Math2520 Calculus IV FINAL EXAM
Instruction:

1. Print this question paper and show the necessary steps on the space provided under each question.
2. If you don't have access to printer, use white paper.
3. Use black ink and write bigger fonts so that it is visible when posted and printed again.
4. Follow the instruction given for each question.
5. You can only post once. So make sure all the pages/questions are posted properly.
6. Post on D2L as one PDF file by July 17, 2021.
7. Write your name on the answer sheet.

MATH2520 CALCULUS 4 FINAL EXAM

Name: \qquad
INSTRUCTION: Show all the necessary steps on the space provided under each question or on a separate sheet.

1. Solve the following system of equations and write the solution as a parametric vector form.

(4 pts)

$$
\begin{aligned}
& x+2 y-3 z=5 \\
& 2 x+y-3 z=13 \\
& -x+y \quad=-8
\end{aligned}
$$

2. Compute the determinant using a cofactor expansion. ($\mathbf{3}$ pts)
$\left|\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right|$
3. Let $A=\left[\begin{array}{ccc}1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6\end{array}\right]$ and $\boldsymbol{u}=\left[\begin{array}{c}3 \\ 3 \\ -4\end{array}\right]$.
a) Is \boldsymbol{u} in Nullspace(A)? Justify your answer.
(3 pts)
b) Is \boldsymbol{u} in Columnspace(A)? Justify your answer.
(3 pts)
c) Determine the rank A and Nullity of A. Show your work.
(2 pts)
4. a) Using the definition, verify that the given transformation is linear transformation.
$T: C^{2}(I) \rightarrow C^{0}(I)$ defined by $T(y)=y^{\prime \prime}+y$
(4 pts)
b) Find the kernel of T.
(4 pts)
5. Solve:
$\left(y+3 x^{2}\right) d x+x d y=0$
(5 pts)
6. Using the method of undermined coefficients, find the general solution of the given differential equation. ($\mathbf{1 0} \mathbf{~ p t s}$)

$$
y^{\prime \prime}-y^{\prime}-2 y=e^{-x}+2 \cos x
$$

7. Use the Laplace transform to solve the given initial-value problems.

You can use the table of transformation.

$$
y^{\prime \prime}+y=e^{2 t}, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

8. Find a series solution in powers of x of the differential equation. ($\mathbf{1 0} \mathbf{p t s}$)

$$
y^{\prime \prime}+x^{2} y^{\prime}+y=0
$$

9. a) Determine all the equilibrium points of the given system.
b) Select two equilibrium points and classify them as saddle, node, spiral or center and whether they are stable or unstable.
(10 pts)

$$
\begin{aligned}
& x^{\prime}=2 x-x^{2}-x y \\
& y^{\prime}=3 y-3 x y-2 y^{2}
\end{aligned}
$$

