LAB \#6 report. MAE 106. UCI. Winter 2005

Nasser Abbasi, LAB time: Thursday 2/17/2005 6 PM
February 23, 2005

1 Answer 1.

$1.1 \operatorname{part}(a)$

Model (1)

Model (2) more realistic

Free diagram for model (2) is the following (assuming m 1 is moving to right faster than m 2)

Now derive equations. Take right to be positive.
For m1:

$$
\begin{aligned}
F & =m a \\
-k_{1} x_{1}-c_{1} \dot{x}_{1}-k_{2}\left(x_{1}-x_{2}\right)+f(t) & =m_{1} \ddot{x}_{1} \\
m_{1} \ddot{x}_{1}+k_{1} x_{1}+c_{1} \dot{x}_{1}+k_{2}\left(x_{1}-x_{2}\right) & =f(t) \\
m_{1} \ddot{x}_{1}+k_{1} x_{1}+c_{1} \dot{x}_{1}+k_{2} x_{1}-k_{2} x_{2} & =f(t) \\
m_{1} \ddot{x}_{1}+x_{1}\left(k_{1}+k_{2}\right)+c_{1} \dot{x}_{1}-k_{2} x_{2} & =f(t)
\end{aligned}
$$

For m2:

$$
\begin{aligned}
F & =m a \\
-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}-c_{3} \dot{x}_{2} & =m_{2} \ddot{x}_{2} \\
m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right)+k_{3} x_{2}+c_{3} \dot{x}_{2} & =0 \\
m_{2} \ddot{x}_{2}+x_{2}\left(k_{2}+k_{3}\right)-k_{2} x_{1}+c_{3} \dot{x}_{2} & =0
\end{aligned}
$$

$1.2 \operatorname{part}(b)$

determine transfer function $\frac{X_{1}(s)}{F(s)}$
Write the dynamic equations in matrix form, we get

$$
\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
c_{1} & 0 \\
0 & c_{3}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
f(t) \\
0
\end{array}\right]
$$

Above can be written as

$$
M \ddot{X}+C \dot{X}+K X=F
$$

Hence, taking laplace transform we get

$$
\begin{aligned}
M s^{2} X(s)+C s X(s)+K X(s) & =F(s) \\
X(s)\left[M s^{2}+C s+K\right] & =F(s) \\
X(s) & =\left(M s^{2}+C s+K\right)^{-1} F(s)
\end{aligned}
$$

Now, $M s^{2}=\left[\begin{array}{cc}m_{1} s^{2} & 0 \\ 0 & m_{2} s^{2}\end{array}\right]$
$C s=\left[\begin{array}{cc}c_{1} s & 0 \\ 0 & c_{3} s\end{array}\right]$
$K=\left[\begin{array}{cc}k_{1}+k_{2} & -k_{2} \\ -k_{2} & k_{2}+k_{3}\end{array}\right]$
Hence

$$
\begin{aligned}
\left(M s^{2}+C s+K\right)^{-1} & =\left(\left[\begin{array}{cc}
m_{1} s^{2} & 0 \\
0 & m_{2} s^{2}
\end{array}\right]+\left[\begin{array}{cc}
c_{1} s & 0 \\
0 & c_{3} s
\end{array}\right]+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right]\right)^{-1} \\
& =\left[\begin{array}{cc}
m_{1} s^{2}+c_{1} s+k_{1}+k_{2} & -k_{2} \\
-k_{2} & m_{2} s^{2}+c_{3} s+k_{2}+k_{3}
\end{array}\right]^{-1}
\end{aligned}
$$

Now $A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}$
But for the above,

$$
\begin{gathered}
\operatorname{det}(A)=\left(m_{1} s^{2}+c_{1} s+k_{1}+k_{2}\right)\left(m_{2} s^{2}+c_{3} s+k_{2}+k_{3}\right)-\left(-k_{2} \times\left(-k_{2}\right)\right) \\
=\left(m_{1} s^{2}+c_{1} s+k_{1}+k_{2}\right)\left(m_{2} s^{2}+c_{3} s+k_{2}+k_{3}\right)-k_{2}^{2} \\
\\
\operatorname{adj}(A)=\left[\begin{array}{cc}
m_{2} s^{2}+c_{3} s+k_{2}+k_{3} & k_{2} \\
k_{2} & m_{1} s^{2}+c_{1} s+k_{1}+k_{2}
\end{array}\right]
\end{gathered}
$$

