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These are my overview of lecture notes for course introduction to digital filters that I took at California
state university, Fullerton in spring 2010. And also other study notes.

1 lecture 1, Monday January 25, 2010

This lecture was general review of signals. Di�erence between continuous, discrete and digital signals
is given. We obtain discrete signal from continuous by sampling. Digital signal is obtained from
discrete by quantization.

Then review was given of unit step function, delta function. Some examples shown. important ones:

1. 𝑢[𝑛] =

⎧⎪⎪⎨
⎪⎪⎩

1 𝑛 ≥ 0
0 𝑒𝑙𝑠𝑒

2. 𝛿[𝑛] =

⎧⎪⎪⎨
⎪⎪⎩

1 𝑛 = 0
0 𝑒𝑙𝑠𝑒

3. 𝑥[𝑛] =
𝑛
∑

𝑘=−∞
𝛿 (𝑘) =

⎧⎪⎪⎨
⎪⎪⎩

1 𝑛 ≥ 0
0 𝑒𝑙𝑠𝑒

= 𝑢 (𝑛)

4. 𝑥[𝑛] =
∞
∑
𝑘=0

𝛿 (𝑛 − 𝑘) =

⎧⎪⎪⎨
⎪⎪⎩

1 𝑛 ≥ 0
0 𝑒𝑙𝑠𝑒

= 𝑢 (𝑛)

5. 𝑥[𝑛] =
∞
∑

𝑘=−∞
𝛿(𝑛 − 𝑘) =

⎧⎪⎪⎨
⎪⎪⎩

1 𝑛 ≥ 0
1 𝑛 < 0

⎫⎪⎪⎬
⎪⎪⎭
= 1

6. 𝑢[𝑛] − 𝑢[𝑛 − 1] = 𝛿[𝑛]

To find if a discrete function is periodic for a given frequency.

First method:

From 𝑒𝑗𝜔0𝑛 = 𝑒𝑗𝜔0(𝑛+𝑁) = 𝑒𝑗𝜔0𝑛𝑒𝑗𝜔0𝑁, where 𝑁 is the period. Hence we need to have 𝑒𝑗𝜔0𝑁 = 1 for periodic,
or 𝜔0𝑁 = 2𝜋𝑘 for some integer 𝑘. Therefore, the condition for periodicity is that 𝜔0𝑁 = 2𝜋𝑘 or 𝜔0

2𝜋 = 𝑘
𝑁

make sure 𝑘,𝑁 are relatively prime. If this is true, then 𝑁 is the fundamental period. Notice that
𝜔0
2𝜋 = 𝑓, the frequency is samples per second.

2 Example 1

given 𝜔0 =
3𝜋
5 find if cos (𝜔0𝑛) is periodic. First note that cos (𝜔0𝑛) = cos �2𝜋𝑓𝑛�, hence 𝑓 = 𝜔0

2𝜋 = 3𝜋
10𝜋 =

3
10 . Now cos (𝜔0 (𝑛 + 𝑁)) = cos �2𝜋𝑓 (𝑛 + 𝑁)� = cos �2𝜋 3

10
(𝑛 + 𝑁)� = cos �2𝜋 3

10𝑛 + 2𝜋 3
10𝑁�, Hence if we

set 𝑁 = 10, then 2𝜋 3
10𝑁 will be an integer an integer multiple of 2𝜋

Hence 𝑁 = 10 is the period and this is periodic.

Second method: Once we find that 𝑓 is rational, we can stop and say it is periodic. To find the period,
make 𝑓 to be lowest relatively prime numbers. Hence the period is the denominator . So, in this
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example, 𝑓 = 3
10 , we see it is periodic right away since 𝑓 is rational. so period is 10. This second

method is faster.

3 Example 2

First method

given 𝜔0 = 3 find if cos (𝜔0𝑛) is periodic. We see that 𝑓 = 3
2𝜋 .

cos (𝜔0 (𝑛 + 𝑁)) = cos �2𝜋𝑓 (𝑛 + 𝑁)� = cos �2𝜋 3
2𝜋

(𝑛 + 𝑁)� = cos �2𝜋 3
2𝜋𝑛 + 2𝜋 3

2𝜋𝑁�

= cos �2𝜋 3
2𝜋𝑛 + 3𝑁�. We see that we can’t find an integer 𝑁 to make 3𝑁 be a multiple of 2𝜋. Hence

not periodic.

