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1 Problem 1

Determine the order of the differential equation a) �𝑑𝑦𝑑𝑥�
3
+ 𝑦2 = sin 𝑥, b) 𝑡2 𝑑

2𝑦
𝑑𝑡2 + 𝑡

𝑑𝑦
𝑑𝑡 + 2𝑦 =

sin(𝑡)

Solution

For (a), the order is one. Since highest derivative 𝑑𝑦
𝑑𝑥 is of order one. For (b) the order is

second. Since highest derivative 𝑑2𝑦
𝑑𝑡2 is of order two.

2 Problem 2

Verify for 𝑡 > 0, 𝑦(𝑡) = ln 𝑡 is a solution to 2 �𝑑𝑦𝑑𝑡 �
3
= 𝑑3𝑦

𝑑𝑡3

Solution

The verification is done by substituting the solution into the ODE, if the result is an
identity (both sides of the equation are the same), then it is verified, otherwise it is not.
Since solution is 𝑦(𝑡) = ln 𝑡 then 𝑑𝑦

𝑑𝑡 =
1
𝑡 and 𝑑2𝑦

𝑑𝑡2 =
−1
𝑡2 and 𝑑3𝑦

𝑑𝑡3 =
2
𝑡3 . Substituting these into

the ODE gives

2 �
1
𝑡 �

3

=
2
𝑡3

2
𝑡3
=
2
𝑡3

Which is an identity. Hence 𝑦(𝑡) = ln 𝑡 is a solution to the ODE.

3 Problem 3
Determine whether the differential equation is linear or nonlinear a) 𝑦′′′ +4𝑦′′ + sin 𝑥𝑦′ =
𝑥𝑦2 + tan 𝑥, b) 𝑡2𝑦′′ + 𝑡𝑦′ + 2𝑦 = sin 𝑡

Solution

ODE (a) is not linear, due to presence of the term 𝑦2 while ODE (b) is linear, since all
derivative terms of the dependent variable and the dependent variable are linear.
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4 Problem 4

Prove (show) that the initial-value problem 𝑦′ = 𝑥 sin �𝑥 + 𝑦�, 𝑦(0) = 1 has a unique
solution using the existence and uniqueness theorem

Solution

Writing the ODE as

𝑦′ = 𝑥 sin �𝑥 + 𝑦�

= 𝑓 �𝑥, 𝑦�

Shows that 𝑓 �𝑥, 𝑦� is continuous everywhere, since 𝑥 and sin function are continuous
everywhere. And

𝜕𝑓
𝜕𝑦

= 𝑥 cos �𝑥 + 𝑦�

Which is also continuous everywhere. This shows there exists an interval 𝐼 which must
contain 𝑥0 = 0where the initial value ODE given above has a solution and the solution is
unique for all 𝑥 in 𝐼.



4

5 Problem 5

Let 𝑦′ = �𝑦 − 2� �𝑦 + 1�. a) Determine all equilibrium solutions. b) Determine the region in
the xy-plane where the solutions are increasing, and where the solutions are decreasing.

Solution

5.1 Part a
The equilibrium solutions are given by solution to 𝑦′ = 0 which gives 𝑦 = 2, 𝑦 = −1.

5.2 Part b
The equilibrium solutions divide the solution domain into three regions. One is 𝑦 > 2
and one is where −1 < 𝑦 < 2 and one where 𝑦 < −1.

When 𝑦 > 2, we see that �𝑦 − 2� �𝑦 + 1� is always positive. Hence 𝑦′ is positive, which
means the solution is increasing.

When 𝑦 < −1, then �𝑦 − 2� < 0 and also �𝑦 + 1� < 0. Hence the product is positive, This
means for 𝑦 < −1, the slope is positive and the solution is increasing.

