HW 5. CEE 247. Structural Dynamics. UCI. Fall 2006.

Nasser Abbasi

April 16, 2008

Contents

1 Problem $7.1 \quad 2$

2 Problem 7.6

1 Problem 7.1

Solution

The idealized physical system is the following

The Lagrangian of the system is

$$
\begin{aligned}
L & =K E-P E \\
& =\left(\frac{1}{2} m_{1} \dot{u}_{1}^{2}+\frac{1}{2} m_{1} \dot{u}_{1}^{2}\right)-\left(\frac{1}{2} k_{1} u_{1}^{2}+\frac{1}{2} k_{2}\left(u_{2}-u_{1}\right)^{2}\right) \\
& =\frac{1}{2} m_{1} \dot{u}_{1}^{2}+\frac{1}{2} m_{1} \dot{u}_{1}^{2}-\frac{1}{2} k_{1} u_{1}^{2}-\frac{1}{2} k_{2}\left(u_{2}-u_{1}\right)^{2}
\end{aligned}
$$

Now apply Euler equation on the Lagrangian to obtain the equation of motion for each degree of freedom. Given L the equation of motion for u_{i} is given by $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}_{i}}\right)-\frac{\partial L}{\partial u_{i}}=0$
Hence the equation of motion associated with u_{1} is given by

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}_{1}}\right)-\frac{\partial L}{\partial u_{1}} & =0 \\
\frac{d}{d t}\left(m_{1} \dot{u}_{1}\right)-\left(-k_{1} u_{1}-k_{2}\left(u_{2}-u_{1}\right) \times-1\right) & =0 \\
m_{1} \ddot{u}_{1}+k_{1} u_{1}-k_{2} u_{2}+k_{2} u_{1} & =0 \\
m_{1} \ddot{u}_{1}+u_{1}\left(k_{1}+k_{2}\right)-u_{2} k_{2} & =0 \tag{1}
\end{align*}
$$

And the equation of motion associated with u_{2} is given by

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}_{2}}\right)-\frac{\partial L}{\partial u_{2}} & =0 \\
\frac{d}{d t}\left(m_{2} \dot{u}_{2}\right)+k_{2}\left(u_{2}-u_{1}\right) & =0 \\
m_{2} \ddot{u}_{2}-u_{1} k_{2}+u_{2} k_{2} & =0 \tag{1}
\end{align*}
$$

Hence the equation of motions are

$$
\begin{array}{r}
m_{1} \ddot{u}_{1}+u_{1}\left(k_{1}+k_{2}\right)-u_{2} k_{2}=0 \\
m_{2} \ddot{u}_{2}-u_{1} k_{2}+u_{2} k_{2}=0
\end{array}
$$

Hence the overall system EQM can be put in a matrix form as follows

$$
\left[\begin{array}{cc}
m_{1} & 0 \tag{3}\\
0 & m_{2}
\end{array}\right]\left\{\begin{array}{l}
\ddot{u}_{1} \\
\ddot{u}_{2}
\end{array}\right\}+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=0
$$

Notice that the mass matrix M and the stiffness matrix K are symmetric. This will always be the case for conservative systems.
Equation (3) can be written as

$$
\begin{equation*}
[M]\{\ddot{u}\}+[K]\{u\}=0 \tag{4}
\end{equation*}
$$

Now assume the solution is given by

$$
\begin{equation*}
\{u\}=\{a\} e^{i \omega t} \tag{5}
\end{equation*}
$$

Substitute (5) into (4) we obtain

$$
-\omega^{2}[M]\{a\} e^{i \omega t}+[K]\{a\} e^{i \omega t}=0
$$

Since $e^{i \omega t} \neq 0$ we divide by it and obtain

$$
-\omega^{2}[M]\{a\}+[K]\{a\}=0
$$

Factor out $\{a\}$

$$
\left([K]-\omega^{2}[M]\right)\{a\}=0
$$

To have a non-trivial solution for the motion the above implies that the determinant of ([K]- $\left.\omega^{2}[M]\right)$ must be zero. Hence we need to solve

$$
\operatorname{det}\left([K]-\omega^{2}[M]\right)=0
$$

Let $\lambda=\omega^{2}$, and expand the matrices and rewrite we obtain

$$
\begin{align*}
\operatorname{det}\left(\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]-\lambda\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]\right) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]-\left[\begin{array}{cc}
\lambda m_{1} & 0 \\
0 & \lambda m_{2}
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
k_{1}+k_{2}-\lambda m_{1} & -k_{2} \\
-k_{2} & k_{2}-\lambda m_{2}
\end{array}\right] & =0 \\
\left(k_{1}+k_{2}-\lambda m_{1}\right)\left(k_{2}-\lambda m_{2}\right)-k_{2}^{2} & =0 \\
k_{1} k_{2}-k_{1} \lambda m_{2}+k_{2}^{2}-k_{2} \lambda m_{2}-k_{2} \lambda m_{1}+\lambda^{2} m_{1} m_{2}-k_{2}^{2} & =0 \\
k_{1} k_{2}-k_{1} \lambda m_{2}-k_{2} \lambda m_{2}-k_{2} \lambda m_{1}+\lambda^{2} m_{1} m_{2} & =0 \\
\lambda^{2} m_{1} m_{2}-k_{1} \lambda m_{2}-k_{2} \lambda m_{2}-k_{2} \lambda m_{1}+k_{1} k_{2} & =0 \tag{1}\\
\lambda^{2} m_{1} m_{2}-\lambda\left(\left(k_{1}+k_{2}\right) m_{2}+k_{2} m_{1}\right)+k_{1} k_{2} & =0 \\
\lambda^{2}-\lambda \frac{\left(\left(k_{1}+k_{2}\right) m_{2}+k_{2} m_{1}\right)}{m_{1} m_{2}}+\frac{k_{1} k_{2}}{m_{1} m_{2}} & =0 \tag{6}
\end{align*}
$$

