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1 Problem 1
Solve the following Differential Equations

a 𝑦′′ − 𝑦′ − 2𝑦 = 5𝑒2𝑥

b 𝑦′′ + 16𝑦 = 4 cos 𝑥

c 𝑦′′ − 4𝑦′ + 3𝑦 = 9𝑥2 + 4, 𝑦(0) = 6, 𝑦′(0) = 8

Solution

1.1 part a

𝑦′′ − 𝑦′ − 2𝑦 = 5𝑒2𝑥

This is a nonhomogeneous linear second order ODE with constant coefficients. The gen-
eral solution is given by

𝑦 = 𝑦ℎ + 𝑦𝑝 (1)

Where 𝑦ℎ is the solution to the homogeneous part and 𝑦𝑝 is a particular solution. The first
step is to determine 𝑦ℎ which is solution to 𝑦′′ − 𝑦′ − 2𝑦 = 0. The characteristic equation
becomes (by assuming the solution to be 𝑦 = 𝑒𝜆𝑥 and substituting this into the ODE and
simplifying)

𝜆2 − 𝜆 − 2 = 0
(𝜆 − 2) (𝜆 + 1) = 0

The roots are 𝜆1 = 2, 𝜆2 = −1. Therefore the basis for 𝑦ℎ are �𝑒2𝑥, 𝑒−𝑥� and 𝑦ℎ is linear
combination of these basis which is

𝑦ℎ = 𝑐1𝑒2𝑥 + 𝑐2𝑒−𝑥 (2)

Looking at RHS of the ODE which is 5𝑒2𝑥 shows that the basis function for this is �𝑒2𝑥�.
But 𝑒2𝑥 is also also a basis function for 𝑦ℎ. Therefore this is adjusted by multiplying it by
𝑥 and it becomes �𝑥𝑒2𝑥�which no longer a basis for 𝑦ℎ.Therefore the trial solution is

𝑦𝑝 = 𝐴𝑥𝑒2𝑥

Hence

𝑦′𝑝 = 𝐴𝑒2𝑥 + 2𝐴𝑥𝑒2𝑥

𝑦′′𝑝 = 2𝐴𝑒2𝑥 + 2𝐴𝑒2𝑥 + 4𝐴𝑥𝑒2𝑥

Substituting the above in the given ode gives

𝑦′′𝑝 − 𝑦′𝑝 − 2𝑦𝑝 = 5𝑒2𝑥

�2𝐴𝑒2𝑥 + 2𝐴𝑒2𝑥 + 4𝐴𝑥𝑒2𝑥� − �𝐴𝑒2𝑥 + 2𝐴𝑥𝑒2𝑥� − 2 �𝐴𝑥𝑒2𝑥� = 5𝑒2𝑥
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Since 𝑒2𝑥 ≠ 0, the above simplifies to

2𝐴 + 2𝐴 + 4𝐴𝑥 − 𝐴 − 2𝐴𝑥 − 2𝐴𝑥 = 5
𝐴 (2 + 2 − 1) + 𝑥 (4𝐴 − 2𝐴 − 2𝐴) = 5

3𝐴 = 5

𝐴 =
5
3

Therefore the particular solution is

𝑦𝑝 =
5
3
𝑥𝑒2𝑥 (3)

Substituting (2,3) into (1) gives the general solution as

𝑦(𝑥) = 𝑦ℎ + 𝑦𝑝

= 𝑐1𝑒2𝑥 + 𝑐2𝑒−𝑥 +
5
3
𝑥𝑒2𝑥

1.2 part b
𝑦′′ + 16𝑦 = 4 cos 𝑥

This is a nonhomogeneous linear second order ODE with constant coefficients. The gen-
eral solution is given by

𝑦 = 𝑦ℎ + 𝑦𝑝 (1)

Where 𝑦ℎ is the solution to the homogeneous part and 𝑦𝑝 is a particular solution. The first
step is to determine 𝑦ℎ which is solution to 𝑦′′ + 16𝑦 = 0. The characteristic equation is

𝜆2 + 16 = 0
𝜆2 = −16
𝜆 = ±4𝑖

The roots are 𝜆1 = 4𝑖, 𝜆2 = −4𝑖. Therefore the basis for 𝑦ℎ are �𝑒4𝑖𝑥, 𝑒−4𝑖𝑥�. These are con-
verted to trigonometric functions using the Euler relation 𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) as was
done in the last HW and the basis become {cos (4𝑥) , sin (4𝑥)}. 𝑦ℎ is a linear combination
of these basis.

