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1 Problem 2.10

Consider the system described by

y′′ + 2y′ − 3y = u′ − u

What are the transfer function and the impulse response of the system?
Answer
The transfer function is defined as the ratio of the Laplace transform of the output to the laplace

transform of the input assuming zero initial conditions. i.e. assume that y′ (0−) = 0, y (0−) = 0,
u (0−) = 0

Taking the laplace transform of the above differential equation we obtain

s2Y (s) + 2sY (s) − 3Y (s) = sU (s) − U (s)

Y (s)
(
s2 + 2s− 3

)
= U (s) (s− 1)

Y (s)

U (s)
=

s− 1

s2 + 2s− 3

=
s− 1

(s− 1) (s+ 3)

=
1

s+ 3

Hence

G (s) =
Y (s)

U (s)
=

1

s+ 3

Hence the impulse response is the inverse laplace transform of G (s), which is for this simple case
can written directly

g (t) = e−3t

Note: the above solution is valid for t ≥ 0. For t < 0 the impulse response is zero.

1



2 Problem 2.15 part(a)

Find state space equations to describe the pendulum system in following figure. Write down the
linearized dynamic equations and the transfer function from u (t) to θ (t)

Answer
The general state space representation for this system is

ẋ (t) = h (x, u, t) (1)

y (t) = f (x, u, t)

To simplify notations, I will not list time as an independent variables since it is implicit in x and
u in this problem.

Now, assume we have a nominal solution x0 and a nominal input u0 and let the perturbation
from these be x̄ and ū respectively. Hence (1) can be written as

ẋ (t) = h (x0 + x̄, u0 + ū) = h (x0, u0) + x̄
∂h (x, u)

∂x

∣∣∣∣
x0,u0

+ ū
∂h (x, u)

∂u

∣∣∣∣
x0,u0

(2)

y (t) = f (x0 + x̄, u0 + ū) = f (x0, u0) + x̄
∂f (x, u)

∂x

∣∣∣∣
x0,u0

+ ū
∂f (x, u)

∂u

∣∣∣∣
x0,u0

Now pick a nominal solution when the system is in its stable equilibrium position (when the
pendulum is hanging down at rest).

Hence x0 = 0 and u0 = 0. For this state and input we obtain h (x0, u0) = 0 since ẋ0 (t) = 0 as
there is no state change with time, also we obtain that f (x0, u0) = 0 since y0 (t) since the mass is
not moving. Hence (2) becomes
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ẋ (t) = x̄
∂h (x, u)

∂x

∣∣∣∣
x0,u0

+ ū
∂h (x, u)

∂u

∣∣∣∣
x0,u0

(3)

y (t) = x̄
∂f (x, u)

∂x

∣∣∣∣
x0,u0

+ ū
∂f (x, u)

∂u

∣∣∣∣
x0,u0

Now since x̄ = x− x0 and x0 = 0 then x̄ = x
Similarly, ū = u− u0 and u0 = 0 then ū = u hence (3) can be written as

ẋ (t) = x (t)
∂h (x, u)

∂x

∣∣∣∣
x0,u0

+ u (t)
∂h (x, u)

∂u

∣∣∣∣
x0,u0

(4)

y (t) = x (t)
∂f (x, u)

∂x

∣∣∣∣
x0,u0

+ u (t)
∂f (x, u)

∂u

∣∣∣∣
x0,u0

Hence we just need to evaluate ∂h(x,u)
∂x

∣∣∣
x0,u0

, ∂h(x,u)
∂u

∣∣∣
x0,u0

, ∂f(x,u)
∂x

∣∣∣
x0,u0

, ∂f(x,u)
∂u

∣∣∣
x0,u0

to obtain

the linearized solution.
Since there are 2 states in this system and one input we obtain

∂h (x, u)

∂x
=


∂h1(x,u)

∂x1

∂h1(x,u)
∂x2

∂h2(x,u)
∂x1

∂h2(x,u)
∂x2


∂h (x, u)

∂u
=


∂h1(x,u)

∂u

∂h2(x,u)
∂u


∂f (x, u)

∂x
=

(
∂f(x,u)
∂x1

∂f(x,u)
∂x2

)
∂f (x, u)

∂u
=

(
∂f (x, u)

∂u

)
(5)

Now we need to find h1, h2, f and substitute these into (5) and then into (4) to find the solution.
First find the dynamic equation for this system. The forces on the mass are
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Applying Newton second law F = ma, along the direction tangent to the motion we get

u (t) cos θ (t) −mg sin θ (t) = mLθ̈ (t)

Hence

θ̈ (t) =
1

mL
u (t) cos θ (t) − g

L
sin θ (t)

Now convert to state space. Let x1 = θ and x2 = θ̇.
Hence

ẋ1 = x2

and

ẋ2 = θ̈ =
1

mL
u (t) cos θ (t) − g

L
sin θ (t)

=
1

mL
u (t) cosx1 −

g

L
sinx1

Hence we can write ẋ1

ẋ2

 =

 h1 (x1, x2, u)

h2 (x1, x2, u)

 =

 x2

1
mLu (t) cosx1 − g

L sinx1

 (6)
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Now for the output equation:

y = θ

= x1

Hence
y = f (x, u) = (x1)

Now that we know h1, h2, f , we can go back to (5) and evaluate that, we obtain

∂h (x, u)

∂x
=

 0 1

− 1
mLu (t) sinx1 − g

L cosx1 0


∂h (x, u)

∂u
=

 0

1
mL cosx1


∂f (x, u)

∂x
=

(
1 0

)
∂f (x, u)

∂u
= (0) (7)

Now to obtain the solution (4) we need to evaluate (7) at the nominal solution x0, u0 and these
are zero, i.e. x1 = x1,0 = 0, x2 = x2,0 = 0, u = u0 = 0 then (7) becomes

∂h (x, u)

∂x
=

 0 1

− g
L 0


∂h (x, u)

∂u
=

 0

1
mL


∂f (x, u)

∂x
= 1

∂f (x, u)

∂u
= 0 (8)

Hence, substitute (8) into (4) we obtain the final linearized solution

ẋ (t) =

 0 1

g
L 0

x (t) +

 0

1
mL

u (t) (9)

y (t) =

(
1 0

)
x (t) + (0) u (t)
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The above is the linearized solution. Where

A =

 0 1

− g
L 0



B =

 0

1
mL


C =

(
1 0

)
D = (0)

The transfer function is

G (s) = C (sI −A)−1B +D

=

(
1 0

)sI −
 0 1

− g
L 0



−1 0

1
mL



=

(
1 0

)
 s 0

0 s

−

 0 1

− g
L 0



−1 0

1
mL



=

(
1 0

) s −1

g
L s


−1 0

1
mL


but

 s −1

g
L s


−1

=
Adjoint(A)

Det(A)
=

 s − g
L

1 s


T

∣∣∣∣∣∣∣∣
s −1

g
L s

∣∣∣∣∣∣∣∣
=

 s 1

− g
L s


s2 + g

L

Hence
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G (s) =
1

s2 + g
L

(
1 0

) s 1

− g
L s


 0

1
mL



=
1

s2 + g
L

(
s 1

) 0

1
mL


=

1
mL

s2 + g
L

=
1

mLs2 +mg

=
1

m (Ls2 + g)
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