
MAE 106 Laboratory Exercise #5 
PD Control of Motor Position  

University of California, Irvine 
Department of Mechanical and Aerospace Engineering 

 
REQUIRED PARTS: 
Qty Parts      Equipment 
2 1kΩ resistor, ¼ W (brown/black/red)  Breadboard 
2 10kΩ resistor, ¼ W (brown/black/orange) Oscilloscope 
2 100kΩ resistor, ¼ W (brown/black/yellow) Function Generator 
1 LM 324 quad op amp chip   Motor-Amp-Tach Console 
4 1µF capacitors    Position-sensing “pot” 
1 BNC cable     IC puller 
1 breakout (BNC to alligator clips)  wrist grounding strap 
2 banana-to-banana cable (1 black, 1 red) multimeter 
2 banana-to-alligator clip cable (1 black, 1 red) scope probe 
var wire, 22AWG 
1 ∅1/4” shaft coupling (c.1/2”lg) 

 
1  Introduction 
 
In this lab you will build a control system to make a motor shaft move to a position that 
you command.  Controlling motor position is a common goal in automation (e.g. multi-
joint robot arms, radars, numerically controlled milling machines, manufacturing 
systems).  In addition, you will need a position controller for your final project.  
 
The controller that you will build is called a “Proportional Plus Derivative (PD) Position 
Feedback System,” and is the most common controller found in industry. The PD control 
law is: 
    (1) θθθτ &

ddp KK −−−= )(
 Where θ  = actual motor angular position 
  θd = desired motor angular position 
  = actual motor angular velocity &θ
  Kp = position error gain 
  Kd = derivative gain 
  τ = desired motor torque 
Note that the controller has two terms – one proportional to the position error (the “P” 
part), and one proportional to the derivative of position (i.e. velocity, the “D” part).  Thus, 
it is called a “PD” controller. 
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 Figure 1 – PD Motor Position Control System (Block Diagram and Circuit) 
 
Figure 1 shows the block diagram and op-amp circuit that you will implement to make 
the PD control law for the motor.  J is the inertia of the motor shaft.   
 
The lab has the following four parts.  You can do Parts 1 and 2 before coming to lab. 
 
Part 1: What is the theoretical behavior of the controlled system? 
The key point to understand here is that the controlled system obeys the same 
differential equation as a mass-spring-damper system.  Thus, the controlled system acts 
dynamically like a mass-spring-damper system.  The control gains Kp and Kd determine 
the equivalent stiffness and damping of the system.  The desired angular position of the 
motor (θd) is equivalent to the rest length of the spring. 
 
Part 2: How can a circuit implement the control law? 
Op-amp circuits (adder, gain, inverter derivative circuits) can be used to implement the 
control law.  The resistors and capacitors set the control gains Kp and Kd. 
 
Part 3: What is the step response of the actual system?  
One way to characterize the system behavior is to measure how it performs when it is 
commanded to move rapidly from one position to another (i.e. to follow a step function 
input). You will find that the motor will overshoot and oscillate if the damping is too small. 
 
Part 4: What is the frequency response of the actual system?  
Another common way to characterize the system behavior is to measure how it performs 
when it is commanded to follow a sinusoidal position.  You will find that the controller 
acts like a low pass filter.  It tracks low input frequencies well, and high frequencies 
poorly.  Also, if the controller has low enough damping, it will resonate just like the 
spring-mass-damper system you experimented with in Lab 4. 
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2 What is the theoretical behavior of the controlled 
system?  
 
In this section, you will derive the theoretical behavior the PD position controlled motor. 
In the time domain, the theoretical behavior is described by a differential equation.  In 
the frequency domain, the theoretical behavior is described by the frequency response. 
 
Q1 Derive the dynamical equation that describes how θ evolves with time when the 

controller is attached to the motor.  Assume θd is the input.  
 
Q2 Derive the differential equation for a spring-mass-damper system (assume force is 

the input and position is the output).  The differential equation for Q1 should be 
similar to the equation for Q2.  This means that the PD position control system has 
the same dynamics as a spring-mass-damper system; i.e. it follows the same 
equations of motion. Thus, you can use your intuition about how the spring-mass-
damper system works to design the PD controller.  Explain what the mass (m), 
spring (k), damper (c) in the mechanical system correspond to in the PD system.  

 
Q3  Derive the closed-loop transfer function, G(s), for the controlled system (the input is 

θd, the output is θ).  Use either block diagram algebra (applied to the block diagram 
from Figure 1) or take the Laplace Transform of the differential equation that you 
derived in Q1. 

 
Q4  Express the damping ratio and natural frequency of the system in terms of the 

control gains and motor inertia.  The damping ratio is important because it 
determines whether the system oscillates.  The natural frequency determines the 
frequency at which it oscillates. 

 
P1 Plot the predicted response of the system to a step change in θd from 0 to 1 

radians, for damping ratios of 0.1, 1.0, and 2.0.  
 
P2  Plot the predicted frequency response (both scaling and phase shift) for damping 

ratios of 0.1, 1.0, and 2.0.   Do this on a Bode plot by plotting {20log(output 
amplitude/input amplitude)} vs. {input frequency on a log scale}, and {phase shift} 
vs. {input frequency on a log scale}. 

  
 
3 How can a circuit implement the control law?   
 
To implement the PD control law, you need to build the circuit shown in Figure 1. 
 
