HW1, EECS 203A
Fall 2004. UCI
by Nasser Abbasi

Problem 2.10 statment

2.10 High-definition television (HDTV) generates images with a resoluti
hovizontal TV lines interfaced (where every other line is painted on th
in each of two fielde each field being $1 / 60$ th of a second in duration).
fo-height aspect ratio of the images is 16:9. The fact that the brerizont
distinct fixes the vertical resolution of the images. A company has d
image capture system that generates digital images from HDTV imag
olution of cach TV (horiwontal) line in theit systent is in proportion to'
olution, with the proportion being the width-lo-height ratio of the in
pixel in the color image has 24 bis of intensity resolution, 8 bits eact
green, and a blue inage. These three -primary" images form a color i
many bits would it take tostore a 2 -hour HDTV program?

Problem 2.10 solution

First calculate the number of pixels in each frame.

$$
\begin{aligned}
\text { Number of vertical lines } & =\frac{16}{9} \text { number of horizontal lines } \\
& =\frac{16}{9} 1125 \\
& =2000
\end{aligned}
$$

Since this is interlaced, then one frame is made up of two fields each is $\frac{1125}{2} \times 2000$ pixels, and each is $\frac{1}{60}$ seconds long. (2 fields make up one frame)
Hence number of pixels in $\frac{1}{30}$ seconds $=2 \times \frac{1125}{2} \times 2000=2,250,000$ pixels
Hence number of pixels in one second (using 30 fps) $=30 \times 2250000=67500000$ pixels
Then using 24 bits per pixel, we get $67500000 \times 24=1620000000$ bits/second.
Then 2 hrs will require $1620000000 \times 2 \times 60 \times 60=11,664,000,000,000$ bits or $\frac{11664000000000}{8}=1,458,000,000,000$ bits $=\frac{1458000000000}{8}=182,250,000,000$ bytes 1

[^0]HW1, Problem 2.19
ECS 203A.
Nasser Abbasi
Problem:
Show that an operator that computes median of a subinage area S is nonlinear.
Solution:
An operator \digamma is linear if

$$
\digamma\left[\alpha S_{1}+\beta S_{2}\right]=\alpha \digamma\left[S_{1}\right]+\beta \digamma\left[S_{2}\right]
$$

To show that median is nonlinear operator, only need to provide one example of such case.
Conside image S_{1} given by $\{2,4,1\}$ and S_{2} given by $\{6,5,9\}$
Let $\alpha=1$ and $\beta=1$ (since definition is valid for any scalars α, β)
Apply the median operator on S_{1} and S_{2}
$\alpha \digamma\left[S_{1}\right]=\digamma\left[S_{1}\right]=\digamma\{2,4,1\}=2$
$\alpha \digamma\left[S_{2}\right]=\digamma\left[S_{2}\right]=\digamma\{6,5,9\}=5$
So

$$
\begin{equation*}
\alpha \digamma\left[S_{1}\right]+\beta \digamma\left[S_{2}\right]=2+5=7 \tag{1}
\end{equation*}
$$

Now add the two images togother (addition is by element to element) we get $S_{1}+S_{2}=\{2,4,1\}+\{6,5,9\}=\{8,9,10\}$
So

$$
\begin{equation*}
\digamma\left[\alpha S_{1}+\beta S_{2}\right]=\digamma\left[S_{1}+S_{2}\right]=\digamma\{8,9,10\}=8 \tag{2}
\end{equation*}
$$

Compare (1) and (2) above we see they not equal.
Hence the operator \digamma (median) is not linear.

[^0]: ${ }^{1}$ This is about 180 GBytes. MPEG-2 compression (1:50) this will go down to 3.6 GB (enough to fit on one DVD disk)