For −1 < 𝑦 < 2, the term �𝑦 − 2� is negative and the term �𝑦 + 1� is positive. Hence the
product is negative. This means the slope is negative and the solution is decreasing.
Therefore

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑦 > 2 increasing

−1 < 𝑦 < 2 decreasing

𝑦 < −1 increasing
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To verify this, the following is a plot of the solution curves. It shows the 3 regions which
agrees with the above result.
restart;
ode:=diff(y(x),x)=(y(x)-2)*(y(x)+1):
p1:=DEtools:-DEplot(ode,y(x),x=-4..4, y=-4..4):
p2:=plot([-1,2],x=-4..4,color=blue):
plots:-display([p1,p2],axes=boxed, scaling=constrained,title="Regions of

solution")

Figure 1: Solution curves
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6 Problem 6

Solve the following differential equations a) 𝑑𝑦
𝑑𝑥 =

𝑦
𝑥 ln 𝑥 . b) �𝑥

2 + 1� 𝑦′ + 𝑦2 = −1, 𝑦(0) = 1

Solution

6.1 Part a
This is separable ODE, it can be written as

𝑑𝑦
𝑦
=

𝑑𝑥
𝑥 ln 𝑥

Integrating gives

ln �𝑦� = �
𝑑𝑥
𝑥 ln 𝑥

+ 𝐶1

To find ∫ 𝑑𝑥
𝑥 ln 𝑥 , we notice that, by definition 𝑑

𝑑𝑥 ln (ln 𝑥) =
𝑑
𝑑𝑥 ln 𝑥

ln 𝑥 = 1
𝑥 ln 𝑥 . This shows that

ln (ln 𝑥) is the antiderivative. Hence the above becomes

ln �𝑦� = ln (ln |𝑥|) + 𝐶1

Taking the exponential of both sides gives

𝑦 = 𝐶𝑒ln(ln|𝑥|)

Where the sign is absorbed by the constant 𝐶. Hence

𝑦 = 𝐶 ln 𝑥

6.2 Part b
The ODE is

𝑦′ =
−1

�𝑥2 + 1�
−

𝑦2

�𝑥2 + 1�

=
�−1 − 𝑦2�

�𝑥2 + 1�

=
−1

�𝑥2 + 1�
�1 + 𝑦2�

This is now separable.
𝑑𝑦

�1 + 𝑦2�
=

−𝑑𝑥
�𝑥2 + 1�
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Integrating gives
arctan(𝑦) = − arctan(𝑥) + 𝐶

or

𝑦 = − tan (arctan(𝑥) + 𝐶) (1)

Applying initial conditions 𝑦(0) = 1 to the above gives

1 = − tan (arctan(0) + 𝐶)
= − tan(𝐶)

Hence 𝐶 = −𝜋
4 . Therefore the general solution (1) becomes

𝑦 = − tan �arctan(𝑥) −
𝜋
4
�

= tan �
𝜋
4
− arctan(𝑥)�
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7 Problem 7

Solve the following differential equations a) 𝑑𝑦
𝑑𝑥 +

2
𝑥𝑦 = 5𝑥

2, 𝑥 > 0, b) 𝑡𝑑𝑥𝑑𝑡 + 2𝑥 = 4𝑒
𝑡, 𝑡 > 0

Solution

7.1 Part a

This is a linear ODE in 𝑦. It is of the form 𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥), where 𝑝(𝑥) = 2
𝑥 , 𝑞 (𝑥) = 5𝑥2.

Hence the integrating factor is 𝐼 = 𝑒∫𝑝(𝑥)𝑑𝑥 = 𝑒∫
2
𝑥𝑑𝑥 = 𝑒2 ln 𝑥 or 𝐼 = 𝑥2. Multiplying both

sides by this integrating factor make the LHS complete differential giving

𝑑
𝑑𝑥
�𝐼𝑦� = 𝐼 �5𝑥2�

𝑑
𝑑𝑥
�𝑦𝑥2� = 5𝑥4

𝑦𝑥2 = �5𝑥4𝑑𝑥

𝑦𝑥2 = 5
𝑥5

5
+ 𝐶

𝑦𝑥2 = 𝑥5 + 𝐶

𝑦 = 𝑥3 +
𝐶
𝑥2

𝑥 ≠ 0

The above is the general solution.

7.2 Part b
Writing the ODE as

𝑑𝑥
𝑑𝑡
+
2
𝑡
𝑥 = 4

𝑒𝑡

𝑡
𝑡 ≠ 0

Show this is a linear ODE in 𝑥. It is of the form 𝑥′ + 𝑝 (𝑡) 𝑥 = 𝑞(𝑡), where 𝑝(𝑡) = 2
𝑡 , 𝑞(𝑡) = 4

𝑒𝑡

𝑡 .

