HW 6 Mathematics 503, Mathematical Modeling, CSUF , June 24, 2007

Nasser M. Abbasi

June 15, 2014

Contents

1 Problem 1 (section 3.5,\#9, page 197) 1
2 Problem 1 (section 3.5,\#9, page 197) 7

1 Problem 1 (section 3.5,\#9, page 197)

problem:
Consider a simple plane pendulum with a bob of mass m attached to a string of length l. After the pendulum is set in motion the string is shortened by a constant rate $\frac{d l}{d t}=-\alpha$. Formulate Hamilton's principle and determine the equation of motion. Compare the Hamiltonian to the total energy. Is energy conserved?

Solution:

$\frac{d l}{d t}=-\alpha$

Assume initial string length is l, and assume $t(0)=0$, then at time t we have

$$
r(t)=l-\alpha t
$$

K.E. First note that

$$
\begin{aligned}
\dot{x} & =\frac{d}{d t}(r(t) \sin \theta(t)) \\
& =\dot{r} \sin \theta+r \cos \theta \dot{\theta}
\end{aligned}
$$

and

$$
\begin{aligned}
\dot{y} & =\frac{d}{d t}(r(t) \cos \theta(t)) \\
& =\dot{r} \cos \theta-r \sin \theta \dot{\theta}
\end{aligned}
$$

Now

$$
\begin{aligned}
T & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& =\frac{1}{2} m\left((\dot{r} \sin \theta+r \cos \theta \dot{\theta})^{2}+(\dot{r} \cos \theta-r \sin \theta \dot{\theta})^{2}\right) \\
& =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \\
& =\frac{1}{2} m\left(\alpha^{2}+r^{2} \dot{\theta}^{2}\right)
\end{aligned}
$$

P.E.

$$
\begin{aligned}
V & =m g l-m g(r \cos \theta) \\
& =m g(l-r \cos \theta)
\end{aligned}
$$

Hence

$$
\begin{aligned}
J(\theta) & =\int_{0}^{T}(T-V) d t \\
& =\int_{0}^{T} \frac{1}{2} m\left(\alpha^{2}+r^{2} \dot{\theta}^{2}\right)-m g(l-r \cos \theta) d t
\end{aligned}
$$

Hence

$$
\begin{equation*}
L(t, \theta(t), \dot{\theta}(t))=\frac{1}{2} m\left(\alpha^{2}+r^{2} \dot{\theta}^{2}\right)-m g(l-r \cos \theta) \tag{1}
\end{equation*}
$$

Hence the Euler-Lagrange equations are

$$
\begin{equation*}
L_{\theta}-\frac{d}{d t}\left(L_{\dot{\theta}}\right)=0 \tag{2}
\end{equation*}
$$

But

$$
L_{\theta}=-m g r \sin \theta
$$

and

$$
L_{\dot{\theta}}=m r^{2} \dot{\theta}
$$

and

$$
\frac{d}{d t}\left(L_{\dot{\theta}}\right)=m\left(2 r \dot{r} \dot{\theta}+r^{2} \ddot{\theta}\right)
$$

But $\dot{r}=-\alpha$, the above becomes

$$
\frac{d}{d t}\left(L_{\dot{\theta}}\right)=m\left(r^{2} \ddot{\theta}-2 r \alpha \dot{\theta}\right)
$$

Hence $L_{\theta}-\frac{d}{d t}\left(L_{\dot{\theta}}\right)=0$ becomes

$$
\begin{aligned}
-m g r \sin \theta-m\left(r^{2} \ddot{\theta}-2 \alpha \dot{\theta} r\right) & =0 \\
r^{2} \ddot{\theta}-2 \alpha \dot{\theta} r+g r \sin \theta & =0
\end{aligned}
$$

Hence the ODE becomes, after dividing by common factor r

$$
r \ddot{\theta}-2 \alpha \dot{\theta}+g \sin \theta=0
$$

This is a second order nonlinear differential equation. Notice that when $l=\alpha t$ it will mean that the string has been pulled all the way back to the pivot and $r(t)=0$. So when running the solution it needs to run from $t=0$ up to $t=\frac{l}{\alpha}$.