Second method:

Since 𝑓 = 3
2𝜋 is not rational, we stop. Not periodic.

4 lecture 2, Wednesday January 27, 2010

Define energy of signal as 𝐸 =
∞
∑

𝑛=−∞
|𝑥(𝑛)|2

Showed that any signal 𝑥 (𝑛) can be written as sum of weighted shifted Dirac delta functions, hence

𝑥 (𝑛) =
∞
�
𝑘=−∞

𝑥 (𝑘) 𝛿 (𝑛 − 𝑘)

Using the above, derived the convolution equation for linear time invariant system as follows. Let
system be 𝑇, hence we have

𝑦 (𝑛) = 𝑇 [𝑥 (𝑛)]

= 𝑇 �
∞
�
𝑘=−∞

𝑥 (𝑘) 𝛿 (𝑛 − 𝑘)�

=
∞
�
𝑘=−∞

𝑇 [𝑥 (𝑘) 𝛿 (𝑛 − 𝑘)]

Now, for linear system, we know that 𝑇 �𝑎𝑓 (𝑛)� = 𝑎𝑇 �𝑓 (𝑛)� for constant 𝑎, hence the above becomes

𝑦 (𝑛) =
∞
�
𝑘=−∞

𝑥 (𝑘) 𝑇 [𝛿 (𝑛 − 𝑘)]

Now, let the response of the system for 𝛿 (𝑛 − 𝑘) be called ℎ (𝑛, 𝑘), hence the above becomes

𝑦 (𝑛) =
∞
�
𝑘=−∞

𝑥 (𝑘) ℎ (𝑛, 𝑘)
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Now, assuming this is an LTI system, then the time when the impulse occurred would not change
the response, hence the above becomes

𝑦 (𝑛) =
∞
�
𝑘=−∞

𝑥 (𝑘) ℎ (𝑛 − 𝑘)

And the above is the convolution equation, written as 𝑦 (𝑛) = 𝑥 (𝑛) ⊛ ℎ (𝑛)

Next, went over definition of linear system. Linear system is one where if 𝑥1 → 𝑦1 and 𝑥2 → 𝑦2 then
output of system when the input is 𝑎𝑥1 + 𝑏𝑥2 must be the same as 𝑎𝑦1 + 𝑏𝑦2. If it is not the same, then
the system is not linear. Here, I assumed 𝑎, 𝑏 are constants, and I meant by 𝑥𝑖 as the input and by 𝑦𝑖
as the output.

Next, went over how to check if system is linear or not. see my study notes. Next went over definition
of time invariant, which is: Output of a delayed input is the same as delayed output of the input.
(delay amount is same ofcourse). Then went over how to check for time invariant. see my study
notes.

Final went over linear convolution of 2 sequences and showed an example. Easy to do. Flip ℎ (𝑛), the
move the flipped ℎ (ℎ) sequence and slide it over 𝑥 (𝑛). Each time multiply corresponding values and
adding.

That was the end of the second lecture.

5 lecture 3, Monday Feb1, 2010

Example of linear convolution given, solve analytically by finding the regions of interests. These
will be partial overlapping (both left and right end as needed) and full overlap. Example was
𝑥 (𝑛) = 𝑢 (𝑛) − 𝑢 (𝑛 − 5) and ℎ (ℎ) = 𝛼𝑛𝑢 (𝑛) for |𝛼| < 0

Circular convolution question will be on final exam

More definitions given: Casual system: System can’t predict input and react to it before it occurs. If
system is LTI and casual, then ℎ (𝑛) = 0 for 𝑛 < 0. Casual systems work in read time.

