MAE 171 Digital Control Systems

Homework # 7 Solution

Problem 2.

$$G(z) = \mathcal{Z}\left[\frac{1 - e^{-Ts}}{s} \frac{1}{s(s+1)}\right] = (1 - z^{-1}) \mathcal{Z}\left[\frac{1}{s^{2}(s+1)}\right]$$
$$= \frac{(T - 1 + e^{-T})z^{-1} + (1 - e^{-T} - Te^{-T})z^{-2}}{(1 - z^{-1})(1 - e^{-T}z^{-1})}$$

Since T = 0.1 sec, G(e) becomes

$$G(z) = \frac{0.004837z^{-1}(1+0.9674z^{-1})}{(1-z^{-1})(1-0.9048z^{-1})} = \frac{0.004837(z+0.9674)}{(z-1)(z-0.9048)}$$

Since the number of samples per cycle of damped sinusoidal oscillation is specified as δ , one of the dominant closed-loop poles must be on the line having an angle of 45° and passing through the origin. Thus, the desired dominant closed-loop pole location in the upper half z plane can be determined as the intersection of the line having an angle of 45° and the $\zeta=0.5$ locus.

Thus,
$$Z_d = re^{j\theta}$$
 with $\theta = 45^{\circ}$ or $\frac{\pi}{4}$, and r calculated from
$$r = \exp\left(-\frac{\zeta\theta}{\sqrt{1-\zeta^2}}\right) = e^{-\frac{\pi}{4\sqrt{3}}} \quad \text{with } \zeta = 0.5$$
$$= 0.6354$$

The desired dominant closed-loop pole in the upper half z plane is located at

$$z = 0.6354 / 45^{\circ} = 0.4493 + j0.4493$$

In order to have a closed-loop pole at this location, we need to add a phase lead angle of 78.59°. The digital controller must give this necessary phase lead angle.

We shall choose the digital controller $G_{n}(z)$ to be

$$G_D(z) = K \frac{z + \alpha}{z + \beta} = K \frac{z - 0.9048}{z + \beta}$$

(Here we chose \propto = -0.9048.) Then, from the angle condition we find that the controller pole must be located at z = 0.1554, or ρ ' = -0.1554. (See the diagram below.)

The controller $G_{\widehat{\mathbb{D}}}(\mathbf{z})$ is now given by

$$G_D(z) = K \frac{z - 0.9048}{z - 0.1554}$$

The open-loop pulse transfer function becomes

$$G_D(z)G(z) = K \frac{0.004837(z + 0.9674)}{(z - 0.1554)(z - 1)}$$

Using the magnitude condition, the gain K can be determined as follows:

$$\left| K \frac{0.004837(z + 0.9674)}{(z - 0.1554)(z - 1)} \right|_{z = 0.4493 + j0.4493} = 1$$

or

$$K = 53.08$$

Thus, the digital controller has the following pulse transfer function:

$$G_D(z) = 53.08 \frac{z - 0.9048}{z - 0.1554}$$

The static velocity error constant $K_{_{\mbox{\scriptsize V}}}$ is determined as follows:

$$K_{v} = \lim_{z \to 1} \frac{1 - z^{-1}}{0.1} (53.08) \frac{z - 0.9048}{z - 0.1554} \frac{(0.004837)(z + 0.9674)}{(z - 1)(z - 0.9048)}$$
$$= 5.98$$

To boost K_V by a factor of 2, we add a lag section $\frac{Z-X}{Z-S}$. The complete compensator will then be $C_D(z) = K \frac{Z+\alpha}{Z+\beta} \frac{Z-Y}{Z-S}$.

