HOME

HW 14 Mathematics 503, Mathematical Modeling, CSUF , August 6, 2007

Nasser M. Abbasi

October 8, 2025

Contents

1 Problem 9 page 346 section 6.2 (PDE’s)
2 Problem 3 page 365 section 6.2 (PDE’s)
3 Problem 5 page 365 section 6.2 Conservation laws

1 Problem 9 page 346 section 6.2 (PDE’s)

problem:

Find all solutions to the heat equation \(u_{t}=\kappa u_{xx}\) of the form \(u\left ( x,t\right ) =U\left ( z\right ) \) where \(z=\frac {x}{\sqrt {\kappa t}}\)

answer:

We have that \(z\left ( x,t\right ) =\frac {x}{\sqrt {\kappa t}}\), hence \(\frac {\partial z}{\partial x}=\frac {1}{\sqrt {\kappa t}}\) and \(\frac {\partial ^{2}z}{\partial x^{2}}=0\) and \(\frac {\partial z}{\partial t}=-\frac {x}{2}\left ( \kappa t\right ) ^{-\frac {3}{2}}\kappa =\frac {-x}{2}\frac {t^{-\frac {3}{2}}}{\sqrt {k}}\)

Now

\begin{align*} u_{x}\left ( x,t\right ) & =U^{\prime }\left ( z\right ) \frac {\partial z}{\partial x}\\ & =U^{\prime }\left ( z\right ) \frac {1}{\sqrt {\kappa t}}\end{align*}

and

\begin{align*} u_{xx}\left ( x,t\right ) & =U^{^{\prime \prime }}\left ( z\right ) \frac {1}{\sqrt {\kappa t}}\frac {\partial z}{\partial x}\\ & =U^{^{\prime \prime }}\left ( z\right ) \frac {1}{\kappa t}\end{align*}

and

\begin{align*} u_{t}\left ( x,t\right ) & =U^{\prime }\left ( z\right ) \frac {\partial z}{\partial t}\\ & =\frac {-x}{2}U^{\prime }\left ( z\right ) \frac {t^{-\frac {3}{2}}}{\sqrt {k}}\end{align*}

Plug in the above expressions into the PDE we obtain

\begin{align*} u_{t} & =\kappa u_{xx}\\ \frac {-x}{2}U^{\prime }\left ( z\right ) \frac {t^{-\frac {3}{2}}}{\sqrt {k}} & =\kappa U^{^{\prime \prime }}\left ( z\right ) \frac {1}{\kappa t}\\ \frac {-x}{2\sqrt {kt}}U^{\prime }\left ( z\right ) & =U^{^{\prime \prime }}\left ( z\right ) \end{align*}

But \(z=\frac {x}{\sqrt {\kappa t}}\), hence the above becomes

\[ -\frac {1}{2}z\ U^{\prime }\left ( z\right ) =U^{^{\prime \prime }}\left ( z\right ) \]

or

\[ \fbox {$U^{^{\prime \prime }}\left ( z\right ) +\frac {1}{2}z\ U^{\prime }\left ( z\right ) =0$}\]

Let \(U^{^{\prime }}\left ( z\right ) =y\left ( z\right ) ,\) hence the above becomes

\begin{align*} y^{\prime }+\frac {1}{2}z\ y & =0\\ \frac {y^{\prime }}{y} & =-\frac {1}{2}z\\ \frac {1}{y}\frac {dy}{dz} & =-\frac {1}{2}z\\ \frac {1}{y}dy & =-\frac {1}{2}zdz \end{align*}

Integrate both sides

\[ \ln y=-\frac {1}{4}z^{2}+C \]

Hence

\[ y\left ( z\right ) =Ae^{\frac {-1}{4}z^{2}}\]

But since \(U^{^{\prime }}\left ( z\right ) =y\left ( z\right ) \), then

\begin{align*} U\left ( z\right ) & =\int y\left ( z\right ) dz+B\\ & =A\int e^{\frac {-1}{4}z^{2}}dz+B \end{align*}