Definition of stability. BIBO. When checking for BIBO, remember to take the limit as 𝑛 → ∞ or
𝑡 → ∞ all the time. To check for BIBO, given a bounded input, say |𝑥 (𝑛)| ≤ 𝑀, and use this in the
convolution to find 𝑦 (𝑛) and see if 𝑦 (𝑛) will be bounded as 𝑛 → ∞

Main theory: LTI system is stable i�

𝑆 =
∞
�
𝑛=−∞

|ℎ (𝑛)| < ∞

Proof was given. Need to check for both directions here as this is an i�. Proof will not be on exam.

Examples given to check for stability: 𝑦 (𝑛) =
𝑛
∑
𝑘=0

𝑥 (𝑘), to solve this, let |𝑥 (𝑛)| ≤ 𝑀, then
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�𝑦 (𝑛)� = �
𝑛
�
𝑘=0

𝑥 (𝑘)�

≤
𝑛
�
𝑘=0

|𝑥 (𝑘)|

=
𝑛
�
𝑘=0

𝑀

= (𝑛 + 1)𝑀

Now, remember to take the limit 𝑛 → ∞, so we see that 𝑦 (∞) → ∞ hence this is not stable system,
since the input was bounded, but the output is not. Another example given is

𝑦 (𝑛) =
𝑛
�
𝑘=0

𝑎𝑘𝑥 (𝑘)

Follow the same steps as above

�𝑦 (𝑛)� = �
𝑛
�
𝑘=0

𝑎𝑘𝑥 (𝑘)�

≤
𝑛
�
𝑘=0

�𝑎𝑘𝑥 (𝑘)�

=
𝑛
�
𝑘=0

�𝑎𝑘� |𝑥 (𝑘)|

≤
𝑛
�
𝑘=0

�𝑎𝑘�𝑀

= 𝑀
𝑛
�
𝑘=0

�𝑎𝑘�

= 𝑀�
1 − 𝑎𝑛+1

1 − 𝑎 �

Hence, only for |𝑎| < 1 will the above becomes 𝑀
1−𝑎 , ie. bounded. Hence system is table only for |𝑎| < 1

Next, introduce di�erence equations as a way to describe LTI discrete system, an 𝑁 order LTI system
is

𝑁
�
𝑘=0

𝑎𝑘𝑦 (𝑛 − 𝑘) =
𝑀
�
𝑟=0

𝑏𝑘𝑦 (𝑛 − 𝑟)

Examples: 𝑦 (𝑛) = 3𝑥 (𝑛), 𝑦 (𝑛) = 3𝑥 (𝑛) + 2𝑥 (𝑛 − 3) and 𝑦 (𝑛) + 𝑦 (𝑛 − 1) = 𝑥 (𝑛), this last one is di�erent
since 𝑦 shows twice on the LHS. To solve this last one, let 𝑥 (𝑛) = 𝛿 (𝑛) and find ℎ (𝑛) (which will be
𝑦 (𝑛) in this special case). Then go back and find 𝑦 (𝑛) using convolution But remember, when letting
𝑥 (𝑛) = 𝛿 (𝑛), we need to check for 2 cases, when 𝑛 = 0 and when 𝑛 ≠ 0, and we have to assume values
for 𝑦 (−1) and 𝑦 (0). We need additional condition to finally find ℎ (𝑛).

Another way, is to solve the di�erence equation using 𝑍 transform. Which is what we will probably
end up doing.
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End of 3rd lecture.

6 Lecture 4, Wednesday, Feb. 3,2010

Given a di�erence equation, to solve for 𝑦 (𝑛), do it in 2 steps: Let 𝑥 (𝑛) = 𝛿 (𝑛), find find 𝑦 (𝑛) which
will be ℎ (𝑛) in this case. Second step, find 𝑦 (𝑛) for 𝑥 (𝑛) using convolution.

Example given using 𝑦 (𝑛) − 𝑎𝑦 (𝑛) = 𝑥 (𝑛), solution shown assuming system is causal (i.e. ℎ (𝑛) = 0 for
𝑛 < 0) and another solution shown for anti casual (i.e. ℎ (𝑛) = 0 for 𝑛 ≥ 0). Condition for stability is
decided by |𝑎|.

Mention that given a di�erence equation, without additional information, its solution is not unique.

