HW1, EE 503 (Information theory and coding) spring 2010

by Nasser M. Abbasi

June 15, 2014

Contents

1 Problem 3.2

2 Problem 3.3

Date due and handed in Feb. 11,2010

1 Problem 3.2

Consider a source which generates 2 symbols x_{1}, x_{2} with probability $p\left(x_{1}\right)=p$ and $p\left(x_{2}\right)=1-p=q$. Now consider a sequence of 2 outputs as a single symbol $X^{2}=\left\{\left\{x_{1} x_{1}\right\},\left\{x_{1} x_{2}\right\},\left\{x_{2} x_{1}\right\},\left\{x_{2} x_{2}\right\}\right\}$, Assuming that consecutive outputs from the source are statically independent, show directly that $H\left(X^{2}\right)=2 H(X)$

Solution
First find $H(X)$

$$
\begin{aligned}
X & =\left\{x_{1}, x_{2}\right\} \\
H(X) & =\sum_{i=1}^{M} p_{i} \log _{2} \frac{1}{p_{i}}
\end{aligned}
$$

Where M in this case is 2 . The above becomes

$$
\begin{aligned}
H(X) & =p \log _{2} \frac{1}{p}+q \log _{2} \frac{1}{q} \\
& =-p \log p-q \log q
\end{aligned}
$$

Hence 2H(x) becomes

$$
\begin{align*}
2 H(X) & =2(-p \log p-q \log q) \\
& =-p \log p^{2}-q \log q^{2} \tag{1}
\end{align*}
$$

Now, we conside X^{2}. Below we write X^{2} with the probability of each 2 outputs as single symbol on top of each. Notice that since symbols are statistically independent, then $p\left(x_{1} x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$, we obtain

$$
X^{2}=\{\overbrace{x_{1} x_{1}}^{p^{2}}, \overbrace{x_{1} x_{2}}^{p q}, \overbrace{x_{2} x_{1}}^{q p}, \overbrace{x_{2} x_{2}}^{q^{2}}\}
$$

Hence since

$$
H\left(X^{2}\right)=\sum_{i=1}^{N} p_{i} \log _{2} \frac{1}{p_{i}}
$$

Where $N=4$ now, the above becomes

$$
\begin{align*}
H\left(X^{2}\right) & =p^{2} \log _{2} \frac{1}{p^{2}}+p q \log _{2} \frac{1}{p q}+p q \log _{2} \frac{1}{p q}+q^{2} \log _{2} \frac{1}{q^{2}} \\
& =-p^{2} \log _{2} p^{2}-2 p q \log _{2} p q-q^{2} \log _{2} q^{2} \\
& =-p^{2} \log _{2} p^{2}-p q \log _{2}(p q)^{2}-q^{2} \log _{2} q^{2} \\
& =-p^{2} \log _{2} p^{2}-p q \log _{2}\left(p^{2} q^{2}\right)-q^{2} \log _{2} q^{2} \\
& =-p^{2} \log _{2} p^{2}-p q\left(\log _{2} p^{2}+\log _{2} q^{2}\right)-q^{2} \log _{2} q^{2} \\
& =-p^{2} \log _{2} p^{2}-\overbrace{p q \log _{2} p^{2}}^{A}-\overbrace{p q \log _{2} q^{2}}^{B}-\overbrace{q^{2} \log _{2} q^{2}}^{C} \tag{2}
\end{align*}
$$

Now we will expand the terms labeled above as A, B, C and simplify, then we will obtain (1) showing the desired results.

$$
\begin{aligned}
& \begin{array}{l}
A=p q \log _{2} p^{2} \\
\quad=p(1-p) \log _{2} p^{2} \\
= \\
=p \log _{2} p^{2}-p^{2} \log _{2} p^{2} \\
B=p q \log _{2} q^{2} \\
= \\
=p(1-p) \log _{2} q^{2} \\
=p \log _{2} q^{2}-p^{2} \log _{2} q^{2} \\
C=q^{2} \log _{2} q^{2} \\
=(1-p)^{2} \log _{2} q^{2} \\
=\left(1+p^{2}-2 p\right) \log _{2} q^{2} \\
=
\end{array} \log _{2} q^{2}+p^{2} \log _{2} q^{2}-2 p \log _{2} q^{2}
\end{aligned}
$$