Hence the integrating factor is 𝐼 = 𝑒∫𝑝(𝑡)𝑑𝑡 = 𝑒∫
2
𝑡 𝑑𝑡 = 𝑒2 ln 𝑡 or 𝐼 = 𝑡2. Multiplying both sides

by this integrating factor make the LHS complete differential giving

𝑑
𝑑𝑡
�𝑥𝑡2� = 4𝑡𝑒𝑡

Integrating gives

𝑥𝑡2 = 4�𝑡𝑒𝑡𝑑𝑡 (1)
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Integration by parts. ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 = 𝑡, 𝑑𝑣 = 𝑒𝑡, 𝑑𝑢 = 𝑑𝑡, 𝑣 = 𝑒𝑡, therefore

�𝑡𝑒𝑡𝑑𝑡 = 𝑡𝑒𝑡 −�𝑒𝑡𝑑𝑡

= 𝑡𝑒𝑡 − 𝑒𝑡

Hence (1) becomes
𝑥𝑡2 = 4 �𝑡𝑒𝑡 − 𝑒𝑡� + 𝐶

Where 𝐶 is constant of integration. Therefore

𝑥(𝑡) =
4 �𝑡𝑒𝑡 − 𝑒𝑡�

𝑡2
+
𝐶
𝑡2

=
4𝑒𝑡 (𝑡 − 1)

𝑡2
+
𝐶
𝑡2

𝑡 ≠ 0
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8 Problem 8
A container initially containing 10 L of water in which there is 20 g of salt dissolved. A
solution containing 4 g/L of salt is pumped into the container at a rate of 2 L/min, and
the well-stilled mixture runs out at a rate of 1 L/min. How much salt is in the tank after
40min?

Solution

2 Litre/Min

salt: 4 g/Litre
10 L of fresh water

1 Litre/Min

Salt: x(t)
V (t)V (t), x(t)

x(t) is mass of salt in the tank at time t

20 g of salt

V (t) is volume of water in tank at time t

Initial conditions

Figure 2: Showing tank flow

Let 𝑥(𝑡) be mass of salt (in grams) in tank at time 𝑡. Let 𝑉(𝑡) be the volume of water (in
litre) in the tank at time 𝑡. Using the equilibrium equation for change of mass of salt

𝑑𝑥
𝑑𝑡
= rate of salt mass in − rate of salt mass out

Which becomes

𝑑𝑥
𝑑𝑡
= �2

L
min�

�4
g
L
� − �1

L
min� �

𝑥(𝑡)
𝑉(𝑡)

g
L�

= 8 −
𝑥(𝑡)
𝑉(𝑡)

(1)

But

𝑉(𝑡) = 𝑉(0) + (rate of mixture volume in − rate of mixture volume out) 𝑡
= 𝑉(0) + (2 − 1) 𝑡
= 𝑉(0) + 𝑡
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But we are given that 𝑉(0) = 10 L. Hence

𝑉(𝑡) = 10 + 𝑡

Substituting the above in (1) gives

𝑑𝑥
𝑑𝑡
= 8 −

𝑥
10 + 𝑡

The solution to above ODE gives the mass 𝑥 of salt in tank at time 𝑡.

𝑑𝑥
𝑑𝑡
+

𝑥
10 + 𝑡

= 8

This is linear ODE. The integrating factor is 𝐼 = 𝑒∫
1

10+𝑡𝑑𝑡 = 𝑒ln(10+𝑡) = 10 + 𝑡. Multiplying
both sides of the above ODE by this integrating factor gives

𝑑
𝑑𝑡
((10 + 𝑡) 𝑥) = 8 (10 + 𝑡)

Integrating gives

(10 + 𝑡) 𝑥 = 8� (10 + 𝑡) 𝑑𝑡

= 8 �10𝑡 +
𝑡2

2 �
+ 𝐶

Hence

𝑥 = 8
𝑡 �10 + 𝑡

2
�

(10 + 𝑡)
+

𝐶
(10 + 𝑡)

= 4
𝑡 (20 + 𝑡)
(10 + 𝑡)

+
𝐶

(10 + 𝑡)
(1)

At 𝑡 = 0, we are given that 𝑥(0) = 20 (g). Hence the above becomes

20 =
𝐶
10

𝐶 = 200

Therefore (1) becomes

𝑥 = 4
𝑡 (20 + 𝑡)
(10 + 𝑡)

+
200

(10 + 𝑡)
(2)

At 𝑡 = 40, the above gives

𝑥 (40) = 4
40 (20 + 40)
(10 + 40)

+
200

(10 + 40)
= 196 grams
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9 Problem 9

Consider the RC circuit (See page 65 in the text) which has 𝑅 = 5Ω,𝐶 = 1
50𝐹 and 𝐸(𝑡) =

100𝑉. If the capacitor is uncharged initially, determine the current in the circuit for 𝑡 ≥ 0.