𝑦ℎ = 𝑐1 cos (4𝑥) + 𝑐2 sin (4𝑥) (2)

Looking at RHS of the ode which is 4 cos 𝑥 shows that the basis function for 𝑦𝑝 is {cos 𝑥}.
Taking all possible derivatives (and ignoring any sign change and constants that appear),
results in the basis for 𝑦𝑝 as the set {cos 𝑥, sin 𝑥}. There are no duplications with the basis
for 𝑦ℎ found above. Hence the trial solution is

𝑦𝑝 = 𝐴 cos 𝑥 + 𝐵 sin 𝑥
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Therefore

𝑦′𝑝 = −𝐴 sin 𝑥 + 𝐵 cos 𝑥
𝑦′′𝑝 = −𝐴 cos 𝑥 − 𝐵 sin 𝑥

Substituting the above in the given ode gives

𝑦′′𝑝 + 16𝑦𝑝 = 4 cos 𝑥
(−𝐴 cos 𝑥 − 𝐵 sin 𝑥) + 16 (𝐴 cos 𝑥 + 𝐵 sin 𝑥) = 4 cos 𝑥

cos(𝑥) (−𝐴 + 16𝐴) + sin(𝑥) (−𝐵 + 16𝐵) = 4 cos 𝑥

Comparing coefficients gives

−𝐴 + 16𝐴 = 4
−𝐵 + 16𝐵 = 0

Or

𝐴 =
4
15

𝐵 = 0

Therefore the particular solution is

𝑦𝑝 =
4
15

cos 𝑥 (3)

Substituting (2,3) into (1) gives the general solution

𝑦(𝑥) = 𝑦ℎ + 𝑦𝑝

= 𝑐1 cos (4𝑥) + 𝑐2 sin (4𝑥) +
4
15

cos 𝑥

1.3 part c

𝑦′′ − 4𝑦′ + 3𝑦 = 9𝑥2 + 4
𝑦(0) = 6
𝑦′(0) = 8

This is a nonhomogeneous linear second order ODE with constant coefficients. The gen-
eral solution is given by

𝑦 = 𝑦ℎ + 𝑦𝑝 (1)



5

Where 𝑦ℎ is the solution to the homogeneous part and 𝑦𝑝 is a particular solution. The first
step is to determine 𝑦ℎ which is solution to 𝑦′′ − 4𝑦′ + 3𝑦 = 0. The characteristic equation
is

𝜆2 − 4𝜆 + 3 = 0
(𝜆 − 3) (𝜆 − 1) = 0

The roots are𝜆1 = 3, 𝜆2 = 1. Therefore the basis for 𝑦ℎ are �𝑒3𝑥, 𝑒𝑥�. 𝑦ℎ is a linear combination
of these basis.

𝑦ℎ = 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 (2)

Looking at RHS of the ode 9𝑥2+4 shows that the basis functions for this are the set �1, 𝑥2�.
Taking all possible derivatives (and ignoring any sign change and constant multipliers
that appear) results in the set �1, 𝑥, 𝑥2�.There are no duplications with the basis for 𝑦ℎ.
Hence the trial solution is linear combination of these basis which is

𝑦𝑝 = 𝐴 + 𝐵𝑥 + 𝐶𝑥2

Hence

𝑦′𝑝 = 𝐵 + 2𝐶𝑥
𝑦′′𝑝 = 2𝐶

Substituting the above in the given ode gives

𝑦′′𝑝 − 4𝑦′𝑝 + 3𝑦𝑝 = 9𝑥2 + 4

(2𝐶) − 4 (𝐵 + 2𝐶𝑥) + 3 �𝐴 + 𝐵𝑥 + 𝐶𝑥2� = 9𝑥2 + 4
𝑥2 (3𝐶) + 𝑥 (−8𝐶 + 3𝐵) + (2𝐶 − 4𝐵 + 3𝐴) = 9𝑥2 + 4

Comparing coefficients gives

3𝐶 = 9
−8𝐶 + 3𝐵 = 0

2𝐶 − 4𝐵 + 3𝐴 = 4

First equation gives 𝐶 = 3. Substituting in second equation gives −24 + 3𝐵 = 0 or 𝐵 = 8.
Third equation now becomes

2(3) − 4(8) + 3𝐴 = 4
𝐴 = 10

Therefore the particular solution is

𝑦𝑝 = 10 + 8𝑥 + 3𝑥2 (3)
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Substituting (2,3) into (1) gives the general solution

𝑦(𝑥) = 𝑦ℎ + 𝑦𝑝
= 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 + 10 + 8𝑥 + 3𝑥2 (4)

Initial conditions are now used to determine 𝑐1, 𝑐2. 𝑦 (0) = 6 gives

6 = 𝑐1 + 𝑐2 + 10
𝑐1 + 𝑐2 = −4 (5)

Taking derivative of (4)
𝑦′ = 3𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 + 8 + 6𝑥

Using 𝑦′(0) = 8 the above becomes

8 = 3𝑐1 + 𝑐2 + 8
3𝑐1 + 𝑐2 = 0 (6)

Eq (5,6) are solved for 𝑐1, 𝑐2. From (5) 𝑐1 = −4−𝑐2. Substituting in (6) gives 3 (−4 − 𝑐2)+𝑐2 =
0, 𝑐2 = −6. Hence 𝑐1 = −4 + 6 = 2. Therefore the solution (4) now becomes

𝑦(𝑥) = 2𝑒3𝑥 − 6𝑒𝑥 + 10 + 8𝑥 + 3𝑥2
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2 Problem 2
Use the variation of parameters method to find the general solution to the given differen-
tial equation.