Q5 By applying the op-amp golden rules, show that the input to the motor amplifier is: 
 

θθθ &CR
R
RVout d 2

1

2 )( −−−=  

The derivation will be easier if you substitute the impedance 1/sC for the 
capacitor then treat it as a resistor in the frequency domain, then transform back 
to the time domain. 
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Q6  Compare this equation with the control law of equation (1).  What are KP and Kd in 

terms of the electronic components (resistor and capacitor values)?  How would 
you increase the damping of the system?. 

 
Q7  Briefly describe the specific purpose for each of the op-amps in Figure 1.   
 
Part 3   What is the step response of the actual system? 
 
Construct the circuit in Figure 1.  Important: wire your circuit neatly!  A neat circuit 
requires little extra time to wire, and it’s easier to debug.  Circuits often take much more 
time to debug than they do to initially wire! Make sure to hook up the potentiometer 
correctly!  The wiper of the pot should not be connected to the power supply!   
 
If your circuit works correctly, the motor position should follow whatever input signal you 
provide with the function generator (square wave, sinusoid, constant voltage…). 
 
IMPORTANT:  Sometimes the circuit will not work and the motor will run uncontrollably 
at a very high speed.  This wrecks the pots.  If this happens, turn the motor off right 
away by turning of the DC supply to the motor.  First, try to fix the instability problem by 
reversing the polarity across the sensing pot (you may have positive feedback instead of 
negative feedback).  If this doesn’t work, debug your circuit.  Do not try to debug your 
circuit with the motor running!  Debug your circuit systematically.   
 
Here are some debugging hints: 
• Compare your wiring diagram to your circuit to make sure all of the connections are 

correct. 
• Make sure you don’t have any loose connections. 
• Verify that your output pot is working properly by connecting the scope to the wiper 

and moving the motor shaft by hand.  The scope trace should move up and down. 
• Verify that op-amp 1 is inverting and op-amp 3 is following.   
• Verify that the output of op-amp 2 changes as you adjust θd with θ constant.  You 

can adjust θd using the function generator or another pot. 
 
Q8 Provide a step-input by using the function generator (4V peak-peak, 1 Hz square 

wave).  Is the system underdamped or overdamped? Does the observed response 
agree with the theoretical one?  Why is it different?  What is the frequency at which 
is oscillates (the damped natural frequency, ω damped). 

 
PRACTICAL EXAM: Demonstrate to the TA that your motor is following the step 

input. 
 

P3 Suppose you didn’t want your motor to oscillate so much.  This is an important 
issue!  PD controllers are used in many applications such as NC milling machines, 
plotters, etc.  You usually want your motor to go to a desired value quickly and 
accurately without oscillating!  Which variable would you change in your differential 
equation for the PD system to increase damping?  Increase the total capacitance 
to 2µF by adding another capacitor (recall that capacitors add in parallel).  Observe 
the response to a step input. Repeat this for a total capacitance of 3 µF and 4 µF.  
Record the step response using the LabJack for C = 1, 2, 3, and 4 µF.   
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P4 In a mechanical system, if you wanted to the system to respond more quickly, you 

would increase the natural frequency (ωn) by picking a stiffer spring (higher k).  
Double ωn for the PD system by changing the appropriate resistor value.   Keep C 
= 4 µF.  Record the step response of the system using the LabJack, and plot it on 
the same plot as P3. 

 
 
Part 4: What is the frequency response of the actual 
system? 
 
The goal of this last part of the lab is to characterize the frequency response of the 
system.  In particular, you will explore how well the system tracks the desired input 
position when the input is a sinusoid, across a range of frequencies.  Remember, you 
can view linear systems such as this one as “filters”.  The PD controller acts like a low-
pass filter, although it has a resonant peak if the damping is not great enough. 
 
Q9 Change R1 to 1 KΩ, R2 to 10 KΩ, and C = 1 µF.  Now input a 1.0V amplitude sine 

wave.  Start at a low frequency.  Keep the voltage scale on the scope the same for 
both input and output.  What is the output amplitude and phase shift at 1, 2, 4, 8, 
16, 32 Hz?  Does the system have a resonant frequency? The amplitude should 
increase dramatically at this point.  What is the resonant frequency and the output 
amplitude at resonance?  Do you notice any high frequency oscillations in your 
output signal?  What do you think might be causing those? Note:  Don’t let the 
motor oscillate for a long time at resonance.  

 
P5 Make a Bode plot of the frequency response of the system.  Plot {20log(output 

amplitude/input amplitude)} vs. {input frequency on a log scale}, and {phase shift} 
vs. {input frequency on a log scale}. 

 
WRITE-UP  
- due at your next laboratory session 
- each student must complete his or her own write-up 
- make sure to use your own words and to type the write-up!! 
- include your name and laboratory time on the write-up 
- Graphs for the lab write-up must be generated using Excel or Matlab, and must 

include labels on the axes, voltage and time scales used on the scope, and a legend 
for multiple-line plots.  

Page limit = 2 pages, including graphs 
1.  A controller that performs a little better than the PD controller used in this lab is the 

following: 
)()( dddp KK θθθθτ && −−−−=  

a. Derive the closed-loop transfer function for this controller.  
b. Provide a reason why this controller performs better in tracking a changing 

desired position input. 
2. Step Response: Turn in the plots for P1, P3 and P4 
3. Frequency Response: Turn in the plot for P2 and P5.  
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