I think now I need to write the above in terms of \(x,t\) again. Fix time, and change \(x\) and so we have \(dz=\frac {\partial z}{\partial x}dx=\frac {1}{\sqrt {\kappa t}}dx\) and the above integral becomes

\[ u\left ( x,t;\xi \right ) =\int A\left ( \xi \right ) e^{\frac {-\left ( x-\xi \right ) ^{2}}{4\kappa t}}\frac {1}{\sqrt {\kappa t}}d\xi +B\left ( \xi \right ) \]

for any \(\xi \) location along the space dimension \(x\), where \(A\left ( \xi \right ) ,B\left ( \xi \right ) \) are functions that depend on the value \(\xi \)

2 Problem 3 page 365 section 6.2 (PDE’s)

problem:

Use the energy method to prove the uniqueness for the problem

\begin{align*} u_{t} & =\nabla ^{2}u\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf {x}\in \Omega ,t>0\\ u\left ( \mathbf {x},0\right ) & =f\left ( \mathbf {x}\right ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf {x}\in \Omega \\ u\left ( \mathbf {x},t\right ) & =g\left ( \mathbf {x}\right ) \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf {x}\in \partial \Omega ,t>0 \end{align*}

Solution

First note that \(\nabla ^{2}u\equiv \frac {\partial ^{2}u}{\partial x_{1}^{2}}+\frac {\partial ^{2}u}{\partial x_{2}^{2}}+\cdots +\frac {\partial ^{2}u}{\partial x_{n}^{2}}\) i.e. the Laplacian.

Proof by contradiction. Assume there is no unique solution. Let \(u_{1}\left ( x,t\right ) \) and \(u_{2}\left ( x,t\right ) \) be 2 different solutions to the above PDE. Let \(w\left ( x,t\right ) \) be the difference between these 2 solutions. i.e. \(w\left ( x,t\right ) =u_{1}\left ( x,t\right ) -u_{2}\left ( x,t\right ) \), hence \(w\left ( x,t\right ) \) must satisfy the following conditions: it must be zero at the boundaries \(\mathbf {x}\in \partial \Omega \) for all time, and also it must be zero inside \(\Omega \) initially. Hence

\begin{align*} w\left ( \mathbf {x},0\right ) & =0\ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf {x}\in \Omega \\ w\left ( \mathbf {x},t\right ) & =0\ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf {x}\in \partial \Omega ,t>0 \end{align*}

Now if we can show that \(w\left ( \mathbf {x},t\right ) =0\) for \(t>0\) inside \(\Omega \), then this would imply that \(u_{1}\left ( x,t\right ) =u_{2}\left ( x,t\right ) \), showing a contradiction, hence completing the proof.

i.e. we need to show that \(w_{t}\left ( \mathbf {x},t\right ) =\nabla ^{2}w\left ( \mathbf {x},t\right ) \) yields a solution \(w\left ( \mathbf {x},t\right ) =0\) for \(\mathbf {x}\in \Omega ,t>0\)

Using the energy argument, we write

\[ E\left ( t\right ) =\int _{\Omega }w^{2}\left ( \mathbf {x},t\right ) d\mathbf {x}\]

First we note that \(E\left ( 0\right ) =0\,\)since \(w\left ( \mathbf {x},0\right ) =0\) from the initial conditions above.

\begin{align*} E^{\prime }\left ( t\right ) & =\frac {\partial }{\partial t}\int _{\Omega }w^{2}\left ( \mathbf {x},t\right ) d\mathbf {x}\\ & =\int _{\Omega }\frac {\partial }{\partial t}w^{2}\left ( \mathbf {x},t\right ) d\mathbf {x}\\ & =\int _{\Omega }2w\left ( \mathbf {x},t\right ) \ \frac {\partial }{\partial t}w\left ( \mathbf {x},t\right ) \ d\mathbf {x}\end{align*}