𝑦′′ + 𝑦 = tan2(𝑥)
Solution

This is a nonhomogeneous linear second order ODE with constant coefficients. The gen-
eral solution is given by

𝑦 = 𝑦ℎ + 𝑦𝑝 (1)

where 𝑦ℎ is the solution to the homogeneous part and 𝑦𝑝 is a particular solution. The first
step is to determine 𝑦ℎ which is solution to 𝑦′′ + 𝑦 = 0. The characteristic equation is

𝜆2 + 1 = 0
𝜆 = ±𝑖

The roots are 𝜆1 = 𝑖, 𝜆2 = −𝑖. Therefore the basis for 𝑦ℎ are �𝑒𝑖𝑥, 𝑒−𝑖𝑥�. Using Euler relation
these become {cos 𝑥, sin 𝑥}. Hence 𝑦ℎ is a linear combination of these basis

𝑦ℎ = 𝑐1 cos 𝑥 + 𝑐2 sin 𝑥 (2)

Using variation of parameters, let 𝑦𝑝 = 𝑦1𝑢1 + 𝑦2𝑢2, where

𝑦1 = cos 𝑥
𝑦2 = sin 𝑥

Are the basis of 𝑦ℎ found above, and 𝑢1, 𝑢2 are functions yet to be determined. Applying
reduction of order as shown in the textbook (not repeated here) gives

𝑢1 = −�
𝑦2𝑔(𝑥)
𝑊(𝑥)

𝑑𝑥 (3)

𝑢2 = �
𝑦1𝑔(𝑥)
𝑊(𝑥)

𝑑𝑥 (4)

Where in the above 𝑊(𝑥) is the Wronskian and 𝑔 (𝑥) is the forcing function which is
𝑔(𝑥) = tan2(𝑥) in this case. The first step is to calculate𝑊(𝑥)

𝑊(𝑥) =
�
�

𝑦1 𝑦2
𝑦′1 𝑦′2

�
�

= �
cos 𝑥 sin 𝑥
− sin 𝑥 cos 𝑥

�

= cos2 𝑥 + sin2 𝑥
= 1
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Therefore (3) becomes
𝑢1 = −� sin 𝑥 tan2 𝑥 𝑑𝑥

But tan2 𝑥 = sin2 𝑥
cos2 𝑥 =

1−cos2 𝑥
cos2 𝑥 = 1

cos2 𝑥 − 1. Hence the above becomes

𝑢1 = −� sin 𝑥 �
1

cos2 𝑥
− 1� 𝑑𝑥

= −��
sin 𝑥
cos2 𝑥

− sin 𝑥� 𝑑𝑥

= −�
sin 𝑥
cos2 𝑥

𝑑𝑥 +� sin 𝑥 𝑑𝑥

= −� tan 𝑥
1

cos 𝑥
𝑑𝑥 +� sin 𝑥 𝑑𝑥 (5)

To find the first integral in (5), let 𝑢 = 1
cos 𝑥 . Then 𝑑𝑢 = − (cos 𝑥)−2 (− sin 𝑥) 𝑑𝑥 = sin 𝑥

cos2 𝑥𝑑𝑥.

Hence 𝑑𝑥 = cos2 𝑥
sin 𝑥 𝑑𝑢 = cos 𝑥

tan 𝑥𝑑𝑢. Therefore the first integral in (5) becomes

−� tan 𝑥
1

cos 𝑥
𝑑𝑥 = −�(tan 𝑥) 𝑢 �

cos 𝑥
tan 𝑥

𝑑𝑢�

= −�𝑢 cos 𝑥 𝑑𝑢

But cos 𝑥 = 1
𝑢 . The above becomes

−� tan 𝑥
1

cos 𝑥
𝑑𝑥 = −�𝑑𝑢

= −𝑢

= −
1

cos 𝑥

The second integral in (5) is just ∫ sin 𝑥 𝑑𝑥 = − cos 𝑥. Therefore (5) becomes

𝑢1 = −
1

cos 𝑥
− cos 𝑥

=
−1 − cos2 𝑥

cos 𝑥

= −
1 + cos2 𝑥
cos 𝑥
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Now 𝑢2 in (4) is found.