Mention that if ℎ (𝑛) has finite length, then system is called FIR, else it is called IIR

Then showed how to solve a di�erence equation using characteristic equation. Then showed circuit
description of di�erence equation.

Introduction to Z transform, 2 sided. Definitions and examples. Then inverse Z transform. Idea is
to write the Z transform as sums of 𝑎𝑛𝑧−𝑛, then we can read the data directly since 𝑥 (𝑛) will be the
coe�cient of the 𝑧−𝑛 part. i.e. 𝑥 (−1) 𝑧1 + 𝑥 (0) + 𝑥 (1) 𝑧−1 + 𝑥 (2) 𝑧−2 + ..., so using long division we can
find 𝑥 (𝑛)

End of lecture 4.

7 Lecture 5, Monday, Feb. 8,2010

Example of finding inverse Z transform using partial fractions. Watch out if the sequence comes out
unstable. rewrite for stable and not causal i.e. 𝑢 (−𝑛 − 1) and do only for the part that is not stable.,
leave the other using 𝑢 (𝑛)

Now using one sided Z transform, the Z transform of a delayed sequence is generated. 𝑍 (𝑥[𝑛 − 1]) =
𝑧−1𝑍 (𝑥[𝑛]) + 𝑥 (−1)

Next an example of a di�erence equation is given, with an initial condition, and the Z transform is
used to solve it. Do not use 𝑢 (𝑛) in the answer, since initial condition is at 𝑛 = −1, just write 𝑛 ≥ 0

Next, we are given an LSI system with 𝑒𝑗𝜔𝑛 as input, and proofed that output 𝑦 (𝑛) = 𝑥 (𝑛)𝐻 �𝑗𝜔� where

𝐻�𝑗𝜔� is the frequency response. it is the DTFT of ℎ (𝑛) of the system. i.e. 𝐻�𝑗𝜔� =
∞
∑

𝑛=−∞
ℎ (𝑛) 𝑒−𝑗𝜔𝑛.

𝐻�𝑗𝜔� is periodic of period 2𝜋 and we normally use 𝜔 = −𝜋⋯𝜋 as the range. Note 𝜔 is continuous
and has units of radians (I thought it was in units radians/sample).

Next, we learned how to express 𝐻�𝑗𝜔� as �𝐻 �𝑗𝜔�� 𝑒𝑗arg�𝐻�𝑗𝜔�� to make it easier to draw the magnitude
and phase diagrams of the frequency response of the system. The trick to use is to factor out 𝑒𝑗𝑎𝜔
out and to end up with expression as 𝐴 (𝜔) 𝑒𝑗arg(𝐻). We are shown 2 sequences 𝑥 (𝑛) and asked to
find its 𝐷𝑇𝐹𝑇 and put the result in this form. Next, the magnitude and phase diagrams are plotted.
Remember the following: Since we are using absolute value on the magnitude, when 𝜔 < 0 and
we get a negative value for the absolute, we multiply it by -1 to get +ve, then for that region of 𝜔
remember to add a 𝜋 when doing the phase diagram.

HW1 was given.
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This was the end of this lecture.

8 Lecture 6, Wed, Feb. 10,2010

Talked about DFT (Fourier transform of an infinite discrete sequence also called DTFT) 𝑋�𝑒𝑗𝜔� =
∞
∑

𝑛=−∞
𝑥 [𝑛] 𝑒−𝑗𝜔𝑛 where 𝑥 [𝑛] = 1

2𝜋

𝜋
∫
−𝜋

𝑋�𝑒𝑗𝜔� 𝑒𝑗𝜔𝑛𝑑𝜔. Notice that 𝑋�𝑒𝑗𝜔� is continuous in 𝜔 which has units

radians. and is periodic of period 2𝜋. Not every sequence 𝑥 [𝑛] has DFT. It must be absolutely

summable on its own for it to have DFT, i.e.
∞
∑

𝑛=−∞
|𝑥 [𝑛]| < ∞. This means 𝑢 (𝑛), the unit step function

do not have DFT.

