Math2520 Calculus IV Mid-Semester Exam.

Name: _____

INSTRUCTION:

- 1. Write you name on the answer sheet.
- 2. Write clearly and legibly (bigger and darker) so that it easy to read when printed.
- 3. You can only post once, so make sure that all the pages/questions are posted.
- 4. You can use your own paper if you cannot print it.
- 1. Solve the initial-value problem.

(4 pts)

$$x\frac{dy}{dx} - y = 2x^2y, \quad y(1) = 1$$

2. Solve:

$$x^2 \frac{dy}{dx} + 2xy - y^3 = 0, x > 0$$

(5 pts)

3. Verify that the given differential equation is exact; then solve it. (6 pts)

$$(x^{3} + \frac{y}{x})dx + (y^{2} + \ln x)dy = 0$$

4. a) Solve the initial value problem

$$\frac{dy}{dx} = 3 + x - y, \quad y(0) = 1$$

b) Apply Euler's methods to the initial value problem with step size h = 0.1 and complete the following table. You can use calculator or excel. (4 pts)

X	Euler method y	Exact y	Absolute Error
0.1			
0.2			
0.3			
0.4			

5. Solve the following system of equations and write the solution in parametric vector form.

(**4 pts**)

 $x_1 + 2x_2 + x_3 = 1$ $2x_1 - x_2 + 2x_3 = 2$ $3x_1 + x_2 + 3x_3 = -8$

- 6. Given the matrix $A = \begin{bmatrix} 3 & 4 \\ 4 & -2 \end{bmatrix}$, (5 pts)
 - a) Find A^{-1} , the inverse matrix of A.

b) Use A^{-1} to solve the system of equations

$$3x + 4y = 7$$
$$4x - 2y = 5$$

- 7. Use the cofactor expansion to evaluate the given determinant along the 2^{nd} row.
 - $\begin{vmatrix} 0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0 \end{vmatrix}$

8. Let *H* be the set of points in the xy - plane given by,

$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}.$$
 Show that *H* is not a subspace of R^2 . (**3 pts**)

9. Determine if the set of vectors span R^3 . Justify our answer.

(3 pts)

{(1,-2,1), (2,3,1), (4,-1,2)}

- 10. Mark each statement **TRUE** or **FALSE**.
 - a) An integrating factor for the differential equation $\frac{dy}{dx} = x^2 y$ is $e^{\int x^2 dx}$.

(**5** pts)

- b) The equation Ax = 0 has the nontrivial solution if and only if there are free variables._____
- c) If A is $n \times n$ matrix, then det(cA) = c det A, c constant.
- d) The solution set of a homogeneous linear system Ax = 0 of *m* equation and *n* unknowns is a subspace of \mathbb{R}^n .
- e) If **x** is a vector in the first quadrant of R^2 , then any scalar multiple $k\mathbf{x}$ of **x** is still a vector in

the first quadrant of R^2 .