Quizz 3

Math 2520
 Differential Equations and Linear Algebra

Summer 2021
 Normandale college, Bloomington, Minnesota.

Nasser M. Abbasi

Contents

1 Problem 1 2
2 Problem 2 5
3 Problem 3 7
4 Problem 4 9

1 Problem 1

Determine whether or not the given matrix A is diagonalizable. If it is find a diagonalizing matrix P and a diagonal matrix D such that $P^{-1} A P=D$

$$
A=\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right]
$$

Solution

The first step is to find the eigenvalues. This is found by solving

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{cc}
3-\lambda & 0 \\
8 & -1-\lambda
\end{array}\right| & =0 \\
(3-\lambda)(-1-\lambda) & =0
\end{aligned}
$$

Hence the eigenvalues are $\lambda_{1}=3, \lambda_{2}=-1$. Since the eigenvalues are unique, then the matrix is diagonalizable. We need to determine the corresponding eigenvector in order to find P
$\lambda_{1}=3$
Solving

$$
\begin{aligned}
{\left[\begin{array}{cc}
3-\lambda_{1} & 0 \\
8 & -1-\lambda_{1}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
3-3 & 0 \\
8 & -1-3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & 0 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Hence $v_{1}=t$ is free variable and v_{2} is base variable. Second row gives $8 t-4 v_{2}=0$ or $v_{2}=2 t$. Therefore the eigenvector is

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Let $t=1$, then

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$\lambda_{2}=-1$
Solving

$$
\begin{aligned}
{\left[\begin{array}{cc}
3-\lambda_{2} & 0 \\
8 & -1-\lambda_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
3+1 & 0 \\
8 & -1+1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
4 & 0 \\
8 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

$R_{2}=R_{2}-2 R_{1}$ gives

$$
\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Hence $v_{2}=t$ is free variable and v_{1} is base variable. First row gives $4 v_{1}=0$ or $v_{1}=0$. Therefore the eigenvector is

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$, then

$$
\vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Now that both eigenvectors are found, then

$$
\begin{aligned}
P & =\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
\end{aligned}
$$

And D is the diagonal matrix of the eigenvalues arranged in same order as the corresponding eigenvectors. (Will verify below). Hence

$$
D=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]
$$

Therefore

$$
\begin{align*}
P^{-1} A P & =D \\
{\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] } & =\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right] \tag{1}
\end{align*}
$$

To verify the above, the LHS of (1) is evaluated directly, to confirm that D is indeed the result and it is diagonal of the eigenvalues. The first step is to find $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]^{-1}$. Since this is 2×2 then

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(P)}\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]
$$

But $\operatorname{det}(P)=1$. The above becomes

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]
$$

Therefore the LHS of (1) becomes

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 \times 3 & 0 \\
-2 \times 3+1 \times 8 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & 0 \\
-6+8 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

And now LHS of (1) becomes

$$
\begin{aligned}
{\left[\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] } & =\left[\begin{array}{cc}
3 & 0 \\
2 \times 1-1 \times 2 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Hence

$$
D=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]
$$

Which confirms D is the matrix whose diagonal elements are the eigenvalues of A.

2 Problem 2

Find the general solution of the homogeneous differential equation $y^{\prime \prime \prime}+y^{\prime}-10 y=0$

Solution

This is a linear 3rd order constant coefficient ODE. Hence the method of characteristic equation will be used. Let the solution be $y=A e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{aligned}
A \lambda^{3} e^{\lambda x}+A \lambda e^{\lambda x}-10 A e^{\lambda x} & =0 \\
A e^{\lambda x}\left(\lambda^{3}+\lambda-10\right) & =0
\end{aligned}
$$

Which simplifies (for non-trivial y) to the characteristic equation which is a polynomial in λ

$$
\lambda^{3}+\lambda-10=0
$$

By inspection, we see that $\lambda=2$ is a root. Therefore a factor of the equation is $(\lambda-2)$. Now doing long division $\frac{\lambda^{3}+\lambda-10}{(\lambda-2)}$ gives $\lambda^{2}+2 \lambda+5$.

