� sT ) Bt

RJ
= 0

s2 + s

�
c

J
+
BbBt
RJ

�
+K

Bt
RJ

�KsT = 0

s2 + s

�
c

J
+
BbBt
RJ

�KT
�
+K

Bt
RJ

= 0

The roots of this equation (i.e. the poles of the closed loop) now can be found as

s =
�b�

p
b2 � 4ac
2a

=
�
�
c
J
+ BbBt

RJ
�KT

�
2

�

q�
c
J
+ BbBt

RJ
�KT

�2 � 4K Bt
RJ

2

Now we clearly see the e¤ect of the delay of the closed loop poles.

We see that the real part of the pole can occur at the positive side of the s plane, and this will
happen when c

J
+ BbBt

RJ
�KT < 0 or when KT > c

J
+ BbBt

RJ

hence we see that as K is increased, the closed loop pole will move to the right until it will cross
the imaginary axes making the system unstable. In addition, for a �xed gain K, as T is increased the
system can become stable. An increase in T implies that the sampling frequency becomes smaller,
since f = 1

T
.

This is what we are asked to show.