𝑢2 = � cos 𝑥 tan2 𝑥 𝑑𝑥

= � cos 𝑥
sin2 𝑥
cos2 𝑥

𝑑𝑥

= �
sin2 𝑥
cos 𝑥

𝑑𝑥

= �
1 − cos2 𝑥
cos 𝑥

𝑑𝑥

= ��
1

cos 𝑥
− cos 𝑥� 𝑑𝑥

= �
1

cos 𝑥
𝑑𝑥 −� cos 𝑥 𝑑𝑥

= � sec 𝑥𝑑𝑥 −� cos 𝑥 𝑑𝑥 (6)

To find ∫ sec 𝑥 𝑑𝑥, we start by multiplying the integrand by sec 𝑥+tan 𝑥
sec 𝑥+tan 𝑥 = 1. Hence

� sec 𝑥 𝑑𝑥 = � sec 𝑥 �
sec 𝑥 + tan 𝑥
sec 𝑥 + tan 𝑥

� 𝑑𝑥

= �
sec2 𝑥 + sec 𝑥 tan 𝑥

sec 𝑥 + tan 𝑥
𝑑𝑥 (7)

Using the substitution
𝑢 = sec 𝑥 + tan 𝑥

Then
𝑑𝑢
𝑑𝑥

=
𝑑
𝑑𝑥

sec 𝑥 +
𝑑
𝑑𝑥

tan 𝑥 (7A)

But 𝑑
𝑑𝑥 sec 𝑥 =

𝑑
𝑑𝑥
(cos 𝑥) = − (cos 𝑥)−2 (− sin 𝑥) = sin 𝑥

cos2 𝑥 = sin 𝑥 sec2 𝑥 = sec 𝑥 tan 𝑥. And

𝑑
𝑑𝑥

tan 𝑥 = 1 + tan2 𝑥

= 1 +
sin2 𝑥
cos2 𝑥

=
cos2 + sin2 𝑥

cos2 𝑥

=
1

cos2 𝑥
= sec2 𝑥

Hence (7A) becomes
𝑑𝑢
𝑑𝑥

= sec 𝑥 tan 𝑥 + sec2 𝑥
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Therefore (7) now becomes

� sec 𝑥 𝑑𝑥 = �
sec2 𝑥 + sec 𝑥 tan 𝑥

𝑢
𝑑𝑢

sec 𝑥 tan 𝑥 + sec2 𝑥

= �
𝑑𝑢
𝑢

= ln 𝑢
= ln (sec 𝑥 + tan 𝑥)

Eq (6) now becomes

𝑢2 = � sec 𝑥𝑑𝑥 −� cos 𝑥 𝑑𝑥

= ln (sec 𝑥 + tan 𝑥) − sin 𝑥

Now that 𝑢1, 𝑢2 are found, then 𝑦𝑝 = 𝑦1𝑢1 + 𝑦2𝑢2 gives

𝑦𝑝 = − cos 𝑥 �
1 + cos2 𝑥
cos 𝑥 � + sin 𝑥 (ln (sec 𝑥 + tan 𝑥) − sin 𝑥)

= − �1 + cos2 𝑥� + sin 𝑥 (ln (sec 𝑥 + tan 𝑥) − sin 𝑥)
= −1 − cos2 𝑥 + sin 𝑥 ln (sec 𝑥 + tan 𝑥) − sin2 𝑥
= −1 − �cos2 𝑥 + sin2 𝑥� + sin 𝑥 ln (sec 𝑥 + tan 𝑥)
= −2 + sin 𝑥 ln (sec 𝑥 + tan 𝑥)

= −2 + sin 𝑥 ln �
1

cos 𝑥
+

sin 𝑥
cos 𝑥�

= −2 + sin 𝑥 ln �
1 + sin 𝑥
cos 𝑥 �

Therefore the general solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝑐1 cos 𝑥 + 𝑐2 sin 𝑥 + sin 𝑥 ln �
1 + sin 𝑥
cos 𝑥 � − 2
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3 Problem 3
Show that the given vector functions are linearly independent on (−∞,∞)

�⃗�1(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎦ �⃗�2(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑡

𝑡2

⎤
⎥⎥⎥⎥⎥⎦

Solution

The Wronskian of these vectors is

𝑊(𝑡) = �
𝑡 𝑡

𝑡 𝑡2
�

If the above is nonzero at some point in the interval (−∞,∞) then �⃗�1(𝑡), �⃗�2 (𝑡) are linearly
independent.

𝑊(𝑡) = 𝑡3 − 𝑡2

= 𝑡2 (𝑡 − 1)

Any point other than 𝑡 = 0, 𝑡 = 1, then𝑊(𝑡) ≠ 0. For example at 𝑡 = 2,𝑊(2) = 4 ≠ 0. Hence
�⃗�1(𝑡), �⃗�2(𝑡) are linearly independent .
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4 Problem 4
Show that the given vector functions are linearly independent on (−∞,∞)

�⃗�1(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡

2𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ �⃗�2(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
4𝑒𝑡

8𝑒2𝑡

⎤
⎥⎥⎥⎥⎥⎦

Solution

The Wronskian of these vectors is

𝑊(𝑡) =
�
�
𝑒𝑡 4𝑒𝑡

2𝑒𝑡 8𝑒2𝑡
�
�

If the above is nonzero at some point in the interval (−∞,∞) then �⃗�1(𝑡), �⃗�2 (𝑡) are linearly
independent.