If system is stable, then the ℎ (𝑛) will have DFT (called frequency response)

Next, 𝐻�𝑒𝑗𝜔� was shown and its inverse was calculated. For a low pass filter. The result is sinc
function.Note, low pass filter is over −𝜋, 𝜋, and if the cut o� frequency 𝜔𝑐 gets close to 𝜋, filter
becomes all pass filter. We only need to look at region −𝜋, 𝜋

Next talk about symmetry property of DTFT. Definition of even/odd for 𝑥 [𝑛] and for 𝑋�𝑒𝑗𝜔�

proofs given:

1. If 𝑥 [𝑛] is real and even then 𝑋�𝑒𝑗𝜔� is real and even.

2. If 𝑥 [𝑛] is real and odd then 𝑋�𝑒𝑗𝜔� is imaginary and odd

3. If 𝑥 [𝑛] is imaginary and even then 𝑋�𝑒𝑗𝜔� is imaginary and even

4. 𝑥 [𝑛] is imaginary and odd then 𝑋�𝑒𝑗𝜔� is real and odd

To remember these, note that when 𝑥 [𝑛] is even, then 𝑋�𝑒𝑗𝜔� follows 𝑥 [𝑛] , so not need to worry about

this part. When 𝑥 [𝑛] is odd, then 𝑋�𝑒𝑗𝜔� is also odd, but it is opposite to what 𝑥 [𝑛] is. When 𝑥 [𝑛]
real, 𝑋�𝑒𝑗𝜔� becomes imaginary, and when 𝑥 [𝑛] is imaginary, 𝑋�𝑒𝑗𝜔� becomes real. So just remember
the 𝑥 [𝑛] odd part. Learn the proofs in notes.

Next talked about conjugate symmetric. sequence is CS, if 𝑥 [𝑛] = 𝑥∗ [−𝑛] this means the real part of
𝑥 [𝑛] is even and its imaginary part is odd. Next more properties about CS for 𝑥 [𝑛] and 𝑋�𝑒𝑗𝜔� are
given. Not sure if these will come up in exam.

Learn how to find even and odd part of sequence.

Talked about sampling of 𝑥 (𝑡) and sample and hold, and sampling function (impulse train)

This was the end of the lecture.

9 Lecture 7, Wed Feb. 17,2010

This lecture was all about sampling theory and Nyquist. Starting with an a periodic continuous time
signal 𝑥 (𝑡) and its Fourier transform, we sample 𝑥 (𝑡) obtaining 𝑥 [𝑛], a sequence of numbers, then
find the DTFT of 𝑥 [𝑛] . This summarizes the relation between them.



9

time domain frequency domain

𝑥 (𝑡) where 𝑡 is time and in seconds 𝑥 (𝑡) is ape-
riodic in 𝑡, and continuous −∞ < 𝑡 < ∞

𝑋 (Ω) where Ω is radian frequency (rad/sec)
𝑋 (Ω) is aperiodic in Ω, and continuous −∞ <
Ω < ∞

𝑥 (𝑡) 𝑋𝑎 (Ω) =
∞
∫

−∞
𝑥 (𝑡) 𝑒−𝑗Ω𝑡𝑑Ω

𝑥 (𝑡) = 1
2𝜋

∞
∫

−∞
𝑋 (Ω) 𝑒𝑗Ω𝑡𝑑Ω 𝑋𝑎 (Ω)

After sampling

sequence domain frequency domain

𝑥 [𝑛] where 𝑛 are integers 𝑥 [𝑛] is aperiodic in 𝑛,
and discrete −∞ < 𝑛 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠 < ∞

𝑋 (𝜔) where 𝜔 is frequency (radians) 𝑋 (𝜔) is
periodic in 𝜔, and continuous, period = 2𝜋 and
−∞ < 𝜔 < ∞

𝑥 [𝑛] 𝑋 (𝜔) =
∞
∑

𝑛=−∞
𝑥 [𝑛] 𝑒−𝑗𝜔𝑛

𝑥 [𝑛] = 1
2𝜋

𝜋
∫
−𝜋

𝑋 (𝜔) 𝑒𝑗𝜔𝑛𝑑𝜔 𝑋 (𝜔)

Main things to notice: In time domain 𝑡 → Ω, everything is continuous, and aperiodic. But once we
sample, then the frequency domain becomes periodic. Notice that the unit of Ω is rad/sec and units
of 𝜔 is radians only.

