MAE 106 Laboratory Exercise #4
Solution

Q1: For a beam with a length of 8 inches:
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These computations are slightly easier when using SI units. When you use english units, you must be very careful
to make sure that you get the correct units (namely ﬁ) for w,. The most common problem is to forget to convert
from pounds (which is a unit of force) to a suitable unit of mass or to convert from pounds when it is not necessary.
It is also not a good idea to call the unit of mass a “slug”, instead call it a L'}%z so that you can be assured of
cancelling the correct units as I did in the above problem.

Q2: Typical accelerometer voltages are in the 100 to 300 mV range. This measurement, plus the assumption that
the relationship between output voltage and acceleration is linear allows us to compute acceleration. For example, if
the accelerometer read 250 mV at 1 gravity, then we use the following formula to compute acceleration:
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where V is the output reading (in Volts) of the accelerometer.

Q3: Typical damped natural frequenciés are in the 7 to 20 Hz range.




Q4: Run at least two tests and find ag, a,, and n for each test. Example:
Test 1: ap = 306 mV, a, = 140.6 mV, n =15
Test 2: ag =222 mV, a, =97 mV, n =15
d=ln (a—0>
Qn
é N )

Use this data and the formula:
V&% +arin?  2mn

to find exact and approximate £ values for each test run. Then average these values to obtain the best estimate.
A sample solution:
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Q5: This is different for each motor, but typical values are in the range of 450 to 500 revolutions per minute for a 2
V input signal and 950 to 1000 revolutions per minute for a 4 V input signal. We can combine these data points in
order to develop a formula that relates the speed of the motor to the input voltage.

Example data: 495 rpm at 2 V, 968 rpm at 4 V. Converting rpm to radians per second:
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From this data, we see that the gain is approximately 25;&%. We can multiply this gain by the input voltage
to obtain the frequency of the forcing function in radians per second.

Q6: We asked you to record the input voltage at resonance. Typical values are in the 1.8 to 2 Volt range for the
input voltage. You can now convert this using the results of Q5 to obtain the frequency of the forcing function at
resonance. You can also get the frequency by examining the frequency of the accelerometer output trace on the
scope.

The amplitude of the accelerometer output, combined with the formula in Q2 will yield the maximum accelera-
tions. If you measured the peak to peak voltage of the accelerometer output, you need to divide by 2 before using
the formula in Q2.

The estimated tip motion could be anywhere from 1 inch (very small) to 4 or more inches depending upon how
close you got to the actual resonance value. This estimated tip motion was denoted A,.; in the lab.

Q7: Exciting the system at a frequency well past resonance should result in very small tip motions. A typical value
is % inch. This tip motion was denoted Apigs in the lab.

Q8: Combine the estimated tip motions from Q6 and Q7 to find an estimate of ¢ using

€= Ahnigh
24,6
A typical result might be
0.06257¢
¢ = 20625 0156

2(2in)




Q9 The transfer function is given by
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Resonance occurs when the output is the maximum. This occurs when the denomenator of |G(jw)| is minimum:
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Solving this equation for w yields the resonance frequency:
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& must be |ess than .707 to insure that the square root does not yield an imaginary number.
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Q11 1t is fairly obvious that as &€ = 0, w, — w, using the result of Q9.

From above we have 5
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Q12 As w — o0,
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As w = oo, any term with w in the denomenator becomes zero, so
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Q13 Normally the Q6 values are the most accurate, since Q1 contained several assumptions about the mass distri-

bution. Q3 values can also be as accurate as the Q6 values depending on how well you read the scope. I accepted

any reasonable answers since several groups had problems or bad data associated with some tests.

Q14 For this problem, the values from Q4 are most accurate. The values from Q8 involved an “eyeball” measurement

of the tip motion which is nearly impossible to obtain with great precision.

Q15 Use the formula:
c=26Mw,
where M is the total mass of the system.

Example solution:

o M =0075% from Q2

e ¢ =.0083 from Q4

¢ wy from your best run (either Q3 or Q6)
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Note that the units on ¢ match the notes.
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- Q16 From Q1, we know that for a beam of length I;:
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For another beam of length I, we have
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For a beam of similar properties, we know that E and I are the same for each beam. If we also assume that M, ~ M,

Combining these two equations gives:
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We can now plug in the length of our beam from Q1 and the natural frequency obtained from Q13 to find the
natural frequency of a beam with a length of 15 inches.
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