𝑊(𝑡) = 8𝑒3𝑡 − 6𝑒2𝑡

= 𝑒2𝑡 �8𝑒𝑡 − 6�

Choosing say 𝑡 = 0 then the above becomes 𝑊(0) = 2 ≠ 0. Therefore �⃗�1(𝑡), �⃗�2(𝑡) are
linearly independent.
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5 Problem 5
Show that the given functions are solutions of the system 𝑥′ (𝑡) = 𝐴(𝑥)𝑥(𝑡) for the given
matrix 𝐴 and hence find the general solution to the system (remember to check linear
independence). Then find the particular solution for the given auxiliary conditions.

�⃗�1(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑒4𝑡

2𝑒4𝑡

⎤
⎥⎥⎥⎥⎥⎦ �⃗�2(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
3𝑒−𝑡

𝑒−𝑡

⎤
⎥⎥⎥⎥⎥⎦

𝐴 =

⎡
⎢⎢⎢⎢⎢⎣
−2 3
−2 5

⎤
⎥⎥⎥⎥⎥⎦ 𝑥(0) =

⎡
⎢⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎥⎦

Solution

The system to solve is ⎡
⎢⎢⎢⎢⎢⎢⎣
𝑥′1(𝑡)

𝑥′2(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−2 3
−2 5

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1(𝑡)

𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎥⎦

We need to first find the eigenvalues and eigenvectors of 𝐴. The eigenvalues are solution
to |𝐴 − 𝜆𝐼| = 0 or

�
−2 − 𝜆 3
−2 5 − 𝜆

� = 0

(−2 − 𝜆) (5 − 𝜆) + 6 = 0
𝜆2 − 3𝜆 − 10 + 6 = 0

𝜆2 − 3𝜆 − 4 = 0
(𝜆 − 4) (𝜆 + 1) = 0

Hence the eigenvalues are 𝜆1 = 4, 𝜆2 = −1.

𝜆1 = 4

⎡
⎢⎢⎢⎢⎢⎣
−2 − 𝜆 3
−2 5 − 𝜆

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−2 − 4 3
−2 5 − 4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−6 3
−2 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦
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𝑅2 = 𝑅2 +
1
3𝑅1 ⎡

⎢⎢⎢⎢⎢⎣
−6 3
0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

Hence 𝑣1 is base variable and 𝑣2 = 𝑡 is free variable. First row gives −6𝑣1 = −3𝑡 or 𝑣1 =
1
2 𝑡.

The eigenvector is then

�⃗�𝜆1 =

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2 𝑡

𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎣
1
2

⎤
⎥⎥⎥⎥⎥⎦

Choosing 𝑡 = 1, then

�⃗�𝜆1 =

⎡
⎢⎢⎢⎢⎢⎣
1
2

⎤
⎥⎥⎥⎥⎥⎦

Therefore the first basis vector solution is given by

�⃗�1(𝑡) = 𝑒𝜆1𝑡�⃗�𝜆1

= 𝑒4𝑡
⎡
⎢⎢⎢⎢⎢⎣
1
2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
𝑒4𝑡

2𝑒4𝑡

⎤
⎥⎥⎥⎥⎥⎦

𝜆1 = −1
⎡
⎢⎢⎢⎢⎢⎣
−2 − 𝜆 3
−2 5 − 𝜆

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−2 + 1 3
−2 5 + 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−1 3
−2 6

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎣
−1 3
0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

Hence 𝑣1 is base variable and 𝑣2 = 𝑡 is free variable. First row gives −𝑣1 = −3𝑡 or 𝑣1 = 3𝑡.
The eigenvector is then

�⃗�𝜆2 =

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
3𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎢⎣
3
1

⎤
⎥⎥⎥⎥⎥⎦
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Choosing 𝑡 = 1, then

�⃗�𝜆2 =

⎡
⎢⎢⎢⎢⎢⎣
3
1

⎤
⎥⎥⎥⎥⎥⎦

Therefore the second basis vector solution is given by

�⃗�2(𝑡) = 𝑒𝜆2𝑡 �⃗�𝜆2

= 𝑒−𝑡
⎡
⎢⎢⎢⎢⎢⎣
3
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
3𝑒−𝑡

𝑒−𝑡

⎤
⎥⎥⎥⎥⎥⎦

The above result shows that the solution to 𝑥′(𝑡) = 𝐴(𝑥)𝑥(𝑡) is

�⃗�(𝑡) = 𝑐1�⃗�1(𝑡) + 𝑐2�⃗�2(𝑡) (1)

= 𝑐1

⎡
⎢⎢⎢⎢⎢⎣
𝑒4𝑡

2𝑒4𝑡

⎤
⎥⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎢⎣
3𝑒−𝑡

𝑒−𝑡

⎤
⎥⎥⎥⎥⎥⎦

Now we check that �⃗�1(𝑡), �⃗�2(𝑡) are linearly independent (they have to be, since they are
eigenvectors of𝐴, but the problem is asking to verify this result). TheWronskian of these
vectors is

𝑊(𝑡) =
�
�
𝑒4𝑡 3𝑒−𝑡

2𝑒4𝑡 𝑒−𝑡
�
�

If the above is nonzero at some point in the interval (−∞,∞) then �⃗�1(𝑡), �⃗�2 (𝑡) are linearly
independent.