Solution

The equation for RC circuit is given by equation 1.7.16 in the text book as

𝑑𝑞
𝑑𝑡
+

1
𝑅𝐶

𝑞 =
𝐸(𝑡)
𝑅

Where 𝑞(𝑡) is the charge on the plates of the capacitor We are told that at 𝑡 = 0, 𝑞 = 0.
Using the numerical values given, the above ODE becomes

𝑑𝑞
𝑑𝑡
+

1

5 � 1
50
�
𝑞 =

100
5

𝑑𝑞
𝑑𝑡
+ 10𝑞 = 20

This is linear ODE in 𝑞. The integrating factor is 𝐼 = 𝑒∫10𝑑𝑡 = 𝑒10𝑡. Multiplying both sides
by this integrating factor gives

𝑑
𝑑𝑡
�𝑞𝑒10𝑡� = 20𝑒10𝑡

Integrating

𝑞𝑒10𝑡 = 20�𝑒10𝑡𝑑𝑡

= 20
𝑒10𝑡

10
+ 𝐶

Hence
𝑞(𝑡) = 2 + 𝐶𝑒−10𝑡

Using initial conditions 𝑞(0) = 0 shows that 0 = 2 + 𝐶 or 𝐶 = −2. Hence

𝑞(𝑡) = 2 − 2𝑒−10𝑡

= 2 �1 − 𝑒−10𝑡�

Hence the current in the circuit is

𝑖(𝑡) =
𝑑𝑞
𝑑𝑡

= 2
𝑑
𝑑𝑡
�1 − 𝑒−10𝑡�

= 2 �10𝑒−10𝑡�
= 20𝑒−10𝑡
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10 Problem 10
Solve the initial-value problem

𝑑𝑦
𝑑𝑥

=
2𝑥 − 𝑦
𝑥 + 4𝑦

𝑦(1) = 1

Solution

Let us first check if a solution exists, and unique. 𝑓 �𝑥, 𝑦� = 2𝑥−𝑦
𝑥+4𝑦 . This is continuos for all

𝑥, 𝑦 except when 𝑦 = −1
4𝑥. And 𝜕𝑓

𝜕𝑦 =
−9𝑥

�𝑥+4𝑦�
2 . This is also continuos for all 𝑥, 𝑦 except when

𝑦 = −1
4𝑥. Since initial conditions satisfies 𝑦 ≠ −1

4𝑥, then there is an interval 𝐼 that includes
𝑥0 = 0 where a solution exists and is unique for all 𝑥 in this interval. Now we can solve
the ODE.

Let 𝑣 = 𝑦
𝑥 . Hence 𝑦 = 𝑥𝑣. Therefore 𝑑𝑦

𝑑𝑥 = 𝑣 + 𝑥
𝑑𝑣
𝑑𝑥 . The given ODE can be written as

𝑑𝑦
𝑑𝑥

=
2 − 𝑦

𝑥

1 + 4𝑦𝑥
𝑥 ≠ 0

In terms of the new dependent variable 𝑣(𝑥), the above becomes

𝑣 + 𝑥
𝑑𝑣
𝑑𝑥

=
2 − 𝑣
1 + 4𝑣

𝑥
𝑑𝑣
𝑑𝑥

=
2 − 𝑣
1 + 4𝑣

− 𝑣

=
(2 − 𝑣) − 𝑣 (1 + 4𝑣)