Hence

$$
\begin{aligned}
\frac{X(s)}{F(s)}= & \left(M s^{2}+C s+K\right)^{-1} \\
& {\left[\begin{array}{cc}
m_{2} s^{2}+c_{3} s+k_{2}+k_{3} & k_{2} \\
k_{2} & m_{1} s^{2}+c_{1} s+k_{1}+k_{2}
\end{array}\right] } \\
= & \frac{\left.m_{1} s^{2}+c_{1} s+k_{1}+k_{2}\right)\left(m_{2} s^{2}+c_{3} s+k_{2}+k_{3}\right)-k_{2}^{2}}{}
\end{aligned}
$$

i.e.

$$
\frac{X_{1(s)}}{F(s)}=\frac{m_{2} s^{2}+c_{3} s+k_{2}+k_{3}}{\left(m_{1} s^{2}+c_{1} s+k_{1}+k_{2}\right)\left(m_{2} s^{2}+c_{3} s+k_{2}+k_{3}\right)-k_{2}^{2}}
$$

and

$$
\frac{X_{2(s)}}{F(s)}=\frac{k_{2}}{\left(m_{1} s^{2}+c_{1} s+k_{1}+k_{2}\right)\left(m_{2} s^{2}+c_{3} s+k_{2}+k_{3}\right)-k_{2}^{2}}
$$

$1.3 \operatorname{part}(c)$

Let $s=j \omega$ hence

$$
\frac{X_{1(s)}}{F(s)}=\frac{-m_{2} \omega^{2}+j c_{3} \omega+k_{2}+k_{3}}{\left(-m_{1} \omega^{2}+j c_{1} \omega+k_{1}+k_{2}\right)\left(-m_{2} \omega^{2}+j c_{3} \omega+k_{2}+k_{3}\right)-k_{2}^{2}}
$$

x_{1} will not move when

$$
\left|\frac{X_{1(s)}}{F(s)}\right|=0 \Rightarrow\left|-m_{2} \omega^{2}+j c_{3} \omega+k_{2}+k_{3}\right|=0
$$

but $\left|-m_{2} \omega^{2}+j c_{3} \omega+k_{2}+k_{3}\right|=0$ implies $\sqrt{\left(-m_{2} \omega^{2}+k_{2}+k_{3}\right)^{2}+\left(c_{3} \omega\right)^{2}}=0$. i.e. $\quad\left(-m_{2} \omega^{2}+k_{2}+k_{3}\right)^{2}+$ $\left(c_{3} \omega\right)^{2}=0$. But this is the sum of 2 positive quantities. So it is only possible to sum to zero only when each quantity itself is zero. i.e.

$$
c_{3} \omega=0
$$

But for non zero ω this means that $c_{3}=0$. But c_{3} (the samping) is not zero, since we do have damping in the systems, hence it is not possible that $\left|\frac{X_{1(s)}}{F(s)}\right|=0$. In otherwords, there will not be an isolation fequency, and x_{1} will always be non-zero.

But if c_{3} is very small, then $c_{3} \omega=0$ and in this case $\left|\frac{X_{1(s)}}{F(s)}\right|=0$ when $-m_{2} \omega^{2}+k_{2}+k_{3}=0$ or when $\omega=\sqrt{\frac{k_{2}+k_{3}}{m_{2}}}$

2 Answer 2.

$2.1 \operatorname{part}(a)$

Need to derive a mathematical model. First step is to make a block diagram as follows.

$$
\begin{aligned}
& \text { Block diagram } \\
& \text { of system with } \\
& \text { pitch motion } \\
& \text { only }
\end{aligned}
$$

```
Block diagram
of system with
pitch and
vertical
motion
```


There are 2 motions. One rotational about the center of mass, and one translation, up and down. Free body diagrams are