Substitute the result we found for A, B, C back into (2) we obtain

$$
\begin{aligned}
H\left(X^{2}\right) & =-p^{2} \log _{2} p^{2}-\left(p \log _{2} p^{2}-p^{2} \log _{2} p^{2}\right)-\left(p \log _{2} q^{2}-p^{2} \log _{2} q^{2}\right)-\left(\log _{2} q^{2}+p^{2} \log _{2} q^{2}-2 p \log _{2} q^{2}\right) \\
& =-p \log _{2} p^{2}+p \log _{2} q^{2}-\log _{2} q^{2}
\end{aligned}
$$

But the above can be written as

$$
\begin{align*}
H\left(X^{2}\right) & =-p \log _{2} p^{2}+(1-q) \log _{2} q^{2}-\log _{2} q^{2} \\
& =-p \log _{2} p^{2}+\log _{2} q^{2}-q \log _{2} q^{2}-\log _{2} q^{2} \\
& =-p \log _{2} p^{2}-q \log q^{2} \tag{4}
\end{align*}
$$

Compare (4) and (1), we see they are the same.
Hence

$$
H\left(X^{2}\right)=2 H(X)
$$

2 Problem 3.3

A source emits sequence of independent symbols from alphabet X of symbols x_{1}, \cdots, x_{5} with probabilities $\left\{\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{3}{16}, \frac{5}{16}\right\}$, find the entropy of the source alphabet

Solution

$$
H(X)=\sum_{i=1}^{M} p_{i} \log _{2} \frac{1}{p_{i}}
$$

Where $M=5$, hence the above becomes

$$
\begin{aligned}
H(X) & =p_{1} \log _{2} \frac{1}{p_{1}}+p_{2} \log _{2} \frac{1}{p_{2}}+p_{3} \log _{2} \frac{1}{p_{3}}+p_{4} \log _{2} \frac{1}{p_{4}}+p_{5} \log _{2} \frac{1}{p_{5}} \\
& =\frac{1}{4} \log _{2} 4+\frac{1}{8} \log _{2} 8+\frac{1}{8} \log _{2} 8+\frac{3}{16} \log _{2} \frac{16}{3}+\frac{5}{16} \log _{2} \frac{16}{5} \\
& =\frac{1}{4}(2)+\frac{1}{8}(3)+\frac{1}{8}(3)+\frac{3}{16}\left(\log _{2} 16-\log _{2} 3\right)+\frac{5}{16}\left(\log _{2} 16-\log _{2} 5\right) \\
& =\frac{1}{2}+\frac{3}{8}+\frac{3}{8}+\frac{3}{16}\left(4-\log _{10} 3 \log _{2} 10\right)+\frac{5}{16}\left(4-\log _{10} 5 \log _{2} 10\right)
\end{aligned}
$$

But $\log _{2} 10=3.32193$, hence the above becomes

$$
\begin{aligned}
H(X) & =\frac{1}{2}+\frac{3}{8}+\frac{3}{8}+\frac{3}{4}-\frac{3}{16}(3.32193) \log _{10} 3+\frac{5}{4}-\frac{5}{16}(3.32193) \log _{10} 5 \\
& =\frac{1}{2}+\frac{3}{8}+\frac{3}{8}+\frac{3}{4}-\frac{3}{16}(3.32193)(0.477121)+\frac{5}{4}-\frac{5}{16}(3.32193)(0.69897) \\
& =2.2272 \quad \text { bits/symbol }
\end{aligned}
$$

To verify, we know that $H(X)$ must be less than or equal to $\log _{2} M$ where $M=5$ in this case, hence $H(X) \leq \log _{2} 5$ or $H(X) \leq 2.32193$, therefore, our result above agrees with this upper limit restriction.