1 + 4𝑣

=
2 − 𝑣 − 𝑣 − 4𝑣2

1 + 4𝑣

=
2 − 2𝑣 − 4𝑣2

1 + 4𝑣
The above ODE is separable. Therefore

1 + 4𝑣
2 − 2𝑣 − 4𝑣2

𝑑𝑣 =
1
𝑥
𝑑𝑥

Integrating gives

�
1 + 4𝑣

2 − 2𝑣 − 4𝑣2
𝑑𝑣 = �

1
𝑥
𝑑𝑥

We notice that 𝑑
𝑑𝑥 ln �2 − 2𝑣 − 4𝑣

2� = −2−8𝑣
2−2𝑣−4𝑣2 . Therefore −

1
2
𝑑
𝑑𝑥 ln �2 − 2𝑣 − 4𝑣

2� = 1+4𝑣
2−2𝑣−4𝑣2

which is the integrand. This shows that −1
2 ln �2 − 2𝑣 − 4𝑣

2� is the anti derivative of the
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integral of the LHS above. Therefore the above becomes

−
1
2
ln �2 − 2𝑣 − 4𝑣2� = ln 𝑥 + 𝐶1

ln �2 − 2𝑣 − 4𝑣2� = −2 ln 𝑥 − 2𝐶1

2 − 2𝑣 − 4𝑣2 = 𝑒−2𝐶1
1
𝑥2

Let 𝑐 = 𝑒−2𝐶1 be new constant. The above becomes

2 − 2𝑣 − 4𝑣2 =
𝑐
𝑥2

4𝑣2 + 2𝑣 − 2 +
𝑐
𝑥2
= 0

𝑣2 +
1
2
𝑣 −

1
2
+

𝑐
4𝑥2

= 0

Solving for 𝑣 gives

𝑣 = −
𝑏
2𝑎
±
1
2𝑎
√𝑏2 − 4𝑎𝑐

= −
1
4
±
1
2�

1
4
− 4 �−

1
2
+

𝑐
4𝑥2 �

= −
1
4
±
1
2�

1
4
+ 2 −

𝑐
𝑥2

= −
1
4
±
1
2�

9
4
−
𝑐
𝑥2

= −
1
4
±
1
2�

9𝑥2 − 4𝑐
4𝑥2

= −
1
4
±
1
4𝑥
√9𝑥2 − 4𝑐 𝑥 > 0

Since 𝑣 = 𝑦
𝑥 , then there are two general solutions

𝑦1(𝑥) = −
1
4
+
1
4𝑥
√9𝑥2 − 4𝑐

𝑦2(𝑥) = −
1
4
−
1
4𝑥
√9𝑥2 − 4𝑐
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Initial conditions are now used to find a particular soluton. For 𝑦1(𝑥)

1 = −
1
4
+
1
4√

9 − 4𝑐

5
4
=
1
4√

9 − 4𝑐

5 = √9 − 4𝑐
25 = 9 − 4𝑐
𝑐 = −4

Hence one solution is
𝑦1(𝑥) = −

𝑥
4
+
1
4
√9𝑥2 + 16

And for 𝑦2(𝑥)

1 = −
1
4
−
1
4√

9 − 4𝑐

5
4
= −

1
4√

9 − 4𝑐

−5 = √9 − 4𝑐

There is no solution for 𝑐 in this equation since sqrt of a real number must be positive
(principal root). Hence the only particular solution is the first one which is

𝑦1(𝑥) = −
𝑥
4 +

1
4√9𝑥

2 + 16

The above verifies the existence and uniqueness theorem, as only one solution is found
which includes 𝑥0 = 1.
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11 Problem 11
Solve the given differential equation

𝑦′ + 2
𝑦
𝑥
= 6𝑦2𝑥4

Solution

In canonical form the ODE is
𝑦′ = −

2
𝑥
𝑦 + 6𝑥4𝑦2

We see that this is Bernoulli ODE of the form 𝑦′ = 𝑝 (𝑥) 𝑦 + 𝑞(𝑥)𝑦𝑛 where 𝑛 = 2. Dividing
both sides by 𝑦2 gives

