HW 6, EECS 203A
Problem 5.16, Digital Image Processing, 2nd edition by Gonzalez, Woods.
Nasser Abbasi, UCI. Fall 2004

Question

Consider a linear position-invariant image degradation system with impulse response $h(x-\alpha, y-\beta)=$ $e^{-\left[(x-\alpha)^{2}+(y-\beta)^{2}\right]}$ Suppose that the input to the system is an image consisting of a line of infinitesimal width located at $x=a$ and modeled by $f(x, y)=\delta(x-a)$ where δ is the impulse. Assuming no noise, find the output image $g(x, y)$

Solution

In general,

$$
g(x, y)=h(x, y) \circledast f(x, y)+\eta(x, y)
$$

where $\eta(x, y)$ is the noise. Hence since $\eta(x, y)=0$, we have

$$
g(x, y)=h(x, y) \circledast f(x, y)
$$

Now, I can solve this using spatial domain (convolution), or solve in Fourier transform domain, then inverse transform to get $g(x, y)$. I'll try the direct spatial approach:

$$
h(x, y) \circledast f(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(x, y) h(x-m, y-n)
$$

where M, N are the dimensions of the image $f(x, y)$
Since $f(x, y)=\delta(x-a)$ then only when $x=a$, that we get a non-zero value for the the output image. At all other values for $x, g(x, y)=0$
Hence

$$
\begin{aligned}
& g(x, y)=h(x, y) \circledast f(x, y) \\
& g(a, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} 1 \times h(a-m, y-n)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} h(a-m, y-n)
\end{aligned}
$$

Since $h(x-\alpha, y-\beta)=e^{-\left[(x-\alpha)^{2}+(y-\beta)^{2}\right]}$, then Substitute $h(a-m, y-n)=e^{-\left[(a-m)^{2}+(y-n)^{2}\right]}$ we get

$$
\begin{aligned}
g(a, y) & =\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-\left[(a-m)^{2}+(y-n)^{2}\right]}=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-(a-m)^{2}} e^{-(y-n)^{2}} \\
& =\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-\left(a^{2}+m^{2}-2 a m\right)} e^{-\left(y^{2}+n^{2}-2 n y\right)} \\
& =\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-a^{2}} e^{-m^{2}+2 a m} e^{-y^{2}} e^{-n^{2}+2 n y}=e^{-a^{2}} e^{-y^{2}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-m^{2}+2 a m} e^{-n^{2}+2 n y} \\
& =e^{-\left(a^{2}+y^{2}\right)} \sum_{m=0}^{M-1} e^{-\left(m^{2}-2 a m\right)} \sum_{n=0}^{N-1} e^{-\left(n^{2}-2 n y\right)}
\end{aligned}
$$

How to evaluate these sums?
Since we are told that the input image is of infinitesimal width, then this means we can consider the sum $\sum_{n=0}^{N-1} e^{-\left(n^{2}-2 n y\right)}$ to have only one point. i.e. $\sum_{n=0}^{0} e^{-\left(n^{2}-2 n y\right)}=1$ so

$$
g(a, y)=e^{-\left(a^{2}+y^{2}\right)} \sum_{m=0}^{M-1} e^{-\left(m^{2}-2 a m\right)}
$$

To continue, best I could do is to look up the tables for integrals, and use the results for $\int_{0}^{k} e^{-\left(m^{2}-2 m a\right)} d m=\frac{1}{2} e^{a^{2}} \sqrt{\pi}(\operatorname{erf}(k-a)+\operatorname{erf}(a))$ where erf is the error function defined as $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$
Hence, using these, we get

$$
g(a, y)=e^{-\left(a^{2}+y^{2}\right)} \frac{1}{2} e^{a^{2}} \sqrt{\pi}(\operatorname{erf}(M-1-a)+\operatorname{erf}(a))
$$

Since M, a are constants, then $\operatorname{erf}(M-1-a)+\operatorname{erf}(a)$ is a constant, call it k

$$
k=\operatorname{erf}(M-1-a)+\operatorname{erf}(a)
$$

Then $g(a, y)=e^{-\left(a^{2}+y^{2}\right)} \frac{1}{2} e^{a^{2}} k \quad=\frac{k}{2} e^{-y^{2}}=A e^{-y^{2}}$ where A new constant $=k / 2$

$$
g(x, y)=\left\{\begin{array}{cc}
A e^{-y^{2}} & x=a \\
0 & x \neq a
\end{array}\right.
$$

Notice that g is a function of a as well, since constant A value depends on a via the equation given above for k

