Astronautics, Spring quarter 2003, HW 4, UCI

by Nasser M. Abbasi

1 problem 3.5 from BMW book

Analysis:
Since $V_{c 2}$ is given as $0.5 \frac{D U}{T U}$, and $V_{c 1}=1 D U / T U$, then service orbit must be the larger orbit (outside orbit), since the smaller the distance from the attracting body the larger the velosity of the orbiting body).

First find r_{1} and r_{2}
Since $V_{c 1}=\sqrt{\frac{\mu}{r_{1}}} \Longrightarrow r_{1}=\frac{\mu}{V_{c 1}^{2}} \Longrightarrow r_{1}=\frac{1}{1^{2}}=1 D U$
Similarly $r_{2}=\frac{\mu}{V_{c 2}^{2}} \Longrightarrow r_{2}=\frac{1}{0.5^{2}}=4 D U$
From geometry, for the transfer orbit, $2 a_{t}=r_{1}+r_{2} \Longrightarrow a_{t}=5 D U$
But $\xi_{t}=-\frac{\mu}{a_{t}} \Longrightarrow \xi_{t}=-0.2\left(\frac{D U}{T U}\right)^{2}$
Now, velocity in the transfer orbit is given by $V_{t}=\sqrt{2\left(\frac{\mu}{r}+\xi_{t}\right)}$ hence at point $1, r=r_{1}=1 \mathrm{DU}$, so we get $V_{t 1}=\sqrt{2\left(\frac{1}{1}-0.2\right)} \Longrightarrow V_{t 1}=1.264911 D U / T U$

Similarly, $V_{t 2}=\sqrt{2\left(\frac{\mu}{r_{2}}+\xi_{t}\right)}$ hence at point $2, r_{2}=4 \mathrm{DU}$, so we get $V_{t 2}=\sqrt{2\left(\frac{1}{4}-0.2\right)} \Longrightarrow V_{t 2}=$ $0.316227 \frac{D U}{T U}$

So, $\Delta V_{1}=\left|V_{c 1}-V_{t 1}\right|=|1-1.264911|=0.264911 \mathrm{DU} / \mathrm{TU}$
$\Delta V_{2}=\left|V_{c 2}-V_{t 2}\right|=|0.5-0.316227|=0.183773 \mathrm{DU} / \mathrm{TU}$
hence, minumum $\Delta V=\Delta V_{1}+\Delta V_{2}=0.448684 \mathrm{DU} / \mathrm{TU}$

2 problem 3.8 from BMW book

Compute the minimum ΔV required to transfer between 2 coplaner elliptical orbits which have their major axes aligned. The parameters are:

$$
r_{p 1}=1.1 \quad \mathrm{DU} . \quad r_{p 2}=5 \mathrm{DU}
$$

$e_{1}=0.290 \mathrm{DU} . e_{2}=0.412 \mathrm{DU}$
Assume both preigrees lie on the same side of the earth.
Assumptions:
Method: First find V_{1} and $V 2$, the velositites for ellips 1 at its perigree and for ellips 2 at its apegee.
Next find ξ_{t}, the energy for the transfer orbit. From this, find $V_{1 t}$ and $V_{2 t}$, the velosities in the transfer orbit at point 1 and point 2 respectively.

Finally, final ΔV follows as from the sum of the ΔV at point 1 and point 2.
This is the minumum, since the transfer orbit is a Homann orbit.
Analysis:

since $a=r p+a e$ from ellips geometry.
$r p=a(1-e)$
$a=\frac{r p}{1-e}$
For ellips 1:
$a_{1}=\frac{r_{p 1}}{1-e_{1}} \Rightarrow a_{1}=\frac{1.1}{1-0.29}=1.5492957$ DU.
$\xi_{1}=-\frac{\mu}{2 a_{1}}=-\frac{1}{(2) 1.5492957}=-0.322727 D U^{2} / T U^{2}$
But $\xi=\frac{V^{2}}{2}-\frac{\mu}{r}$, hence, since ξ is constant over the orbit, we can use this relationship to solve for V for different r.

At point 1, for first ellips, $r=r_{p 1}$, hence
$-0.322727=\frac{V_{1}^{2}}{2}-\frac{1}{1.1} \Rightarrow V_{1}=1.082925 \mathrm{DU} / \mathrm{TU}$.

For ellips 2:

Here we want to find the velosity V_{2}, the velosity at the apegee for ellips 2 . So, need to find $r_{A 2}$ for ellips 2.

Since $r_{p 2}=5 \mathrm{DU}$, and $e_{2}=0.412$, we get
$a=\frac{r p}{1-e} \Rightarrow a_{2}=\frac{5}{1-0.412}=8.5034 \mathrm{DU}$.
Hence, since $r_{A}=a+a e=a(1+e) \Rightarrow r_{A 2}=8.50034(1+0.412)=12.0068 \mathrm{DU}$.
Now find ξ_{2} the energy for ellips 2
$\xi_{2}=-\frac{\mu}{2 a}=-\frac{1}{(2) 8.5034}=-0.0588 \quad D U^{2} / T U^{2}$
but $\xi_{2}=\frac{V_{2}^{2}}{2}-\frac{\mu}{r_{A}}$ then
$-0.0588=\frac{V_{2}^{2}}{2}-\frac{1}{12.0068} \Rightarrow V_{2}=0.2212968 \mathrm{DU} / \mathrm{TU}$
For the transfer orbit:
From geometry, $2 a=r_{p 1}+r_{A 2}=1.1+12.0068 \Longrightarrow a_{t}=6.5534 \mathrm{DU}$
so $\xi_{t}=-\frac{\mu}{(2) 6.5534}=-0.0762963 D U^{2} / T U^{2}$
So, $V_{1 t}=\sqrt{2\left(\frac{\mu}{r_{p 1}}+\xi_{t}\right)}=\sqrt{2\left(\frac{1}{1.1}-0.0762963\right)}=1.2905 \mathrm{DU} / \mathrm{TU}$
So, $V_{2 t}=\sqrt{2\left(\frac{\mu}{r_{A 2}}+\xi_{t}\right)}=\sqrt{2\left(\frac{1}{12.0068}-0.0762963\right)}=0.11823567 \mathrm{DU} / \mathrm{TU}$
so ΔV at point $1=|1.082925-1.2905|=0.207575 \mathrm{DU} / \mathrm{TU}$
so ΔV at point $2=|0.2212968-0.11823|=0.1030668 \mathrm{DU} / \mathrm{TU}$ hence minumum $\Delta V=0.207575+0.1030668=0.3106418 D U / T U$