𝑦′

𝑦2
+
2
𝑥
1
𝑦
= 6𝑥4

Let 𝑣 = 1
𝑦 . Then

𝑑𝑣
𝑑𝑥 = −

1
𝑦2

𝑑𝑦
𝑑𝑥 . Or 𝑑𝑦

𝑑𝑥 = −𝑦
2 𝑑𝑣
𝑑𝑥 . Substituting this in the above ODE gives

−𝑦2
𝑑𝑣
𝑑𝑥

1
𝑦2
+
2
𝑥
𝑣 = 6𝑥4

𝑑𝑣
𝑑𝑥
−
2
𝑥
𝑣 = −6𝑥4

This is now linear in 𝑣. The integrating factor is 𝐼 = 𝑒∫− 2
𝑥𝑑𝑥 = 𝑒−2 ln 𝑥 = 1

𝑥2 . Multiplying both
sides by this integrating factor gives

𝑑
𝑑𝑥
�
𝑣
𝑥2
� = −6𝑥2

Integrating

𝑣
𝑥2
= −6�𝑥2𝑑𝑥 + 𝐶

= −2𝑥3 + 𝐶
𝑣 = −2𝑥5 + 𝐶𝑥2

But 𝑦 = 1
𝑣 . Therefore the final solution is

𝑦(𝑥) =
1

−2𝑥5 + 𝐶𝑥2
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12 Problem 12
Determine whether the given differential equation is exact

2𝑥𝑒𝑦𝑑𝑥 + �3𝑦2 + 𝑥2𝑒𝑦� 𝑑𝑦 = 0

Solution

Writing the ODE as
𝑀�𝑥, 𝑦� 𝑑𝑥 + 𝑁 �𝑥, 𝑦� 𝑑𝑦 = 0

Where

𝑀 = 2𝑥𝑒𝑦

𝑁 = 3𝑦2 + 𝑥2𝑒𝑦

Therefore

𝜕𝑀
𝜕𝑦

= 2𝑥𝑒𝑦

𝜕𝑁
𝜕𝑥

= 2𝑥𝑒𝑦

Since 𝜕𝑀
𝜕𝑦 =

𝜕𝑁
𝜕𝑥 then the ode is exact.
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13 Problem 13
Solve the given differential equation

�𝑦2 + cos 𝑥� 𝑑𝑥 + �2𝑥𝑦 + sin 𝑦� 𝑑𝑦 = 0 (1)

Solution

The first step is to determine if the ODE is exact or not. Writing the ODE as

𝑀�𝑥, 𝑦� 𝑑𝑥 + 𝑁 �𝑥, 𝑦� 𝑑𝑦 = 0

Therefore
𝜕𝑀
𝜕𝑦

= 2𝑦

𝜕𝑁
𝜕𝑥

= 2𝑦

Since 𝜕𝑀
𝜕𝑦 =

𝜕𝑁
𝜕𝑥 , then the ODE is exact. This implies there exists potential function 𝜙 �𝑥, 𝑦�

such that its differential is

𝑑𝜙 =
𝜕𝜙
𝜕𝑥
𝑑𝑥 +

𝜕𝜙
𝜕𝑦
𝑑𝑦 (2)

= 0

This implies 𝜙 �𝑥, 𝑦� = 𝐶1. Comparing (1,2) shows that

𝜕𝜙
𝜕𝑥

= 𝑀 (3)

𝜕𝜙
𝜕𝑦

= 𝑁 (4)

Integrating (3) w.r.t. 𝑥 gives
𝜙 = �𝑀𝑑𝑥 + 𝑓(𝑦)

Where 𝑓(𝑦) acts as the integration constant, but since 𝜙 depends on both 𝑥, 𝑦, it becomes
an arbitrary function of 𝑦 instead. The above becomes

𝜙 = ��𝑦2 + cos 𝑥� 𝑑𝑥 + 𝑓(𝑦)

= 𝑥𝑦2 + sin 𝑥 + 𝑓(𝑦) (5)

Taking derivative w.r.t. 𝑦 of the above gives

𝜕𝜙
𝜕𝑦

= 2𝑥𝑦 + 𝑓′(𝑦) (6)
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Comparing (6) and (4) shows that

𝑁 = 2𝑥𝑦 + 𝑓′(𝑦)
2𝑥𝑦 + sin 𝑦 = 2𝑥𝑦 + 𝑓′(𝑦)

sin 𝑦 = 𝑓′(𝑦)

Therefore 𝑓(𝑦) = − cos 𝑥 + 𝐶2 where 𝐶2 is arbitrary constant. Substituting 𝑓(𝑦) back in (5)
gives

𝜙 �𝑥, 𝑦� = 𝑥𝑦2 + sin 𝑥 − cos 𝑥 + 𝐶2

But since 𝜙 �𝑥, 𝑦� is a constant function, say 𝐶1 then the above becomes

𝑥𝑦2 + sin 𝑥 − cos 𝑥 = 𝐶

Where the constants 𝐶1, 𝐶2 are combined to one constant 𝐶. The above is the solution
to the ODE. It can be left in implicit form as the above, or we can solve for 𝑦 explicitly.
Solving for 𝑦 gives