But \(\frac {\partial }{\partial t}w\left ( \mathbf {x},t\right ) =\nabla ^{2}w\left ( \mathbf {x},t\right ) \) from the PDE itself, hence the above becomes

\begin{equation} E^{\prime }\left ( t\right ) =2\int _{\Omega }w\left ( \mathbf {x},t\right ) \ \nabla ^{2}w\left ( \mathbf {x},t\right ) \ d\mathbf {x} \tag {1}\end{equation}

But from Green first identity which states the following

\[ \int _{\Omega }\left ( u\nabla ^{2}w+\nabla u\cdot \nabla w\right ) d\mathbf {x}=\int _{\partial \Omega }u\frac {dw}{dn}dA \]

Replace \(u\) by \(w\) in the above, we obtain

\begin{align} \int _{\Omega }\left ( w\nabla ^{2}w+\nabla w\cdot \nabla w\right ) d\mathbf {x} & =\int _{\partial \Omega }w\frac {dw}{dn}dA\nonumber \\ \int _{\Omega }w\nabla ^{2}w\ d\mathbf {x}+\int _{\Omega }\nabla w\cdot \nabla w\ d\mathbf {x} & =\int _{\partial \Omega }w\frac {dw}{dn}dA\nonumber \\ \int _{\Omega }w\nabla ^{2}w\ d\mathbf {x} & =\int _{\partial \Omega }w\frac {dw}{dn}dA-\int _{\Omega }\nabla w\cdot \nabla w\ d\mathbf {x} \tag {2}\end{align}

Comparing (1) and (2) we see that LHS of (2) is \(\frac {1}{2}E^{\prime }\left ( t\right ) \) Hence the above become

\[ \frac {1}{2}E^{\prime }\left ( t\right ) =\int _{\partial \Omega }w\frac {dw}{dn}dA-\int _{\Omega }\nabla w\cdot \nabla w\ d\mathbf {x}\]

But \(\nabla w\cdot \nabla w=\left \Vert \nabla w\right \Vert ^{2}\), so the above becomes

\[ \frac {1}{2}E^{\prime }\left ( t\right ) =\int _{\partial \Omega }w\frac {dw}{dn}dA-\int _{\Omega }\left \Vert \nabla w\right \Vert ^{2}\ d\mathbf {x}\]

But \(w\left ( \mathbf {x},t\right ) =0\) on \(\partial \Omega \) for \(t>0\), since this is the boundary conditions. Hence the above becomes

\[ E^{\prime }\left ( t\right ) =-2\int _{\Omega }\left \Vert \nabla w\right \Vert ^{2}\ d\mathbf {x}\]

Therefore we showed that \(E^{\prime }\left ( t\right ) \) is \(\leq 0\) since \(\int _{\Omega }\left \Vert \nabla w\right \Vert ^{2}\ d\mathbf {x\geq 0}\)

So energy inside \(\Omega \) is nonincreasing with time. But since \(E\left ( 0\right ) =0\) then \(E\left ( t\right ) =0\) (since energy can not be negative, this is the only choice left).

Therefore, from \(E\left ( t\right ) =\int _{\Omega }w^{2}\left ( \mathbf {x},t\right ) d\mathbf {x}\), we conclude that \(w\left ( \mathbf {x},t\right ) =0\) everywhere in \(\Omega \) for \(t>0\) since \(w\left ( \mathbf {x},t\right ) \) is continuous in both its arguments.

Hence we conclude since \(w\left ( \mathbf {x},t\right ) =u_{1}\left ( \mathbf {x},t\right ) -u_{2}\left ( \mathbf {x},t\right ) =0\) then \(u_{1}\left ( \mathbf {x},t\right ) =u_{2}\left ( \mathbf {x},t\right ) \), then the PDE solution is unique.

3 Problem 5 page 365 section 6.2 Conservation laws

problem:

In absence of sources derive the diffusion equation for radial motion in the plane \(u_{t}=\frac {D}{r}\left ( ru_{r}\right ) _{r}\) from first principles. That is, take an arbitrary domain between circles \(r=a,r=b\) and apply conservation law for the density \(u=u\left ( r,t\right ) \) assuming the flux is \(J\left ( r,t\right ) =-Du_{r}\). Assume no sources.