Now find the numerical values for $k_{1}, k_{2}, m_{1}, m_{2}$ and plug into the above equation to find $\lambda_{1,2}$

$$
\begin{aligned}
& k_{1}=\frac{12 E I}{L^{3}}=\frac{12\left(5 \times 10^{8}\right)}{(15 \times 12)^{3}}=1028.8 \mathrm{lb} / \mathrm{in} \\
& k_{2}=\frac{12 E I}{L^{3}}=\frac{12\left(2.5 \times 10^{8}\right)}{(12 \times 12)^{3}}=1004.7 \mathrm{lb} / \mathrm{in}
\end{aligned}
$$

and

$$
\begin{aligned}
& m_{1}=\frac{W_{1}}{g}=\frac{3860}{386}=10 \mathrm{lb} \\
& m_{2}=\frac{W_{2}}{g}=\frac{1930}{386}=5 \mathrm{lb}
\end{aligned}
$$

Hence eq (6) above becomes

$$
\lambda^{2}-\lambda \frac{((1028.8+1004.7) 5+1004.7 \times 10)}{50}+\frac{1028.8 \times 1004.7}{50}=0
$$

Hence

$$
\lambda^{2}-404.29 \lambda+20673=0
$$

Hence this is now in standard quadratic format, solve for λ

$$
\begin{aligned}
& \lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \lambda=\frac{404.29 \pm \sqrt{(-404.29)^{2}-4 \times 20673}}{2} \\
& \lambda=\frac{404.29 \pm 284.18}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{404.29-284.18}{2} \\
& =60.055
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{2} & =\frac{404.29+284.18}{2} \\
& =344.24
\end{aligned}
$$

Since $\lambda_{1}=\omega_{1}^{2}$ then

$$
\begin{aligned}
\omega_{1} & =\sqrt{60.055} \\
& =7.7495 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\omega_{2} & =\sqrt{344.24} \\
& =18.554 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Now to find the eigenvectors, since

$$
\left([K]-\omega^{2}[M]\right)\{a\}=0
$$

Then

$$
\begin{gathered}
{\left[\begin{array}{cc}
k_{1}+k_{2}-\omega_{i}^{2} m_{1} & -k_{2} \\
-k_{2} & k_{2}-\omega_{i}^{2} m_{2}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{i}=0} \\
{\left[\begin{array}{cc}
1028.8+1004.7-10 \omega_{i}^{2} & -1004.7 \\
-1004.7 & 1004.7-5 \omega_{i}^{2}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{i}=0}
\end{gathered}
$$

For the first eigenvalue $\omega_{1}=7.7495$ the above becomes

$$
\begin{array}{r}
{\left[\begin{array}{cc}
1028.8+1004.7-10 \times 7.7495^{2} & -1004.7 \\
-1004.7 & 1004.7-5 \times 7.7495^{2}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{1}=0} \\
\\
{\left[\begin{array}{cc}
1433.0 & -1004.7 \\
-1004.7 & 704.43
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}=0}
\end{array}
$$

From first equation we obtain

$$
1433.0 a_{1}-1004.7 a_{2}=0
$$

Hence

$$
\frac{a_{1}}{a_{2}}=\frac{1004.7}{1433.0}=0.70112
$$

Hence we choose the first eigenvector to be

$$
\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{1}=\left\{\begin{array}{c}
0.70112 \\
1
\end{array}\right\}
$$

For the second eigenvalue $\omega_{2}=18.554$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1028.8+1004.7-10 \times 18.554^{2} & -1004.7 \\
-1004.7 & 1004.7-5 \times 18.554^{2}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{2}=0 } \\
& {\left[\begin{array}{cc}
-1409.0 & -1004.7 \\
-1004.7 & -716.55
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{2}=0 }
\end{aligned}
$$

From first equation we obtain

$$
-1409 a_{1}-1004.7 a_{2}=0
$$

Hence

$$
\frac{a_{1}}{a_{2}}=\frac{1004.7}{-1409}=-0.71306
$$

Hence we choose the second eigenvector to be

$$
\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{2}=\left\{\begin{array}{c}
-0.71306 \\
1
\end{array}\right\}
$$

Conclusion

$$
\begin{gathered}
\omega_{1}=7.7495 \mathrm{rad} / \mathrm{sec} \\
\omega_{2}=18.554 \mathrm{rad} / \mathrm{sec} \\
\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{1}=\left\{\begin{array}{c}
0.70112 \\
1
\end{array}\right\} \\
\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}_{2}=\left\{\begin{array}{c}
-0.71306 \\
1
\end{array}\right\}
\end{gathered}
$$

2 Problem 7.6

Answer

I wrote a Mathematica program to solve this. This is the result, and below that I attach step by step run of the program