𝑦2 =
𝐶 + cos 𝑥 − sin 𝑥

𝑥
Hence

𝑦(𝑥) = ±
�
𝐶 + cos 𝑥 − sin 𝑥

𝑥
𝑥 ≠ 0
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14 Problem 14
Determine an integrating factor for the given differential equation and hence find the
general solution

�𝑥𝑦 − 1� 𝑑𝑥 + 𝑥2𝑑𝑦 = 0 (1)

Solution

Writing the ODE as
𝑀�𝑥, 𝑦� 𝑑𝑥 + 𝑁 �𝑥, 𝑦� 𝑑𝑦 = 0

Where

𝑀 = 𝑥𝑦 − 1
𝑁 = 𝑥2

Therefore
𝜕𝑀
𝜕𝑦

= 𝑥

𝜕𝑁
𝜕𝑥

= 2𝑥

Since 𝜕𝑀
𝜕𝑦 ≠

𝜕𝑁
𝜕𝑥 then the ode is not exact. Applying theorem 1.9.11 part(1).

𝑀𝑦 − 𝑁𝑥

𝑁
=
𝑥 − 2𝑥
𝑥2

= −
1
𝑥

= 𝑓(𝑥)

Since this depends on 𝑥 only, then there exists an integrating factor that depends on 𝑥
only which makes the ODE exact. The integrating factor is therefore

𝐼 = 𝑒∫𝑓(𝑥)𝑑𝑥

= 𝑒∫− 1
𝑥𝑑𝑥

= 𝑒− ln 𝑥

=
1
𝑥

Multiplying the given ODE (1) by this integrating factor gives

1
𝑥
�𝑥𝑦 − 1� 𝑑𝑥 +

1
𝑥
𝑥2𝑑𝑦 = 0

�𝑦 −
1
𝑥�
𝑑𝑥 + 𝑥𝑑𝑦 = 0
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Where now

𝑀 = 𝑦 −
1
𝑥

𝑁 = 𝑥

Let us first verify the above is indeed exact.

𝜕𝑀
𝜕𝑦

= 1

𝜕𝑁
𝜕𝑥

= 1

This shows it is exact as expected. Hence now we need to find 𝜙 �𝑥, 𝑦� by solving the
following two equations

𝜕𝜙
𝜕𝑥

= 𝑀 = 𝑦 −
1
𝑥

(3)

𝜕𝜙
𝜕𝑦

= 𝑁 = 𝑥 (4)

Integrating (3) w.r.t. 𝑥 gives
𝜙 = �𝑀𝑑𝑥 + 𝑓(𝑦)

Where 𝑓(𝑦) acts as the integration constant, but since 𝜙 depends on both 𝑥, 𝑦, it becomes
an arbitrary function of 𝑦 instead. The above becomes

𝜙 = ��𝑦 −
1
𝑥�
𝑑𝑥 + 𝑓(𝑦)

= 𝑥𝑦 − ln 𝑥 + 𝑓(𝑦) (5)

Taking derivative w.r.t. 𝑦 of the above gives

𝜕𝜙
𝜕𝑦

= 𝑥 + 𝑓′(𝑦) (6)

Comparing (6) and (4) shows that

𝑁 = 𝑥 + 𝑓′(𝑦)
𝑥 = 𝑥 + 𝑓′(𝑦)
0 = 𝑓′(𝑦)

Therefore 𝑓(𝑦) = 𝐶2 where 𝐶2 is arbitrary constant. Substituting 𝑓(𝑦) back in (5) gives

𝜙 �𝑥, 𝑦� = 𝑥𝑦 − ln 𝑥 + 𝐶2
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But since 𝜙 �𝑥, 𝑦� is a constant function, say 𝐶1 then the above becomes

𝑥𝑦 − ln 𝑥 = 𝐶

Where the constants 𝐶1, 𝐶2 are combined to one constant 𝐶. Solving for 𝑦 gives

𝑦 = 𝐶+ln 𝑥
𝑥

Where 𝑥 ≠ 0
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15 Marks per problem

Figure 3: marks
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