A small simulation was done for the above solution which can be run for different parameters to see the effect more easily. Here is a screen shot.

$\theta=45$.
string length $=10$

Now we need to determine the Hamiltonian of the system.

$$
\begin{equation*}
H=-L(t, \theta, \phi(t, \theta, p))+\phi(t, \theta, p) p \tag{3}
\end{equation*}
$$

Where we define a new variable p called the canonical momentum by

$$
\begin{aligned}
p & \equiv L_{\dot{\theta}}(t, \theta, \dot{\theta}) \\
& =m r^{2} \dot{\theta}
\end{aligned}
$$

Hence

$$
\dot{\theta}=\frac{p}{m r^{2}}
$$

This implies that

$$
\phi(t, \theta, p)=\frac{p}{m r^{2}}
$$

Then from (1) and (3), we now calculate H

$$
\begin{aligned}
H & =-L(t, \theta, \phi(t, \theta, p))+\phi(t, \theta, p) p \\
& =-\left\{\frac{1}{2} m\left(\alpha^{2}+r^{2}\left(\frac{p}{m r^{2}}\right)^{2}\right)-m g(l-r \cos \theta)\right\}+\left(\frac{p}{m r^{2}}\right) p \\
& =-\frac{1}{2} m\left(\alpha^{2}+\frac{p^{2}}{m^{2} r^{2}}\right)+m g(l-r \cos \theta)+\frac{p^{2}}{m r^{2}} \\
& =-\frac{1}{2} m \alpha^{2}-\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta)+\frac{p^{2}}{m r^{2}}
\end{aligned}
$$

Hence the Hamiltonian is

$$
\begin{equation*}
H=\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta)-\frac{1}{2} m \alpha^{2} \tag{5}
\end{equation*}
$$

Now we are asked to compare H to the total energy. The total instantaneous energy of the system is $(T+V)$, hence we need to determine if $H=T+V$ or not.

$$
\begin{equation*}
T+V=\frac{1}{2} m\left(\alpha^{2}+r^{2} \dot{\theta}^{2}\right)+m g(l-r \cos \theta) \tag{6}
\end{equation*}
$$

To make comparing (5) and (6) easier, I need to either replace p by $m r^{2} \dot{\theta}$ in (5) or replace $\dot{\theta}$ by $\frac{p}{m r^{2}}$. Lets do the later, hence (6) becomes

$$
\begin{align*}
T+V & =\frac{1}{2} m\left(\alpha^{2}+r^{2}\left(\frac{p}{m r^{2}}\right)^{2}\right)+m g(l-r \cos \theta) \\
& =\frac{1}{2} m\left(\alpha^{2}+\frac{p^{2}}{m^{2} r^{2}}\right)+m g(l-r \cos \theta) \\
& =\frac{1}{2} m \alpha^{2}+\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta) \tag{7}
\end{align*}
$$

If H is the total energy, then (7)-(6) should come out to be zero, lets find out

$$
\begin{aligned}
H-(T+V) & =\left(\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta)-\frac{1}{2} m \alpha^{2}\right)-\left(\frac{1}{2} m \alpha^{2}+\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta)\right) \\
& =-m \alpha^{2}
\end{aligned}
$$