Figure 1: Polynmial long division to find remainder

Hence the above polynomial can be written as

$$
\begin{equation*}
(\lambda-2)\left(\lambda^{2}+2 \lambda+5\right)=0 \tag{1}
\end{equation*}
$$

Now the roots for $\left(\lambda^{2}+2 \lambda+5\right)=0$ are found using the quadratic formula.

$$
\begin{aligned}
\lambda & =-\frac{b}{2 a} \pm \frac{1}{2 a} \sqrt{b^{2}-4 a c} \\
& =-\frac{2}{2} \pm \frac{1}{2} \sqrt{4-4 \times 5} \\
& =-1 \pm \frac{1}{2} \sqrt{-16} \\
& =-1 \pm \frac{1}{2}(4 i) \\
& =-1 \pm 2 i
\end{aligned}
$$

Hence the roots of the characteristic equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1+2 i \\
& \lambda_{3}=-1-2 i
\end{aligned}
$$

Therefore the basis solution are $\left\{e^{2 x}, e^{(-1+2 i) x}, e^{(-1-2 i) x}\right\}$ and the general solution is a linear combination of these basis solutions which gives

$$
y=A e^{2 x}+B e^{(-1+2 i) x}+C e^{(-1-2 i) x}
$$

Which can be simplified to

$$
\begin{equation*}
y=A e^{2 x}+e^{-x}\left(B e^{2 i x}+C e^{-2 i x}\right) \tag{2}
\end{equation*}
$$

By using Euler formula, the above can be simplified further as follows

$$
\begin{aligned}
B e^{2 i x}+C e^{-2 i x} & =B(\cos (2 x)+i \sin (2 x))+C(\cos (2 x)-i \sin (2 x)) \\
& =(B+C) \cos (2 x)+\sin (2 x)(i(B-C))
\end{aligned}
$$

Let $(B+C)=B_{0}$ a new constant and let $i(B-C)=C_{0}$ a new constant, the above becomes

$$
B e^{2 i x}+C e^{-2 i x}=B_{0} \cos (2 x)+C_{0} \sin (2 x)
$$

Substituting the above back in (2) gives the general solution as

$$
y=A e^{2 x}+e^{-x}\left(B_{0} \cos (2 x)+C_{0} \sin (2 x)\right)
$$

The constants A, B_{0}, C_{0} can be found from initial conditions if given.

3 Problem 3

Using the method of undermined coefficients, compute the general solution of the given equation $y^{\prime \prime}+3 y^{\prime}+2 y=2 \sin (x)$

Solution

The solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}+3 y^{\prime}+2 y=0$ and y_{p} is a particular solution to the given ODE. The ode $y^{\prime \prime}+3 y^{\prime}+2 y=0$ is linear second order constant coefficient ODE. Hence the method of characteristic equation will be used. Let the solution be $y_{h}=A e^{\lambda x}$. Substituting this into $y^{\prime \prime}+3 y^{\prime}+2 y=0$

$$
\begin{aligned}
A \lambda^{2} e^{\lambda x}+A \lambda 3 e^{\lambda x}+2 A e^{\lambda x} & =0 \\
A e^{\lambda x}\left(\lambda^{2}+3 \lambda+2\right) & =0
\end{aligned}
$$

And for non trivial solution the above simplifies to

$$
\begin{array}{r}
\lambda^{2}+3 \lambda+2=0 \\
(\lambda+1)(\lambda+2)=0
\end{array}
$$

Hence the roots are $\lambda=-1, \lambda=-2$. Therefore the basis solutions for y_{h} are $\left\{e^{-x}, e^{-2 x}\right\}$ and y_{h} is linear combination of these basis. Therefore

$$
\begin{equation*}
y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x} \tag{1}
\end{equation*}
$$