Answer:

PIC

First note that the density \(u\left ( r,t\right ) \) is measured in quantity per unit volume.

Consider a cross sectional area through circle \(r_{a}=a\). This area is \(2\pi hr_{a}\) where \(h\) is the width of the strip.

Let \(J\left ( r,t\right ) \) be the flux at \(r\) at time \(t\) , measured in quantity per unit area per unit time.

Hence amount \(u\) that passes though cross sectional area at \(r_{a}\) , per unit time, is \(A\left ( r_{a}\right ) J\left ( r_{a},t\right ) \) where \(A\left ( r_{a}\right ) =2\pi hr_{a}\)

Similarly, amount \(u\) that passes though cross sectional area at \(r_{b}\) , per unit time, is \(A\left ( r_{b}\right ) J\left ( r_{a},t\right ) \) where \(A\left ( r_{b}\right ) =2\pi hr_{b}\)

Hence the net amount that flows, per unit time, between \(r_{b}\) and \(r_{a}\) is \(A\left ( r_{a}\right ) J\left ( r_{a},t\right ) -A\left ( r_{b}\right ) J\left ( r_{b},t\right ) \)

Since there is no source nor sink inside this region, then the above equal the rate at which the amount \(u\) itself changes between \(r_{b}\) and \(r_{a}\), which is \(\frac {d}{dt}\left ( u\left ( r,t\right ) \times \text {volume between }r_{a}\ \text {and }r_{b}\right ) \).

Hence we have

\begin{align*} \frac {d}{dt}\int _{a}^{b}u\left ( r,t\right ) A\left ( r\right ) dr & =A\left ( r_{a}\right ) J\left ( r_{a},t\right ) -A\left ( r_{b}\right ) J\left ( r_{b},t\right ) \\ \int _{a}^{b}u_{t}\left ( r,t\right ) A\left ( r\right ) dr & =A\left ( r_{a}\right ) J\left ( r_{a},t\right ) -A\left ( r_{b}\right ) J\left ( r_{b},t\right ) \end{align*}

Apply fundamental theorem of calculus on the RHS above where \(J\left ( a,t\right ) -J\left ( b,t\right ) =\int _{b}^{a}J_{r}dr\) hence the above becomes

\[ \int _{a}^{b}u_{t}\left ( r,t\right ) A\left ( r\right ) dr=\int _{b}^{a}\frac {\partial }{\partial r}\left [ A\left ( r\right ) J\left ( r,t\right ) \right ] dr \]

But \(A\left ( r\right ) =2\pi rh\) so the above becomes

\[ \int _{a}^{b}u_{t}\left ( r,t\right ) rdr=\int _{b}^{a}\frac {\partial }{\partial r}\left [ rJ\left ( r,t\right ) \right ] dr \]

Changing the limits on the integral in the RHS above to make it match the LHS, we obtain

\[ \int _{a}^{b}u_{t}\left ( r,t\right ) rdr=-\int _{a}^{b}\frac {\partial }{\partial r}\left [ rJ\left ( r,t\right ) \right ] dr \]

Because the above holds for all intervals of integration and the functions involved are continuous, then we can remove the integrals and just write

\[ u_{t}\left ( r,t\right ) r=-\frac {\partial }{\partial r}\left [ rJ\left ( r,t\right ) \right ] \]

Now assuming diffusion model for the flux, i.e. \(J\left ( r,t\right ) =-Du_{r}\left ( r,t\right ) \), then the above becomes

\[ u_{t}\left ( r,t\right ) r=D\frac {\partial }{\partial r}\left [ ru_{r}\left ( r,t\right ) \right ] \]

Hence

\[ \fbox {$u_{t}=\frac {D}{r}\left [ ru_{r}\right ] _{r}$}\]