Hence we see that

$$
H-(T+V) \neq 0
$$

Hence H does not represents the total energy, and the
energy of the system is not conserved
. ${ }^{1}$

$$
\begin{align*}
& { }^{1} \text { Reading a reference on Noether's theorem, total energy is written as }-(T+V) \text { not }(T+V) \text {, this would not make a } \\
& \text { difference in showing that } H \neq \text { total energy, just different calculations results as shown below, but the same conclusion } \\
& \qquad \begin{aligned}
-(T+V) & =-\left(\frac{1}{2} m\left(\alpha^{2}+r^{2} \dot{\theta}^{2}\right)+m g(l-r \cos \theta)\right)
\end{aligned} \tag{6}\\
& \text { To make comparing (5) and (6) easier, I need to either replace } p \text { by } m r^{2} \dot{\theta} \text { in (5) or replace } \dot{\theta} \text { by } \frac{p}{m r^{2}} \text {, let do the later, hence } \\
& \text { (6) becomes } \\
& \qquad \begin{aligned}
-(T+V) & =-\left(\frac{1}{2} m\left(\alpha^{2}+r^{2}\left(\frac{p}{m r^{2}}\right)^{2}\right)+m g(l-r \cos \theta)\right) \\
& =-\left(\frac{1}{2} m\left(\alpha^{2}+\frac{p^{2}}{m^{2} r^{2}}\right)+m g(l-r \cos \theta)\right) \\
& =-\left(\frac{1}{2} m \alpha^{2}+\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta)\right)
\end{aligned}
\end{align*}
$$

If H is the total energy, then (7)-(6) should come out to be zero, lets find out

$$
\begin{aligned}
H-(-(T+V)) & =\left(\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta)-\frac{1}{2} m \alpha^{2}\right)+\left(\frac{1}{2} m \alpha^{2}+\frac{1}{2} \frac{p^{2}}{m r^{2}}+m g(l-r \cos \theta)\right) \\
& =\frac{p^{2}}{m r^{2}}+2 m g(l-r \cos \theta)
\end{aligned}
$$

Now we ask, can the above be zero? Since $\frac{p^{2}}{m r^{2}}$ is always ≥ 0, and since $(l-r \cos \theta)$ represents the remaining length of the string, hence it is a positive quantity (until such time the string has been pulled all the way in), Therefore RHS above >0. Hence H does not represent the total energy of the system. Hence the energy is not conserved.

2 Problem 1 (section 3.5,\#9, page 197)

problem: A bead of mass m slides down the rim of a circular hoop of radius R. The hoop stands vertically and rotates about its diameter with angular velocity ω. Determine the equation of motion of the bead.

Answer:

Kinetic energy T is made up of 2 components, one due to motion of the bead along the hoop itself with speed $R \dot{\theta}$, and another due to motion with angular speed ω which has speed given by $R \sin \theta \omega$

Hence

$$
\begin{aligned}
T & =\frac{1}{2} m\left((R \dot{\theta})^{2}+(R \sin \theta \omega)^{2}\right) \\
& =\frac{1}{2} m R^{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right)
\end{aligned}
$$

P.E. V is due to the bead movement up and down the hoop, which is the standard V for a pendulum given by

$$
V=m g R(1-\cos \theta)
$$

Hence

$$
\begin{aligned}
L & =T-V \\
& =\frac{1}{2} m R^{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right)-m g R(1-\cos \theta)
\end{aligned}
$$

Hence

$$
L_{\theta}=m R^{2}\left(\omega^{2} \sin \theta \cos \theta\right)-m g R \sin \theta
$$

and

$$
L_{\dot{\theta}}=m R^{2} \dot{\theta}
$$

Hence

$$
\frac{d}{d t} L_{\dot{\theta}}=m R^{2} \ddot{\theta}
$$

Hence

$$
\begin{aligned}
L_{\theta}-\frac{d}{d t} L_{\dot{\theta}} & =0 \\
m R^{2}\left(\omega^{2} \sin \theta \cos \theta\right)-m g R \sin \theta-m R^{2} \ddot{\theta} & =0 \\
\omega^{2} \sin \theta \cos \theta-\frac{g}{R} \sin \theta-\ddot{\theta} & =0
\end{aligned}
$$

Hence the ODE is

$$
\ddot{\theta}+\sin \theta\left(\frac{g}{R}-\omega^{2} \cos \theta\right)=0
$$

With initial conditions $\theta(0)=\theta_{0}, \dot{\theta}(0)=\dot{\theta}_{0}$