Now y_{p} is found. Since the RHS is $\sin (x)$ then the trial solution is

$$
\begin{equation*}
y_{p}=A \cos (x)+B \sin (x) \tag{2}
\end{equation*}
$$

This shows that the basis for y_{p} are $\{\sin x, \cos x\}$. There are no duplication between these basis and the basis for y_{h}, so no need to multiply by an extra x. Using (2) gives

$$
\begin{align*}
y_{p}^{\prime} & =-A \sin (x)+B \cos (x) \tag{3}\\
y_{p}^{\prime \prime} & =-A \cos (x)-B \sin (x) \tag{4}
\end{align*}
$$

Substituting $(2,3,4)$ back into the given ODE gives

$$
\begin{aligned}
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p} & =2 \sin (x) \\
(-A \cos (x)-B \sin (x))+3(-A \sin (x)+B \cos (x))+2(A \cos (x)+B \sin (x)) & =2 \sin (x) \\
\cos (x)(-A+3 B+2 A)+\sin (x)(-B-3 A+2 B) & =2 \sin (x) \\
\cos (x)(3 B+A)+\sin (x)(-3 A+B) & =2 \sin (x)
\end{aligned}
$$

$\underline{\text { Comparing coefficients on both sides gives two equations to solve for } A, B}$

$$
\begin{array}{r}
3 B+A=0 \\
-3 A+B=2
\end{array}
$$

Multiplying the second equation by -3 gives

$$
\begin{aligned}
3 B+A & =0 \\
9 A-3 B & =-6
\end{aligned}
$$

Adding the above two equations gives $10 A=-6$. Hence $A=-\frac{3}{5}$ and therefore $3 B=\frac{3}{5}$ or $B=\frac{1}{5}$. Substituting these values of A, B into (2) gives

$$
y_{p}=-\frac{3}{5} \cos (x)+\frac{1}{5} \sin (x)
$$

Hence the solution becomes

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} e^{-x}+c_{2} e^{-2 x}\right)+\left(-\frac{3}{5} \cos (x)+\frac{1}{5} \sin (x)\right) \\
& =c_{1} e^{-x}+c_{2} e^{-2 x}-\frac{3}{5} \cos (x)+\frac{1}{5} \sin (x)
\end{aligned}
$$

4 Problem 4

Show that the given vector functions are linearly independent

$$
\vec{x}_{1}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{t}
\end{array}\right] \quad \vec{x}_{2}(t)=\left[\begin{array}{c}
\sin t \\
\cos t
\end{array}\right]
$$

Solution

These functions are defined for all t. Hence domain is $t \in(-\infty, \infty)$. The Wronskian of these vectors is

$$
\begin{aligned}
W(t) & =\left|\begin{array}{cc}
e^{t} & \sin t \\
2 e^{t} & \cos t
\end{array}\right| \\
& =e^{t} \cos t-2 e^{t} \sin t \\
& =e^{t}(\cos t-2 \sin t)
\end{aligned}
$$

We just need find one value t_{0} where $W\left(t_{0}\right) \neq 0$ to show linearly independence. At $t=0$ the above becomes

$$
W(t=0)=1
$$

Therefore the given vector functions are linearly independent. An alternative method is to write

$$
\begin{aligned}
c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t) & =\overrightarrow{0} \\
c_{1}\left[\begin{array}{c}
e^{t} \\
2 e^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\sin t \\
\cos t
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

If the above is true only for $c_{1}=0, c_{2}=0$ then $\vec{x}_{1}(t), \vec{x}_{2}(t)$ are linearly independent. The above can be written as

$$
\left[\begin{array}{cc}
e^{t} & \sin t \\
2 e^{t} & \cos t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$R_{2}=R_{2}-2 R_{1}$

$$
\left[\begin{array}{cc}
e^{t} & \sin t \\
0 & \cos t-2 \sin t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Row two gives

$$
c_{2}(\cos t-2 \sin t)=0
$$

For this to be true for any t in the interval $t \in(-\infty, \infty)$, then only solution is $c_{2}=0$. First row now gives

$$
c_{1} e^{t}=0
$$

But e^{t} is never zero which means $c_{1}=0$.
Since the only solution to $c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}=\overrightarrow{0}$ is $c_{1}=c_{2}=0$, then this shows that \vec{x}_{1}, \vec{x}_{2} are linearly independent.

