Discussion, MAE 91, 8/11/2004

by Nasser M. Abbasi

Contents

1	Problem 8.95			
	1.1	Statment]	
	1.2	Assumptions	1	
		Laws		
	1.4	Steps	1	
		1.4.1 Numerical	2	
	1.5	Steps	2	
		1.5.1 Numerical		

1 Problem 8.95

1.1 Statment

see book.

1.2 Assumptions

air is ideal gas constant specific heat coefficients

1.3 Laws

$$\begin{aligned} _{1}Q_{2}-W&=m\left(u_{2}-u_{1}\right) \\ du&=C_{v0}\ dT \\ T_{2}&=T_{1}\left(\frac{P_{2}}{P_{1}}\right) ^{\frac{k-1}{k}} \ \text{for adiabatic process} \\ PV&=mRT \end{aligned}$$

1.4 Steps

Control mass energy equation gives

$$_{1}Q_{2} - W = m \left(u_{2} - u_{1} \right)$$

Since adiabatic, then $_{1}Q_{2}=0$, hence

$$W = -m (u_2 - u_1)$$
$$W = -m du$$

But $du = C_{v0} dT$, hence above becomes

$$W = -m C_{v0} dT$$

= -m C_{v0} (T_2 - T_1) (1)

Need to find T_2 Since adiabatic, then

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$$

Where $k = \frac{C_{p0}}{C_{v0}}$ So equation (1) becomes

$$W = -m C_{v0} \left(T_1 \left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - T_1 \right)$$

$$= -m C_{v0} T_1 \left(\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right)$$
(2)

Mass m can be found from ideal gas law. PV = mRT, hence $m = \frac{PV}{RT}$, so equation (2) becomes

$$W = -\frac{P_1 V_1}{R T_1} C_{v0} T_1 \left(\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right)$$

$$W = -\frac{P_1 V_1}{R} C_{v0} \left(\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right)$$
(3)

1.4.1 Numerical

For air, from table A.5, use $C_{v0} = 0.717$ KJ/Kg-K, K = 1.4, R = 0.287, so equation (3) becomes

$$W = -\frac{(15 \times 10^3) (10 \times 10^{-6})}{0.287} (0.717) \left(\left(\frac{200}{15000} \right)^{\frac{1.4-1}{1.4}} - 1 \right)$$
$$= 0.26560 \text{ KJ}$$

NOw To find the length.

1.5 Steps

$$V_2 = L A$$

Hence

$$L = \frac{V_2}{A}$$

But $\frac{P_1V_1}{T_1} = mR$ and $\frac{P_2V_2}{T_2} = mR$, so $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$, hence $V_2 = \frac{P_1T_2}{P_2T_1}V_1$

$$L = \frac{V_2}{A} = \frac{1}{A} \left(\frac{P_1 T_2}{P_2 T_1} V_1 \right)$$

but $T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$ hence

$$L = \frac{1}{A} \left(\frac{P_1 T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}}{P_2 T_1} V_1 \right)$$
$$= \frac{1}{A} \left(\frac{P_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}}{P_2} V_1 \right)$$

1.5.1 Numerical

Given $A = 5cm^2$, $V_1 = 10cm^3$ so

$$L = \frac{1}{5} \left(\frac{(15 \times 10^3) \left(\frac{200}{15 \times 10^3}\right)^{\frac{1.4 - 1}{1.4}}}{200} 10 \right)$$
$$= 43.688 \text{ cm}$$