𝑊(𝑡) = 𝑒3𝑡 − 6𝑒3𝑡

= −5𝑒3𝑡

Choosing say 𝑡 = 0 then the above becomes𝑊(0) = −5. Since we found at least one point
where 𝑊(𝑡) ≠ 0 then �⃗�1(𝑡), �⃗�2(𝑡) are linearly independent and (1) is the general solution
to given system of differential equations. This answers the first part of the question by
showing that the given functions are solutions of the system 𝑥′(𝑡) = 𝐴 (𝑥) 𝑥(𝑡).

The final step is to find the particular solution to the given initial conditions 𝑥(0) =

⎡
⎢⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎥⎦.

At 𝑡 = 0 the solution in (1) becomes
⎡
⎢⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎥⎦ = 𝑐1

⎡
⎢⎢⎢⎢⎢⎣
1
2

⎤
⎥⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎢⎣
3
1

⎤
⎥⎥⎥⎥⎥⎦
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Which can be written as
⎡
⎢⎢⎢⎢⎢⎣
1 3
2 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎥⎦ (2)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎣
1 3 −2
2 1 1

⎤
⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎣
1 3 −2
0 −5 5

⎤
⎥⎥⎥⎥⎥⎦

Hence (2) becomes
⎡
⎢⎢⎢⎢⎢⎣
1 3
0 −5

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−2
5

⎤
⎥⎥⎥⎥⎥⎦ (3)

Second row gives −5𝑐2 = 5 or 𝑐2 = −1. First row gives 𝑐1 + 3𝑐2 = −2 or 𝑐1 = −2 − 3 (−1) =
−2 + 3 = 1. Hence ⎡

⎢⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦

Therefore the solution (1) becomes

�⃗�(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑒4𝑡

2𝑒4𝑡

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣
3𝑒−𝑡

𝑒−𝑡

⎤
⎥⎥⎥⎥⎥⎦

Or

𝑥1(𝑡) = 𝑒4𝑡 − 3𝑒−𝑡

𝑥2(𝑡) = 2𝑒4𝑡 − 𝑒−𝑡
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6 Problem 6
Solve the initial-value problem 𝑥′ = 𝐴𝑥, 𝑥(0) = 𝑥0

𝐴 =

⎡
⎢⎢⎢⎢⎢⎣
−1 4
2 −3

⎤
⎥⎥⎥⎥⎥⎦ 𝑥(0) =

⎡
⎢⎢⎢⎢⎢⎣
3
0

⎤
⎥⎥⎥⎥⎥⎦

Solution

The system is ⎡
⎢⎢⎢⎢⎢⎢⎣
𝑥′1(𝑡)

𝑥′2(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1 4
2 −3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1(𝑡)

𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎥⎦

We need to first find the eigenvalues and eigenvectors of 𝐴. The eigenvalues are solutions
to |𝐴 − 𝜆𝐼| = 0 or

�
−1 − 𝜆 4

2 −3 − 𝜆
� = 0

(−1 − 𝜆) (−3 − 𝜆) − 8 = 0
𝜆2 + 4𝜆 + 3 − 8 = 0

𝜆2 + 4𝜆 − 5 = 0
(𝜆 − 1) (𝜆 + 5) = 0

Hence the eigenvalues are 𝜆1 = 1, 𝜆2 = −5.

𝜆1 = 1

⎡
⎢⎢⎢⎢⎢⎣
−1 − 𝜆 4

2 −3 − 𝜆

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−2 4
2 −4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 + 𝑅1 ⎡
⎢⎢⎢⎢⎢⎣
−2 4
0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑣1 is base variables and 𝑣2 = 𝑡 is free variable. First row gives −2𝑣1 = −4𝑡 or 𝑣1 = 2𝑡. Hence
the first eigenvector is

�⃗�𝜆1 =

⎡
⎢⎢⎢⎢⎢⎣
2𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎥⎦
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Or for 𝑡 = 1

�⃗�𝜆1 =

⎡
⎢⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎥⎦

The first basis vector solution is therefore

�⃗�1 = 𝑒𝜆1𝑡 �⃗�𝜆1

= 𝑒𝑡
⎡
⎢⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
2𝑒𝑡

𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ (1)

𝜆1 = −5
⎡
⎢⎢⎢⎢⎢⎣
−1 − 𝜆 4

2 −3 − 𝜆

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
4 4
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 −
1
2𝑅1 ⎡

⎢⎢⎢⎢⎢⎣
4 4
0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑣1 is base variables and 𝑣2 = 𝑡 is free variable. First row gives 4𝑣1 = −4𝑡 or 𝑣1 = −𝑡. Hence
the second eigenvector is

