

HW#4

EECS 152A, Digital Signal processing

UCI. Fall 2004

By Nasser Abbasi

HW 4, EECS 152A

Problem 4.5, Nasser Abbasi

Question

consider signal $x(n) = 2 + 2\cos\frac{\pi n}{4} + \cos\frac{\pi n}{4} + \frac{1}{2}\cos\frac{3\pi n}{4}$

(a) Determine and sketch its power density spectrum

(b) Evaluate the power of the signal.

Solution

(a) I will use these relations for this problem: $\cos \frac{\pi}{3} = \frac{1}{2}$, $\cos \frac{2\pi}{3} = -\frac{1}{2}$, $\sin \frac{\pi}{3} = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$, $\cos x = \frac{e^{jx} + e^{-jx}}{2}$

$$x(n) = 2 + 2\cos\frac{\pi n}{4} + \cos\frac{\pi n}{4} + \frac{1}{2}\cos\frac{3\pi n}{4}$$

First find the period. For the second term $2\cos\frac{\pi n}{4}$, we get $\frac{\pi n}{4} \equiv 2\pi f n$ hence $f = \frac{1}{8}$ hence periodic (since rational) and period is 8.

For the third term $\cos\frac{\pi n}{4}$, same period. For the 4th term $\cos\frac{3\pi n}{4}$, we get $\frac{3\pi n}{4}\equiv 2\pi f n$ hence $f=\frac{3}{8}$, hence rational, hence period. Since lowest common multiplier allready, then period is 8.

Hence the period of x(n) is 8.

Hence x(n) can be written as $x(n) = 2 + 2\cos\frac{2\pi}{8}n + \cos\frac{2\pi}{8}n + \frac{1}{2}\cos\frac{2\pi}{8}3n$

Expand in complex exponentials we get

$$\begin{array}{ll} x(n) & = & 2 + 2\left(\frac{e^{j\frac{2\pi}{8}n} + e^{-j\frac{2\pi}{8}n}}{2}\right) + \left(\frac{e^{j\frac{2\pi}{8}n} + e^{-j\frac{2\pi}{8}n}}{2}\right) + \frac{1}{2}\left(\frac{e^{j\frac{2\pi}{8}3n} + e^{-j\frac{2\pi}{8}3n}}{2}\right) \\ & = & 2 + e^{j\frac{2\pi}{8}n} + e^{-j\frac{2\pi}{8}n} + \frac{1}{2}e^{j\frac{2\pi}{8}n} + \frac{1}{2}e^{-j\frac{2\pi}{8}n} + \frac{1}{4}e^{j\frac{2\pi}{8}3n} + \frac{1}{4}e^{-j\frac{2\pi}{8}3n} \end{array}$$

Now convert all exponentials to the 'positive' side, so I can compare later with the IDFT. Using the periodicty of complex exponential, we know that

Hence
$$e^{-j\frac{2\pi}{8}n} = -e^{j\frac{2\pi}{8}n}$$

$$x(n) = 2 + e^{j\frac{2\pi}{8}n} - e^{j\frac{2\pi}{8}3n} + \frac{1}{2}e^{j\frac{2\pi}{8}n} - \frac{1}{2}e^{j\frac{2\pi}{8}3n} + \frac{1}{4}e^{j\frac{2\pi}{8}3n} - \frac{1}{4}e^{j\frac{2\pi}{8}n} = 2 + \frac{5}{4}e^{j\frac{2\pi}{8}n} - \frac{7}{4}e^{j\frac{2\pi}{8}3n} \times$$

Now we know that IDFT is of the form

$$x(n) = \sum_{k=0}^{N-1} c(k)e^{j2\pi n \frac{k}{N}}$$

Hence by comparing term by term we see by inspection that

$$c(0) = 2$$

$$c(1) = \frac{5}{4}$$

$$c(3) = -\frac{7}{4}$$

And since c(k) will have the same period as x(n) we then write

$$c(k) = \{2, \frac{5}{4}, 0, -\frac{7}{4}, 0, 0, 0, 0\}$$

$$|c(k)|^2 = \{4, \frac{20}{16}, 0, \frac{49}{16}, 0, 0, 0, 0\}$$

So power density spectrum is $|c(k)|^2 = \{4, \frac{20}{16}, 0, \frac{49}{16}, 0, 0, 0, 0\}$. This-is-a-sketch of the power spectrum. y-axes is $|c(k)|^2$, and x-axis is k.