Now the equation of motion for the rotational motion is

$$
\tau=J \ddot{\theta}
$$

But $\tau=k_{1} L_{1} \sin \theta-k_{2} L_{2} \sin \theta$
Hence we get for small θ, using $\sin \theta \approx \theta$

$$
\begin{aligned}
k_{1} L_{1} \theta-k_{2} L_{2} \theta & =J \ddot{\theta} \\
\theta\left(k_{1} L_{1}-k_{2} L_{2}\right) & =J \ddot{\theta} \\
J \ddot{\theta}+\theta\left(k_{2} L_{2}-k_{1} L_{1}\right) & =0
\end{aligned}
$$

For the translation motion, $F=m a$
hence

$$
\begin{aligned}
-k_{1} x-k_{2} x & =m \ddot{x} \\
x\left(-k_{1}-k_{2}\right) & =m \ddot{x} \\
m \ddot{x}+x\left(k_{1}+k_{2}\right) & =0
\end{aligned}
$$

2.2 part (b)

Write the above in matrix form, we get
$\left[\begin{array}{cc}m & 0 \\ 0 & J\end{array}\right]\left[\begin{array}{l}\ddot{x} \\ \ddot{\theta}\end{array}\right]+\left[\begin{array}{cc}k_{2}+k_{1} & 0 \\ 0 & k_{2} L_{2}-k_{1} L_{1}\end{array}\right]\left[\begin{array}{l}x \\ \theta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Take laplace transform we get
Let $M=\left[\begin{array}{ll}m & 0 \\ 0 & J\end{array}\right]$
$A=\left[\begin{array}{l}x \\ \theta\end{array}\right]$
$K=\left[\begin{array}{cc}k_{2}+k_{1} & 0 \\ 0 & k_{2} L_{2}-k_{1} L_{1}\end{array}\right]$
Hence above matrix equation can be written as
$M \ddot{A}+K A=0$
Take laplace transform, we get
$M s^{2} A+K A=0$
$\left[M s^{2}-I K\right] A=0$ where I is the 2×2 identity matrix.
let $s=j \omega$ we get
$\left[-\omega^{2} M-I K\right] A=0$
multiply both side by M^{-1} we get
$\left[-\omega^{2} I-K M^{-1}\right] A=0$
i.e.
$\left[-\omega^{2} I-K M^{-1}\right]\left[\begin{array}{l}x \\ \theta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Which is what we are required to show.

2.3 Part (c)

$k_{1}=k_{2}=4000 \mathrm{lb} / \mathrm{ft}$
$L_{1}=4 f t$
$L_{2}=5 f t$
$m=2500 l b$
$J=m r^{2}=25000 \times 3^{2}=2.25 \times 10^{5}$
$\omega_{0}=\sqrt{\frac{K}{M}}=\sqrt{K M^{-1}}$
$M^{-1}=\left[\begin{array}{cc}m & 0 \\ 0 & J\end{array}\right]^{-1}=\left[\begin{array}{cc}2500 & 0 \\ 0 & 2.25 \times 10^{5}\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{2.25 \times 10^{5}}{2500 \times 2.25 \times 10^{5}} & 0 \\ 0 & \frac{2500}{2500 \times 2.25 \times 10^{5}}\end{array}\right]=\left[\begin{array}{cc}0.0004 & 0 \\ 0 & 4444 \times 10^{-6}\end{array}\right]$
$K=\left[\begin{array}{cc}k_{2}+k_{1} & 0 \\ 0 & k_{2} L_{2}-k_{1} L_{1}\end{array}\right]=\left[\begin{array}{cc}8000 & 0 \\ 0 & 4000 \times 5-4000 \times 4\end{array}\right]=\left[\begin{array}{cc}8000 & 0 \\ 0 & 4000.0\end{array}\right]$
Hence $\omega_{0}=\sqrt{\left[\begin{array}{cc}8000 & 0 \\ 0 & 4000.0\end{array}\right]\left[\begin{array}{cc}0.0004 & 0 \\ 0 & 4444 \times 10^{-6}\end{array}\right]}=\sqrt{\left[\begin{array}{cc}3.2 & 0 \\ 0 & 17.776\end{array}\right]}=\left[\begin{array}{cc}1.7889 & 0 \\ 0 & 4.2162\end{array}\right]$
Hence the natural frequency for the linear (translation) motion is $1.7889 \mathrm{rad} / \mathrm{sec}$, and for the rotational motion it is $4.2162 \mathrm{rad} / \mathrm{sec}$.