We calculate

$$\gamma = 1 - \frac{K_v^{\text{after}}}{K_v^{\text{before}}} (1 - S)$$

By taking S = 0.99 and $\frac{K_v}{K_v}^{\text{before}} = 2$, we obtain

$$Y = 1 - 2(1 - 0.99) = 0.98$$

Therefore,

$$G_{D}(z) = 53.08 \frac{Z - 0.9048}{Z - 0.1554} \frac{Z - 0.98}{Z - 0.99}$$

$$G_{D}(z) = \frac{N_{c}(z)}{D_{c}(z)} = \frac{53.08 Z^{2} - 100.452 Z + 47.0662}{Z^{2} - 1.1454 Z + 0.1538}$$

$$G(z) = \frac{N_{p}(z)}{D_{p}(z)} = \frac{0.004837 Z + 0.004679}{Z^{2} - 1.9048 Z + 0.9048}$$

$$T(z) = \frac{G(z)G_{D}(z)}{1 + G(z)G_{D}(z)} = \frac{N_{c}N_{p}}{N_{c}N_{p} + D_{c}D_{p}}$$

$$= \frac{0.2567 Z^{2} - 0.0036 Z - 0.2438}{Z^{3} - 1.8905 Z^{2} + 1.2978 Z - 0.398}$$

```
clear;
nc = conv(53.08*[1 -0.9048],[1 -0.98]);
dc = conv([1 -0.1554],[1 -0.99]);
np = 0.004837*[1 0.9674];
dp = conv([1 -1],[1 -0.9048]);
num = conv(nc,np);
den = [0 conv(nc,np)]+conv(dc,dp);
dstep(num,den); hold;
grid;
```

Problem 1

$$G(z) = \frac{K(z+1)}{(z-1)(z-0.6065)}$$

The characteristic equation for the system is

$$z^2 + (K - 1.6065)z + 0.6065 + K = 0$$

The critical value of gain K for stability can be determined easily by use of the Jury stability criterion. Define

$$P(z) = z^{2} + (K - 1.6065)z + 0.6065 + K$$
$$= a_{0}z^{2} + a_{1}z + a_{2} = 0$$

Then

$$a_0 = 1$$
, $a_1 = K - 1.6065$, $a_2 = 0.6065 + K$

The conditions for stability are

1.
$$|a_2| < a_0$$

2.
$$P(1) > 0$$

3.
$$P(-1) > 0$$

Thus we require

$$|0.6065 + K| < 1$$

 $P(1) = 1 + K - 1.6065 + 0.6065 + K = 2K > 0$
 $P(-1) = 1 - K + 1.6065 + 0.6065 + K = 3.213 > 0$

Hence

The critical value of gain K for stability is 0.3935.

Since

$$G(z) = \frac{K(z+1)}{(z-1)(z-0.6065)}$$

we have

$$C(z) = (z + 1 - (z - 1 - (z - 0.6065))$$

Define

$$z = 0 + j\omega$$

The angle condition is

$$(\sigma + j\omega + 1 - (\sigma + j\omega - 1 - (\sigma + j\omega - 0.6065 = 180^{\circ})$$

Hence

$$\tan^{-1} \frac{\omega}{\sigma + 1} - \tan^{-1} \frac{\omega}{\sigma - 1} = 180^{\circ} + \tan^{-1} \frac{\omega}{\sigma - 0.6065}$$

Taking the tangent of both sides of this equation and simplifying, we get

$$\omega = 0$$
 and $(6 + 1)^2 + \omega^2 = (1.7925)^2$

Thus, the root loci consist of a part of the real axis (between -1 and - ∞) and a circle with center at G^* = -1, ω = 0 and the radius equal to 1.7925, as shown below.

The value of gain K that will yield the damping ratio 5 of the closed-loop poles equal to 0.5 can be determined from Eqs. (4-53) and (4-54). Since T is given as 0.1 sec, we have

$$|z| = e^{-0.1 \times 0.5 \omega_n} = e^{-0.05 \omega_n}$$

 $|z| = 0.1 \times \omega_n \sqrt{1 - 0.5^2} = 0.0866 \omega_n$

By trial and error we find that the point that corresponds to ζ = 0.5 and ω_n = 4 rad/sec, that is, the point for which

$$|z| = e^{-0.05 \times 4} = 0.8187$$

 $|z| = 0.0866 \times 4 = 0.3464 \text{ rad} = 19.847^{\circ}$

is on the root locus. This point is

$$z = e^{-0.05 \times 4} / \frac{19.847}{} = 0.8187 / \frac{19.847}{}$$

= 0.7701 + j0.2780

The value of gain K that corresponds to this closed-loop pole is found from the magnitude condition