(b) Power of signal is given by

$$\sum_{k=0}^{N-1} |c(k)|^2 = 4 + \frac{20}{16} + 0 + \frac{49}{16} = 8.3125$$

HW 4, EECS 152A

Problem 4.7 part(a), Nasser Abbasi

Question

Determine the periodic signal x(n) with fundamental period N=8 if their fourier coefficients are given by

(a)
$$c(k) = \cos\frac{k\pi}{4} + \sin\frac{3k\pi}{4}$$

Solution

(a) I will use these relations for this problem $\cos x = \frac{e^{jx} + e^{-jx}}{2}, \sin x = \frac{e^{jx} - e^{-jx}}{2i}$

$$c(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi \frac{n}{N}k}$$
 (1)

Expand given c(k) in terms of complex exponentials, and compare terms to find x(n)

$$c(k) = \cos\frac{k\pi}{4} + \sin\frac{3k\pi}{4}$$

$$= \cos\frac{2\pi}{8}k + \sin\frac{2\pi}{8}3k$$

$$= \frac{e^{j\frac{2\pi}{8}k} + e^{-j\frac{2\pi}{8}k}}{2} + \frac{e^{j\frac{2\pi}{8}3k} - e^{-j\frac{2\pi}{8}3k}}{2j}$$

$$= \frac{1}{2}e^{j\frac{2\pi}{8}k} + \frac{1}{2}e^{-j\frac{2\pi}{8}k} + \frac{1}{2j}e^{j\frac{2\pi}{8}3k} - \frac{1}{2j}e^{-j\frac{2\pi}{8}3k}$$
(2)

Now write all the exponentials in 'negative' terms, so I can compare with (1). Using periodicty property, $e^{j\frac{2\pi}{8}\ k}=-e^{-j\frac{6\pi}{8}\ k}=-e^{-j\frac{2\pi}{8}\ 3k}$ and $e^{j\frac{2\pi}{8}3k}=e^{j\frac{6\pi}{8}k}=-e^{-j\frac{2\pi}{8}k}$

Hence (2) can be rewritten as

$$c(k) = -\frac{1}{2}e^{-j\frac{2\pi}{8} 3k} + \frac{1}{2}e^{-j\frac{2\pi}{8} k} - \frac{1}{2j}e^{-j\frac{2\pi}{8} k} - \frac{1}{2j}e^{-j\frac{2\pi}{8} 3k}$$
$$= e^{-j\frac{2\pi}{8} 3k} \left(-\frac{1}{2} - \frac{1}{2j}\right) + e^{-j\frac{2\pi}{8}} \left(\frac{1}{2} - \frac{1}{2j}\right)$$

Hence we see that $x(1) = 8\left(\frac{1}{2} - \frac{1}{2j}\right)$ and $x(3) = 8\left(-\frac{1}{2} - \frac{1}{2j}\right)$ Can also be written as x(1) = (4+4j) and x(3) = (-4+4j) or

Hence

$$x(n) = \{0, (4+4j), 0, (-4+4j), 0, 0, 0, 0\}$$

HW 4, EECS 152A

Problem 4.9 part(a,b,c), Nasser Abbasi

Question

Compute Fourier transform for the following

$$(a)x(n) = u(n) - u(n-6)$$

$$(b)x(n) = 2^n u(-n)$$

$$(c)x(n) = \frac{1}{4}^n u(n+4)$$

Solution

using the Fourier transform for a discrete aperiodic sequence given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$$

(a) here
$$x(n) = \{\hat{1}, 1, 1, 1, 1, 0, 0, \dots\}$$

Hence

$$X(\omega) = \sum_{n=0}^{5} e^{-j\omega n} = 1 + e^{-j\omega} + e^{-j2\omega} + e^{-j3\omega} + e^{-j4\omega} + e^{-j5\omega}$$

(b)

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n} = \sum_{n = -\infty}^{0} 2^{n} e^{-j\omega n} = \sum_{0}^{\infty} 2^{-n} e^{j\omega n} = \sum_{0}^{\infty} \left(\frac{e^{j\omega}}{2}\right)^{n} = \boxed{\frac{1}{1 - \frac{e^{j\omega}}{2}}}$$

(c)
$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} = \sum_{n=-4}^{\infty} \frac{1}{4}^n e^{-j\omega n} = \sum_{n=-4}^{-1} \frac{1}{4}^n e^{-j\omega n} + \sum_{0}^{\infty} 2^{-n} e^{j\omega n}$$

$$X(\omega) = \left(\frac{1}{4}^{-4} e^{4\omega j} + \frac{1}{4}^{-3} e^{3\omega j} + \frac{1}{4}^{-2} e^{2\omega j} + \frac{1}{4}^{-1} e^{\omega j}\right) + \sum_{0}^{\infty} \left(\frac{e^{j\omega}}{4}\right)^{n}$$

$$= \left(\frac{64}{4} e^{4\omega j} + 32 e^{3\omega j} + 16 e^{2\omega j} + 4 e^{\omega j}\right) + \frac{1}{1 - \frac{e^{j\omega}}{4}}$$