�⃗�𝜆2 =

⎡
⎢⎢⎢⎢⎢⎣
−𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

Or for 𝑡 = 1

�⃗�𝜆2 =

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

The second basis vector solution is therefore

�⃗�2 = 𝑒𝜆2𝑡 �⃗�𝜆2

= 𝑒−5𝑡
⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
−𝑒−5𝑡

𝑒−5𝑡

⎤
⎥⎥⎥⎥⎥⎦ (2)
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From (1,2), the general solution is linear combination of (1,2) which is

�⃗�(𝑡) = 𝑐1�⃗�1(𝑡) + 𝑐2�⃗�2(𝑡)

= 𝑐1

⎡
⎢⎢⎢⎢⎢⎣
2𝑒𝑡

𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎢⎣
−𝑒−5𝑡

𝑒−5𝑡

⎤
⎥⎥⎥⎥⎥⎦ (3)

Now �⃗�1(𝑡), �⃗�2(𝑡) are verified to be linearly independent using the Wronskian.

𝑊(𝑡) =
�
�
2𝑒𝑡 −𝑒−5𝑡

𝑒𝑡 𝑒−5𝑡
�
�

= 2𝑒−4𝑡 + 𝑒−4𝑡

= 3𝑒−4𝑡

At 𝑡 = 0, 𝑊(0) = 3 ≠ 0. Hence �⃗�1(𝑡), �⃗�2(𝑡) are linearly independent. 𝑐1, 𝑐2 are now found
from initial conditions. At 𝑡 = 0, (3) becomes

⎡
⎢⎢⎢⎢⎢⎣
3
0

⎤
⎥⎥⎥⎥⎥⎦ = 𝑐1

⎡
⎢⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

Which can be written as
⎡
⎢⎢⎢⎢⎢⎣
2 −1
1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
3
0

⎤
⎥⎥⎥⎥⎥⎦ (4)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎣
2 −1 3
1 1 0

⎤
⎥⎥⎥⎥⎥⎦

𝑅2 = 2𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎣
2 −1 3
0 3 −3

⎤
⎥⎥⎥⎥⎥⎦

Hence (2) becomes ⎡
⎢⎢⎢⎢⎢⎣
2 −1
0 3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
3
−3

⎤
⎥⎥⎥⎥⎥⎦

Second row gives 𝑐2 = −1. First row gives 2𝑐1 − 𝑐1 = 3 or 2𝑐1 = 3 − 1 = 2. Hence 𝑐1 = 1.
⎡
⎢⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦
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Therefore the solution (3) becomes

�⃗�(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
2𝑒𝑡

𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣
−𝑒−5𝑡

𝑒−5𝑡

⎤
⎥⎥⎥⎥⎥⎦

Or

𝑥1(𝑡) = 2𝑒𝑡 + 𝑒−5𝑡

𝑥2(𝑡) = 𝑒𝑡 − 𝑒−5𝑡
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7 Problem 7
Use the variation of parameters technique to find a particular solution 𝑥𝑝 to 𝑥′ = 𝐴𝑥 + 𝑏
for the given 𝐴, 𝑏. Also obtain the general solution to the system of differential equations

𝐴 =

⎡
⎢⎢⎢⎢⎢⎣
2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦ 𝑏 =

⎡
⎢⎢⎢⎢⎢⎣
0

4𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦

Solution

The system to solve is ⎡
⎢⎢⎢⎢⎢⎢⎣
𝑥′1(𝑡)

𝑥′2(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1(𝑡)

𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
0

4𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦

The solution is given by
�⃗�(𝑡) = �⃗�ℎ(𝑡) + �⃗�𝑝 (𝑡)

Where �⃗�ℎ(𝑡) is the solution to the homogeneous system 𝑥′ = 𝐴𝑥 and �⃗�𝑝(𝑡) is a particular
solution. First �⃗�ℎ(𝑡) is solved for. The eigenvalues and eigenvectors of 𝐴 are now found.
The eigenvalues are solutions to |𝐴 − 𝜆𝐼| = 0 or

�
2 − 𝜆 −1
−1 2 − 𝜆

� = 0

(2 − 𝜆) (2 − 𝜆) − 1 = 0
𝜆2 − 4𝜆 + 4 − 1 = 0

𝜆2 − 4𝜆 + 3 = 0
(𝜆 − 3) (𝜆 − 1) = 0

Hence the eigenvalues are 𝜆1 = 3, 𝜆2 = 1.

