HW3, Problem 3.7. EECS 203A. UCI. Fall 2004

Nasser Abbasi

When performing any of these arithmetic operations on the images, we do it pixel by pixel. i.e. when we add image f to image g we are adding the gray level at pixel i image f to the gray level at pixel i in image g. In all these case I assume the images are of the same size.

This problem gave a very hard time. At first I thought that we need to put conditions on the probability distribution of gray levels in each image. But even if p_f and p_g are both uniform, I can not say that the probability distribution of image f + g will be uniform. So I am putting conditions instead on the image itself

(a) f + g: It is possible to find histogram of f + g in terms of h_g and h_f under any one of these conditions:

1. f = g (i.e two images are same size and same gray level) Steps to find histogram h_{f+g} for this condition: For each peak in h_g at gray level *i* move it to the right to gray level 2 *i* The result is h_{f+g}

2. f is a binary image (2 gray levels only), and g is the binary inverse image of f (i.e. if pixel i is 0 in image f then the same pixel i is 1 in image g)

Steps to find histogram h_{f+g} for this condition:

 h_{f+g} will have one peak, at gray level 1 that is twice as large (twice the frequency) as peak of gray level 1 (or 0) in h_g (or h_f)

3. $g = N \times f$ where N is some integer. i.e. the images differ from each others only by the intensity level. i.e. h_g peaks are shifted to the right version of h_f peaks and the peaks in h_g are spread out.

Steps to find histogram h_{f+g} for this condition:

Starting from left to right in h_f , number each peak. Call this number n = 1..K where K is the total number of peaks. Both h_g and h_f will have the same K but will be located at different gray levels.

Then For each peak n in h_f , with gray level $h_f(n)$ add a new peak in h_{f+g} with same height (frequency) as peak n, but at a gray level of $h_f(n) + N h_f(n)$

(b) f - g This case is the same as case (a), since we can let g' = -g and then consider f + g', where g' is the negative of image g

(c) $f \times g$ It is possible to find histogram of f + g in terms of h_g and h_f under any one of these conditions:

1. f = g (i.e two images are same size and same gray level).

To build the histogram h_{f+g} do:

Starting from left to right in h_f , number each peak. Call this number n = 1..K where K is the number of peaks.

Both h_g and h_f will have the same K since the same image.

Then For each peak n in h_f , with gray level $h_f(n)$ build a new peak in h_{f+g} with same height (frequency) as peak n, but at

gray level shifted to the right to new gray level of $h_f(n) \times h_f(n)$

2. f is a binary image (2 gray levels only), and g is the binary inverse image of f (i.e. if pixel i is 0 in image f then the same pixel i is 1 in image g).

Then histogram h_{f+g} will be one peak at gray level 0 (all black image)

(d) $f \div g$ It is possible to find histogram of f + g in terms of h_g and h_f under any one of these conditions:

1. f = g (i.e two images are same size and same gray level).

The histogram h_{f+g} in this case will be all at one gray level 1. (All black) (Assuming black is at gray level 1.) If Black is at gray level 0 and white at 255, then it is not possible to divide any 2 images with each others since we will get a divide by zero error.

2. Can not divide binary images (assuming we assign 0 and 1 for the gray level)