$$\left| \frac{K(z+1)}{(z-1)(z-0.6065)} \right|_{z=0.7701+j0.2780} = 1$$

as follows:

$$K = \frac{0.3606 \times 0.3226}{1.7918} = 0.0649$$

When gain K is set to 0.0649, or K = 0.0649, the damping ratio 5 of the dominant closed-loop poles is 0.5. With this gain value, the damped natural frequency ω_d is found as

$$\omega_{\rm d} = \omega_{\rm n} \sqrt{1 - 5^2} = 4 \sqrt{1 - 0.5^2} = 3.464$$

The number of samples per cycle of the damped sinusoidal oscillation is

$$\frac{360^{\circ}}{19.847^{\circ}} = 18.14$$

or 18.14 samples per cycle.

$$G(s) = \frac{s+2}{(s+3)(s+1)}$$
, $T=1$.

(a) Standard z-transform

$$G(s) = \frac{1/2}{(s+1)} + \frac{1/2}{(s+3)}$$

$$D(z) = G(z) = \frac{1/2}{1 - e^{-1}z^{-1}} + \frac{1/2}{1 - e^{-3}z^{-1}} = \frac{1 - \frac{1}{2}(e^{-1}+e^{-3})z^{-1}}{1 - (e^{-1}+e^{-3})z^{-1}+e^{-4}z^{-2}}$$

$$\mathcal{D}(z) = (1-z^{-1}) \, \overline{\mathcal{J}} \left[\frac{G(s)}{s} \right] = (1-z^{-1}) \, \overline{\mathcal{J}} \left[\frac{\frac{3}{3}}{s} - \frac{\frac{1}{2}}{s+1} - \frac{\frac{1}{6}}{s+3} \right]$$

$$= (1-z^{-1}) \left[\frac{\frac{2}{3}}{1-z^{-1}} - \frac{\frac{1}{2}}{1-\epsilon^{-1}z^{-1}} - \frac{\frac{1}{6}}{1-\epsilon^{-3}z^{-1}} \right]$$

$$= \frac{z}{3} - \frac{1}{2} \frac{1-z^{-1}}{1-\epsilon^{-1}z^{-1}} - \frac{1}{6} \frac{1-z^{-1}}{1-\epsilon^{-3}z^{-1}}$$

(c) Backward difference

$$S = \frac{1-Z^{-1}}{T} = 1-Z^{-1}$$

$$\mathfrak{D}(z) = \frac{3-Z^{-1}}{(4-Z^{-1})(2-Z^{-1})} = \frac{1}{2} \left[\frac{1}{4-Z^{-1}} + \frac{1}{2-Z^{-1}} \right]$$

(d) Forward difference

$$S = \frac{Z-1}{T} = Z-1$$

$$\mathcal{D}(z) = \frac{Z+1}{(Z+2)Z} = \frac{1}{2} \left[\frac{1}{Z} + \frac{1}{Z+2} \right]$$

(e) Bilinear Z-transform, 5= = = 1-2-1, T=12.

$$D(z) = G(z) \Big|_{z = \frac{1 - z^{-1}}{1 + z^{-1}} \cdot \frac{z}{1}} = \frac{\left(z \frac{1 - z^{-1}}{1 + z^{-1}} + z\right)}{\left(z \frac{1 - z^{-1}}{1 + z^{-1}}\right)^2 + 4\left(z \frac{1 - z^{-1}}{1 + z^{-1}}\right) + 3}$$

$$= \frac{4+4z^{-1}}{15-2z^{-1}-z^{-2}}$$
 (f)

Matched z-transform

$$D(2) = G(5) \Big|_{5+\alpha = 1-e^{-\alpha}2-1}, T=1$$

$$= \frac{1-(e^{-1}+e^{-3})}{1-(e^{-1}+e^{-3})} \frac{7-1}{2-1+e^{-4}2-2}$$