𝜆1 = 1

⎡
⎢⎢⎢⎢⎢⎣
2 − 𝜆 −1
−1 2 − 𝜆

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 + 𝑅1 ⎡
⎢⎢⎢⎢⎢⎣
1 −1
0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦
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𝑣1 is base variables and 𝑣2 = 𝑡 is free variable. First row gives 𝑣1 = 𝑡. Hence the first
eigenvector is

�⃗�1 =

⎡
⎢⎢⎢⎢⎢⎣
𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎥⎦

Or for 𝑡 = 1

�⃗�1 =

⎡
⎢⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎥⎦

The first basis vector solution is therefore

�⃗�1(𝑡) = 𝑒𝜆1𝑡 �⃗�1

= 𝑒𝑡
⎡
⎢⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡

𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ (1)

𝜆1 = 3

⎡
⎢⎢⎢⎢⎢⎣
2 − 𝜆 −1
−1 2 − 𝜆

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−1 −1
−1 −1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎣
−1 −1
0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑣1 is base variables and 𝑣2 = 𝑡 is free variable. First row gives 𝑣1 = −𝑡. Hence the second
eigenvector is

�⃗�2 =

⎡
⎢⎢⎢⎢⎢⎣
−𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

Or for 𝑡 = 1

�⃗�2 =

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦
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The second basis vector solution is therefore

�⃗�2(𝑡) = 𝑒𝜆2𝑡 �⃗�2

= 𝑒3𝑡
⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
−𝑒3𝑡

𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦ (2)

From (1,2), the homogeneous is

�⃗�ℎ(𝑡) = 𝑐1�⃗�1(𝑡) + 𝑐2�⃗�2(𝑡)

= 𝑐1

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡

𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎢⎣
−𝑒3𝑡

𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦ (2A)

The Wronskian can be used to show that �⃗�1(𝑡), �⃗�2(𝑡) are linearly independent

𝑊(𝑡) =
�
�
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡
�
�
= 𝑒4𝑡 + 𝑒4𝑡 = 2𝑒4𝑡

Which is not zero at a point, say at 𝑡 = 0. Variation of parameters is now used to find
the particular solution �⃗�𝑝(𝑡). The fundamental matrix is the matrix whose columns are
�⃗�1(𝑡), �⃗�2(𝑡)

Φ = ��⃗�1(𝑡) �⃗�2(𝑡)�

=

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦

Therefore

�⃗�𝑝(𝑡) = Φ�Φ−1�⃗�(𝑡)𝑑𝑡

=

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦�

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣
0

4𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ 𝑑𝑡 (3)

But

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎣
𝑒3𝑡 𝑒3𝑡

−𝑒𝑡 𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦

|Φ|
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And

|Φ| =
�
�
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡
�
�
= 𝑒4𝑡 + 𝑒4𝑡 = 2𝑒4𝑡

Therefore ⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦

−1

=
1
2

⎡
⎢⎢⎢⎢⎢⎣
𝑒−𝑡 𝑒−𝑡

−𝑒−3𝑡 𝑒−3𝑡

⎤
⎥⎥⎥⎥⎥⎦

Substituting the above in (3) gives

�⃗�𝑝(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦
1
2 �

⎡
⎢⎢⎢⎢⎢⎣
𝑒−𝑡 𝑒−𝑡

−𝑒−3𝑡 𝑒−3𝑡

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0

4𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ 𝑑𝑡

But

⎡
⎢⎢⎢⎢⎢⎣
𝑒−𝑡 𝑒−𝑡

−𝑒−3𝑡 𝑒−3𝑡

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0

4𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

4

4𝑒−2𝑡

⎤
⎥⎥⎥⎥⎥⎦. Hence the above becomes

�⃗�𝑝(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦�

⎡
⎢⎢⎢⎢⎢⎣

2

2𝑒−2𝑡

⎤
⎥⎥⎥⎥⎥⎦ 𝑑𝑡

Carrying the integration element by element gives

�⃗�𝑝(𝑡) =

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫ 2𝑑𝑡

∫ 2𝑒−2𝑡𝑑𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡 −𝑒3𝑡

𝑒𝑡 𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
2𝑡

−𝑒−2𝑡

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
2𝑡𝑒𝑡 + 𝑒𝑡

2𝑡𝑒𝑡 − 𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ (4)

Substituting (2A) and (4) into �⃗�(𝑡) = �⃗�ℎ (𝑡) + �⃗�𝑝(𝑡) gives the final solution as

�⃗�(𝑡) = 𝑐1

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑡

𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎢⎣
−𝑒3𝑡

𝑒3𝑡

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
2𝑡𝑒𝑡 + 𝑒𝑡

2𝑡𝑒𝑡 − 𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑐1𝑒𝑡 − 𝑐2𝑒3𝑡 + 2𝑡𝑒𝑡 + 𝑒𝑡

𝑐1𝑒𝑡 + 𝑐2𝑒3𝑡 + 2𝑡𝑒𝑡 − 𝑒𝑡

⎤
⎥⎥⎥⎥⎥⎥⎦

Or

𝑥1(𝑡) = 𝑐1𝑒𝑡 − 𝑐2𝑒3𝑡 + 2𝑡𝑒𝑡 + 𝑒𝑡

𝑥2(𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒3𝑡 + 2𝑡𝑒𝑡 − 𝑒𝑡
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