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1 Answer 1.

1.1 part(a)
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Free diagram for model (2) is the following (assuming m1 is moving to right faster than m2)
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Now derive equations. Take right to be positive.
For m1:

F = ma

�k1x1 � c1 _x1 � k2 (x1 � x2) + f (t) = m1�x1

m1�x1 + k1x1 + c1 _x1 + k2 (x1 � x2) = f (t)

m1�x1 + k1x1 + c1 _x1 + k2x1 � k2x2 = f (t)

m1�x1 + x1 (k1 + k2) + c1 _x1 � k2x2 = f (t)

For m2:

F = ma

�k2 (x2 � x1)� k3x2 � c3 _x2 = m2�x2

m2�x2 + k2 (x2 � x1) + k3x2 + c3 _x2 = 0

m2�x2 + x2 (k2 + k3)� k2x1 + c3 _x2 = 0



1.2 part(b)

determine transfer function X1(s)
F (s)

Write the dynamic equations in matrix form, we get24m1 0

0 m2

3524�x1
�x2

35+
24c1 0

0 c3

3524 _x1
_x2

35+
24k1 + k2 �k2

�k2 k2 + k3

3524x1
x2

35 =
24f (t)
0

35
Above can be written as

M �X + C _X +KX = F

Hence , taking laplace transform we get

Ms2X (s) + CsX (s) +KX (s) = F (s)

X (s)
�
Ms2 + Cs+K

�
= F (s)

X (s) =
�
Ms2 + Cs+K

��1
F (s)

Now, Ms2 =

24m1s
2 0

0 m2s
2

35
Cs =

24c1s 0

0 c3s

35
K =

24k1 + k2 �k2

�k2 k2 + k3

35
Hence

�
Ms2 + Cs+K

��1
=

0@24m1s
2 0

0 m2s
2

35+
24c1s 0

0 c3s

35+
24k1 + k2 �k2

�k2 k2 + k3

351A�1

=

24m1s
2 + c1s+ k1 + k2 �k2

�k2 m2s
2 + c3s+ k2 + k3

35�1

Now A�1 = adj(A)
det(A)

But for the above,

det (A) =
�
m1s

2 + c1s+ k1 + k2
� �
m2s

2 + c3s+ k2 + k3
�
� (�k2 � (�k2))

=
�
m1s

2 + c1s+ k1 + k2
� �
m2s

2 + c3s+ k2 + k3
�
� k22

adj (A) =

24m2s
2 + c3s+ k2 + k3 k2

k2 m1s
2 + c1s+ k1 + k2

35
Hence

X (s)

F (s)
=

�
Ms2 + Cs+K

��1

=

24m2s
2 + c3s+ k2 + k3 k2

k2 m1s
2 + c1s+ k1 + k2

35
(m1s2 + c1s+ k1 + k2) (m2s2 + c3s+ k2 + k3)� k22

i.e.
X1(s)

F (s)
=

m2s
2 + c3s+ k2 + k3

(m1s2 + c1s+ k1 + k2) (m2s2 + c3s+ k2 + k3)� k22
and

X2(s)

F (s)
=

k2
(m1s2 + c1s+ k1 + k2) (m2s2 + c3s+ k2 + k3)� k22



1.3 part(c)

Let s = j! hence
X1(s)

F (s)
=

�m2!
2 + jc3! + k2 + k3

(�m1!2 + jc1! + k1 + k2) (�m2!2 + jc3! + k2 + k3)� k22
x1 will not move when ����X1(s)F (s)

���� = 0) ���m2!
2 + jc3! + k2 + k3

�� = 0
but

���m2!
2 + jc3! + k2 + k3

�� = 0 implies
q
(�m2!2 + k2 + k3)

2
+ (c3!)

2
= 0. i.e.

�
�m2!

2 + k2 + k3
�2
+

(c3!)
2
= 0. But this is the sum of 2 positive quantities. So it is only possible to sum to zero only when each

quantity itself is zero. i.e.
c3! = 0

But for non zero ! this means that c3 = 0. But c3 (the samping) is not zero, since we do have damping in the

systems, hence it is not possible that
���X1(s)

F (s)

��� = 0 . In otherwords, there will not be an isolation fequency, and x1 will
always be non-zero.

But if c3 is very small, then c3! = 0 and in this case
���X1(s)

F (s)

��� = 0 when �m2!
2+ k2+ k3 = 0 or when ! =

q
k2+k3
m2

2 Answer 2.

2.1 part(a)

Need to derive a mathematical model. First step is to make a block diagram as follows.
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There are 2 motions. One rotational about the center of mass, and one translation, up and down.
Free body diagrams are



Free body
diagram for
linear motion
only

x

k1x k2x
M S
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Free body
diagram for
rotational
motion only

J

Now the equation of motion for the rotational motion is

� = J��

But � = k1L1 sin � � k2L2 sin �
Hence we get for small �, using sin � t �

k1L1 � � k2L2 � = J��

� (k1L1 � k2L2) = J��

J�� + � (k2L2 � k1L1) = 0

For the translation motion, F = ma
hence

�k1x� k2x = m�x

x (�k1 � k2) = m�x

m�x+ x (k1 + k2) = 0

2.2 part (b)

Write the above in matrix form, we get24m 0

0 J

3524�x
��

35+
24k2 + k1 0

0 k2L2 � k1L1

3524x
�

35 =
240
0

35
Take laplace transform we get

Let M =

24m 0

0 J

35
A =

24x
�

35
K =

24k2 + k1 0

0 k2L2 � k1L1

35
Hence above matrix equation can be written as
M �A+KA = 0
Take laplace transform, we get
Ms2A+KA = 0�
Ms2 � IK

�
A = 0 where I is the 2� 2 identity matrix.

let s = j! we get�
�!2M � IK

�
A = 0

multiply both side by M�1 we get�
�!2I �KM�1�A = 0
i.e.�
�!2I �KM�1� 24x

�

35 =
240
0

35
Which is what we are required to show.



2.3 Part (c)

k1 = k2 = 4000lb=ft
L1 = 4ft
L2 = 5ft
m = 2500lb
J = mr2 = 25000� 32 = 2: 25� 105

!0 =
q

K
M =

p
KM�1

M�1 =

24m 0

0 J

35�1 =
242500 0

0 2: 25� 105

35�1 =
24 2: 25�105
2500�2: 25�105 0

0 2500
2500�2: 25�105

35 =
240:000 4 0

0 444 4� 10�6

35
K =

24k2 + k1 0

0 k2L2 � k1L1

35 =
248000 0

0 4000� 5� 4000� 4

35 =
248000 0

0 4000:0

35
Hence !0 =

vuuut
248000 0

0 4000:0

35240:000 4 0

0 444 4� 10�6

35 =
vuuut
243: 2 0

0 17: 776

35 =
241: 788 9 0

0 4: 216 2

35
Hence the natural frequency for the linear (translation) motion is 1.7889 rad/sec , and for the rotational motion

it is 4.2162 rad/sec .


