Math2520-01

Assignment I
INSTRUCTION: Show all the necessary work. Writ your answer on a separate sheet preferably hand written clear and legible. Post your answer sheet on D2L by Monday June 6. Late June 7.

1. Determine the order of the differential equation.
a) $\left(\frac{d y}{d x}\right)^{3}+y^{2}=\sin x$
b) $t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+2 y=\sin (t)$
2. Verify that for $t>0, y(t)=\ln t$ is a solution to the differential equation

$$
2\left(\frac{d y}{d t}\right)^{3}=\frac{d^{3} y}{d t^{3}} .
$$

3. Determine whether the differential equation is linear or nonlinear.
a) $\frac{d^{3} y}{d x^{3}}+4 \frac{d^{2} y}{d x^{2}}+\sin x \frac{d y}{d x}=x y^{2}+\tan x$.
b) $t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+2 y=\sin (t)$
4. Prove (show) that the initial-value problem

$$
y^{\prime}=x \sin (x+y), \quad y(0)=1
$$

has a unique solution using the existence and uniqueness theorem.
5. Let

$$
y^{\prime}=(y-2)(y+1) .
$$

a) Determine all equilibrium solutions.
b) Determine the region in the xy-plane where the solutions are increasing, and where the solutions are decreasing.
c)
6. Solve the following differential equations.
a) $\frac{d y}{d x}=\frac{y}{x \ln x}$
b) $\left(x^{2}+1\right) y^{\prime}+y^{2}=-1, y(0)=1$
7. Solve the following differential equations.
a) $\frac{d y}{d x}+\frac{2}{x} y=5 x^{2}, x>0$.
b) $t \frac{d x}{d t}+2 x=4 e^{t}, t>0$
8. A container initially containing 10 L of water in which there is 20 g of salt dissolved. A solution containing $4 \mathrm{~g} / \mathrm{L}$ of salt is pumped into the container at a rate of $2 \mathrm{~L} / \mathrm{min}$, and the well-stilled mixture runs out at a rate of $1 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank after 40 \min ?
9. Consider the RC circuit (See page 65 in the text) which has $\mathrm{R}=5 \Omega, \mathrm{C}=\frac{1}{50} \mathrm{~F}$ and $E(t)=100 \mathrm{~V}$. If the capacitor is uncharged initially, determine the current in the circuit for $t \geq 0$.
10. Solve the initial-value problem.

$$
\frac{d y}{d x}=\frac{2 x-y}{x+4 y}, \quad y(1)=1
$$

11. Solve the given differential equation.

$$
y^{\prime}+2 x^{-1} y=6 y^{2} x^{4}
$$

12. Determine whether the given differential equation is exact. Show the work.

$$
2 x e^{y} d x+\left(3 y^{2}+x^{2} e^{y}\right) d y=0
$$

13. Solve the given differential equation.

$$
\left(y^{2}+\cos x\right) d x+(2 x y+\sin y) d y=0
$$

14. Determine an integrating factor for the given differential equation and hence find the general solution.

$$
(x y-1) d x+x^{2} d y=0
$$

