INSTRUCTION: Show all the necessary work. Write your answer on a separate sheet preferably hand written clear and legible. Post your answer sheet on D2L by Monday July 5.

1. Solve the following Differential Equations.
a) $y^{\prime \prime}-y^{\prime}-2 y=5 e^{2 x}$
b) $y^{\prime \prime}+16 y=4 \cos x$
c) $y^{\prime \prime}-4 y^{\prime}+3 y=9 x^{2}+4, y(0)=6, y^{\prime}(0)=8$
2. Use the variation of parameters method to find the general solution to the given differential equation.

$$
y^{\prime \prime}+y=\tan ^{2}(x)
$$

3. Show that the given vector functions are linearly independent on $(-\infty, \infty)$.

$$
x_{1}(t)=\left[\begin{array}{l}
t \\
t
\end{array}\right], x_{2}(t)=\left[\begin{array}{c}
t \\
t^{2}
\end{array}\right]
$$

4. Show that the given vector functions are linearly dependent on $(-\infty, \infty)$.

$$
x_{1}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{2 t}
\end{array}\right], x_{2}(t)=\left[\begin{array}{c}
4 e^{t} \\
8 e^{2 t}
\end{array}\right]
$$

5. Show that the given functions are solutions of the system $x^{\prime}(t)=A(x) x(t)$ for the given matrix A and hence find the general solution to the system (remember to check linear independence). Then find the particular solution for the given auxiliary conditions.

$$
\begin{gathered}
x_{1}(t)=\left[\begin{array}{c}
e^{4 t} \\
2 e^{4 t}
\end{array}\right], x_{2}(t)=\left[\begin{array}{c}
3 e^{-t} \\
e^{-t}
\end{array}\right] \\
A=\left[\begin{array}{ll}
-2 & 3 \\
-2 & 5
\end{array}\right], x(0)=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

6. Solve the initial-value problem $x^{\prime}=A x, x(0)=x_{0}$.

$$
A=\left[\begin{array}{cc}
-1 & 4 \\
2 & -3
\end{array}\right], x(0)=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

7. Use the variation of parameters technique to find a particular solution x_{p} to $x^{\prime}=A x+b$ for the given A and b. Also obtain the general solution to the system of differential equations.

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right], \quad b=\left[\begin{array}{c}
0 \\
4 e^{t}
\end{array}\right]
$$

