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1 Problem 1.3

Problem 1.3
Determine the natural freque

ncy for horizontal i '
P1.3. Assume the horizonta] W

. izont: frame in Fig
girder to be infinitely rigid and neglect tt i

columns. 1€ mass of the
/
i / 4
50 kips /
' |
| | |
| W8 x 24 (W10 x 33 |' o
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7//;} Ul 4;_
R
[ 20— |
Fig. P1.3
Solution

From steel manual, we obtain the following values for I, for the different W sections:
W8 x 24 — I, = 82.5 in* , W10 x 33 = I, = 170 in*, and E = 30 x 10° psi.
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Weight of girderW = 50 kips or 50,000 lbs.
Gravity Acceleration g = 386 in/ sec?
L=12x12=244"

We start by finding the effective stiffness k,

3EIR 24 12E110x33

12 %30 x 10° x 170

3x30x 10° x 82.5
(12 x 12)

=| 25469 Ib/in

£
I

(12 x 12)°

25469 x 386

Tg

50000

=| 14.022 rad/sec

But , =27 f hence

14.022
- 2n

=| 2.2317

hz




2 Problem 1.6

Problem 1.7
lConmdgr the simp_le penduluxp of weight W illustrated in Fig. P1.7. If the cord
ength is L, determine the motion of the pendulum. The initial angular displacement

andlll;n'tial angular velocity are 0, and 90, respectively. (Assume the angle @ is
sma

Fig. P1.7

Solution
The equation of motion is derived in 2 methods. One based on the force method and the second is based on

energy method. In both method we assume there is no damping in the system and no friction nor air resistance.

First method
First draw a free body diagram showing forces acting on pendulum mass, which are the weight W and the

0

tension 7 in the cord.

C

w

Free Body Diagram of Pendulum

Next resolve the forces parallel and perpendicular to the direction of motion as follows



bl -
ma, = Wsin@

2(¢ .
Where «; is the tangential acceleration and m is the mass of the pendulum bob. Since @, = d dt(‘z‘) where s is an

arc length, and s = L0 when 6 is in radians, hence a;, = L”fjf =16

So applying Newton second law of motion along the tangential direction we obtain

Y F; = ma,
—Wsin@ = mL6

Where the minus sign is due to the fact that force acts in the direction opposite to increasing 6.
But W = mg hence

—gsinf =16
é+%ﬁn9:0

This is the second order differential equation of motion we need to solve. This ODE is non-linear in 6.

Assuming 0 is small, and since sinf = 6 — %T 4 .-+, hence we see that for small 8, sin0 ~ 0, we the ODE
becomes

6+=6=0
+L

This is free vibration undamped motion. Assume the solution is 6 (f) = Ae?’, we obtain the characteristic
equation
8
AP+2=0
+ L
which has solution A = :l:i\/% , Hence the solution is
This has the solution
0 (t) = AcosAtr+ BsinAt

Now we find A, B from initial conditions. att =0,| 6p=A | andatr=0,0,=BA=| B= %

Hence the natural frequency

con:\/%




Hence the general solution is

0 (1) = 6ycos w,t + %")1 sin ,?

Let C = VA% + B2, and ¢ = arctan %, the solution can also be written as

0 (1) = Csin (.t + ¢)

We see that the natural frequency @, of the bob is

8
o ff

And it does not depend on the mass of the bob.

Second method

Here is another derivation. Since there is no damping in the system then the energy of the system £ = PE +KE
is constant.

But PE = mgh, where h is the height above the reference level. Taking the reference level when the bob is at
the lowest point, we see that at any instance of time h = L —Lcos 6 = L (1 —cos0)

[cos@

w

And the KE any that moment is given by $mv?, but v = L, hence KE = 1m (19)2, Hence we obtain the
energy as

1 .
E =mgL(1 —cosG)—i—Em (LG)2

Since E is constant, then ‘% =0, hence

g0sin@+L66 =0
(8 . s\
6 (Zsme—i—O) )

We have 2 solution. Ignoring the solution that & = 0 since this is trivial. We obtain the same ODE as above
which is

é+§sin6:0

The advantage of the derivation based on energy is that one is working with scalar quantities, hence one does
not need to worry about sign of forces and direction of motion as one would with the force method.



3 Problem224

Problem 2.4

It is observed experimentally that the amplitude of free vibration of a certain
structure, modeled as a single degree-of-freedom system, decreases in 10 cycles
from 1 in to 0.4 in. What is the percentage of critical damping?

Solution
Since

uj
1n( ) = j2n&
Uit j

And since j = 10 in this case (10 cycles), hence

In (“Tlo)
g;— — _ NP/

207
But u; = 1” and u; 19 = .4”, hence
Y
- 20¢
=1.4583 x 1072
Therefore
E~1.5%




4 Problem 2.6

~Problem 2.6
A structure is model
and undamped natural fre
force of 1 kip produced
Determine:
a)
b)
<)
d)

The damped

k=30,000 [b/in
o, = 25 rad/sec

Since viscous damping force is proportional to speed, hence

a) é = é, but

Hence

Hence

b) Since

ed as a damped oscillator having a sprin

quency @ = 25rad/sec. Experime
a rela

The damping ratio &

period 7p.

The logarithmic decrement §,
The ratio between two consecutive amplitudes.

Fy _
1000 (Ib)

~ 1(in/sec)

= 1000 Ib-sec/in

2k

Ccr:
n

~2x30000
25
= 2400 Ib-sec/in

&= o
_ 1000
~ 2400
& =0.41667
T T
D — 1_52

But T = 2 = 3% = 0.25133sec

Hence

g constant k£ = 30 kip/in
ntally it was found that a

tive velocity of 1.0 in/sec in the damping element.

¢, then



0.25133
Tp=——
V1-0.416672

Then

Tp =0.27647 sec

. . _ uj w __2mé
¢)The logarithmic decrement & = In T But In W T e hence
21 x0.41667
v1—-0.416672
Hence
8 =2.8799
c¢)Since
In i _ 1)
Uit
Then
u; _ ea
Uit
— 28799
Hence
M _17.812
Uit
in=é,={cos0,sin6,0}
n= _e_Z = {0707_1}
Veyl = {I’, O,Z}
Veartesian = {X,)%Z}
da= dzd0Oz
x=rcos@
y=rsin6
=12

Given a point pr coordinates in cylindrical v.,; = {r, 8,z}, and if we wish to obtain its coordinates in cartesian
p p Yy Y, s
Veartesian = {%,Y,2}, then use the following transformation rules

x=rcosO
y=rsinf
7=72

Example using Mathematica:
Given a point pr coordinates in cartesian vegesian = {X,,2}, and if we wish to obtain its coordinates cylindrical
Veyi = {1, 0,2}, then use the following transformation rules



If2§=| Meeds["Calculus VectorBnalysis "]
ptInCylindrical = {r, €, 2};
ptInCartesian - CoordinatesToCartesian [ptInCylindrical , Cylindrical]

Oudf25=| {xCos [8], r&in [5], =}

Needs["Calculus VectorBnaly=sis "]

ptInCartesian = {x, v, 2};
ptInCylinderical = CocrdinatesFranCartesian [ptInCartesian, Cylindrical]

Cet[10= -[’\n'-'xz +y?, BrcTan [x, v], z]-

r=/x%+y?
6 = tan! (X)

X
=z

Example using Mathematica:
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