HW1, EECS 203A Fall 2004. UCI by Nasser Abbasi

Problem 2.10 statment

2.16 High-definition television (HDTV) generates images with a resolut horizontal TV lines interlaced (where every other line is painted on th in each of two fields, each field being 1/60th of a second in duration). to-height aspect ratio of the images is 16:9. The fact that the borizons distinct fixes the vertical resolution of the images. A company has d image capture system that generates digital images from HDTV imag olution of each TV (horizontal) line in their system is in proportion to olution, with the proportion being the width-to-height ratio of the in pixel in the color image has 24 bits of intensity resolution, 8 bits each green, and a blue image. These three "primary" images form a color i many bits would it take to store a 2-hour HDTV program?

Problem 2.10 solution

First calculate the number of pixels in each frame.

Number of vertical lines
$$=$$
 $\frac{16}{9}$ number of horizontal lines $=$ $\frac{16}{9}1125$ $=$ 2000

Since this is interlaced, then one frame is made up of two fields each is $\frac{1125}{2} \times 2000$ pixels, and each is $\frac{1}{60}$ seconds long. (2 fields make up one frame)

Hence number of pixels in $\frac{1}{30}$ seconds = $2 \times \frac{1125}{2} \times 2000 = 2,250,000$ pixels Hence number of pixels in one second (using 30 fps) = $30 \times 2250000 = 67500000$ pixels

Then using 24 bits per pixel, we get $67500000 \times 24 = 1620000000$ bits/second.

Then 2 hrs will require $1620\,000\,000 \times 2 \times 60 \times 60 = 11,\,664\,,000\,,000\,,000\,,000$ bits or $\frac{11664\,000\,000\,000}{8} = \boxed{1,458,\,000,\,000\,,000\,\,\text{bits}} = \frac{1458\,000\,000\,000}{8} = 182,\,250\,,000\,,000\,\,\text{bytes}^1$

¹This is about 180 GBytes. MPEG-2 compression (1:50) this will go down to 3.6 GB (enough to fit on one DVD disk)

HW1, Problem 2.19

ECS 203A.

Nasser Abbasi

Problem:

Show that an operator that computes median of a subinage area S is nonlinear.

Solution:

An operator F is linear if

$$F\left[\alpha S_1 + \beta S_2\right] = \alpha F\left[S_1\right] + \beta F\left[S_2\right]$$

To show that median is nonlinear operator, only need to provide one example of such case.

Conside image S_1 given by $\{2,4,1\}$ and S_2 given by $\{6,5,9\}$

Let $\alpha = 1$ and $\beta = 1$ (since definition is valid for any scalars α, β)

Apply the median operator on S_1 and S_2

$$\alpha F[S_1] = F[S_1] = F\{2, 4, 1\} = 2$$

 $\alpha F[S_2] = F[S_2] = F\{6, 5, 9\} = 5$
So

$$\alpha F[S_1] + \beta F[S_2] = 2 + 5 = 7$$
 (1)

Now add the two images togother (addition is by element to element) we get $S_1+S_2=\{2,4,1\}+\{6,5,9\}=\{8,9,10\}$

$$F[\alpha S_1 + \beta S_2] = F[S_1 + S_2] = F\{8, 9, 10\} = 8$$
(2)

Compare (1) and (2) above we see they not equal.

Hence the operator \digamma (median) is not linear.