HW3, Problem 3.7. EECS 203A. UCI. Fall 2004

Nasser Abbasi

When performing any of these arithmetic operations on the images, we do it pixel by pixel. i.e. when we add image f to image g we are adding the gray level at pixel i image f to the gray level at pixel i in image g. In all these case I assume the images are of the same size.

This problem gave a very hard time. At first I thought that we need to put conditions on the probability distribution of gray levels in each image. But even if p_{f} and p_{g} are both uniform, I can not say that the probability distribution of image $f+g$ will be uniform. So I am putting conditions instead on the image itself
(a) $f+\boldsymbol{g}$: It is possible to find histogram of $f+g$ in terms of h_{g} and h_{f} under any one of these conditions:

1. $f=g \quad$ (i.e two images are same size and same gray level)

Steps to find histogram h_{f+g} for this condition:
For each peak in h_{g} at gray level i move it to the right to gray level $2 i$
The result is h_{f+g}
2. f is a binary image (2 gray levels only), and g is the binary inverse image of f (i.e. if pixel i is 0 in image f then the same pixel i is 1 in image g)
Steps to find histogram h_{f+g} for this condition:
h_{f+g} will have one peak, at gray level 1 that is twice as large (twice the frequency) as peak of gray level 1 (or 0) in h_{g} (or h_{f})
3. $g=N \times f$ where N is some integer. i.e. the images differ from each others only by the intensity level. i.e h_{g} peaks are shifted to the right version of h_{f} peaks and the peaks in h_{g} are spread out.
Steps to find histogram h_{f+g} for this condition:
Starting from left to right in h_{f}, number each peak. Call this number $n=1 . . K$ where K is the total number of peaks.
Both h_{g} and h_{f} will have the same K but will be located at different gray levels.
Then For each peak n in h_{f}, with gray level $h_{f}(n)$ add a new peak in h_{f+g} with same height (frequency) as peak n, but at a gray level of $h_{f}(n)+N h_{f}(n)$
(b) $\boldsymbol{f}-\boldsymbol{g}$ This case is the same as case (a), since we can let $g^{\prime}=-g$ and then consider $f+g^{\prime}$, where g^{\prime} is the negative of image g
(c) $\boldsymbol{f} \times \boldsymbol{g}$ It is possible to find histogram of $f+g$ in terms of h_{g} and h_{f} under any one of these conditions:

1. $f=g \quad$ (i.e two images are same size and same gray level).

To build the histogram h_{f+g} do:
Starting from left to right in h_{f}, number each peak. Call this number $n=1 . . K$ where K is the number of peaks.
Both h_{g} and h_{f} will have the same K since the same image.
Then For each peak n in h_{f}, with gray level $h_{f}(n)$ build a new peak in h_{f+g} with same height (frequency) as peak n, but at
gray level shifted to the right to new gray level of $h_{f}(n) \times h_{f}(n)$
2. f is a binary image (2 gray levels only), and g is the binary inverse image of f (i.e. if pixel i is 0 in image f then the same pixel i is 1 in image g).
Then histogram h_{f+g} will be one peak at gray level 0 (all black image)
(d) $\boldsymbol{f} \div \boldsymbol{g}$ It is possible to find histogram of $f+g$ in terms of h_{g} and h_{f} under any one of these conditions:

1. $f=g$ (i.e two images are same size and same gray level).

The histogram h_{f+g} in this case will be all at one gray level 1. (All black) (Assuming black is at gray level 1.)
If Black is at gray level 0 and white at 255 , then it is not possible to divide any 2 images with each others since we will get a divide by zero error.
2. Can not divide binary images (assuming we assign 0 and 1 for the gray level)