Next we derived the relation between 𝑋 (Ω) and 𝑋 (𝜔) , the idea is this:

start with 𝑥 (𝑡) = 1
2𝜋

∞
∫

−∞
𝑋𝑎 (Ω) 𝑒𝑗Ω𝑡𝑑Ω and using the fact that at 𝑡 = 𝑛𝑇, where 𝑇 is the sampling period,

we replace 𝑡 by 𝑛𝑇 in the above and write

𝑥 (𝑛𝑇) = 𝑥 [𝑛] =
1
2𝜋

∞

�
−∞

𝑋𝑎 (Ω) 𝑒𝑗Ω𝑛𝑇𝑑Ω

But

𝑥 [𝑛] =
1
2𝜋

𝜋

�
−𝜋

𝑋 (𝜔) 𝑒𝑗𝜔𝑛𝑑𝜔

So, now try to make the first expression above which involves
∞
∫

−∞
looks like the second integral

𝜋
∫
−𝜋
.

This is done using 2 tricks. First, break the integral
∞
∫

−∞
into sums of integrals ⋯+

−𝜋
𝑇

∫
− 3𝜋

𝑇

+

𝜋
𝑇
∫

−𝜋
𝑇

+

3𝜋
𝑇
∫
𝜋
𝑇

+⋯

This results in

𝑥 (𝑛𝑇) = 𝑥 [𝑛] =
1
2𝜋

𝑟=∞
�
𝑟=−∞

(2𝑟+1)
𝑇 𝜋

�
(2𝑟−1)
𝑇 𝜋

𝑋𝑎 (Ω) 𝑒𝑗Ω𝑛𝑇𝑑Ω
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Ok, this sounds cool, but we have not done anything yet.

Next, is the second more important trick, let Ω1 = Ω − 2𝜋
𝑇 𝑟 (notice a minus sign here, in the lecture

notes it was given as plus sign, but that would not work out as the final result was shown)

So now 𝑑Ω = 𝑑Ω1, and when Ω = (2𝑟−1)
𝑇 𝜋, then Ω1 = (2𝑟−1)

𝑇 𝜋 − 2𝜋
𝑇 𝑟 = (2𝑟−1)𝜋−2𝜋𝑟

𝑇 = 2𝑟𝜋−𝜋−2𝜋𝑟
𝑇 = −𝜋

𝑇 and

when Ω = (2𝑟+1)
𝑇 𝜋, then Ω1 = (2𝑟+1)

𝑇 𝜋 − 2𝜋
𝑇 𝑟 = (2𝑟+1)𝜋−2𝜋𝑟

𝑇 = 2𝑟𝜋+𝜋−2𝜋𝑟
𝑇 = +𝜋

𝑇 , hence the above integral
becomes

𝑥 (𝑛𝑇) = 𝑥 [𝑛] =
1
2𝜋

𝑟=∞
�
𝑟=−∞

+𝜋
𝑇

�
−𝜋
𝑇

𝑋𝑎 �Ω1 +
2𝜋
𝑇
𝑟� 𝑒

𝑗�Ω1+
2𝜋
𝑇 𝑟�𝑛𝑇

𝑑Ω1

But Ω1 is a dummy variable, so rename it. We might as well rename it back to Ω, so the above
becomes

𝑥 (𝑛𝑇) = 𝑥 [𝑛] =
1
2𝜋

𝑟=∞
�
𝑟=−∞

+𝜋
𝑇

�
−𝜋
𝑇

𝑋𝑎 �Ω +
2𝜋
𝑇
𝑟� 𝑒𝑗Ω𝑛𝑇𝑒𝑗2𝜋𝑟𝑛𝑑Ω

But in 𝑒𝑗2𝜋𝑟𝑛, we notice the exponent is always an integer (𝑟 is an integer, and so is 𝑛). Hence this is
just 1, so the above becomes

𝑥 (𝑛𝑇) = 𝑥 [𝑛] =
1
2𝜋

𝑟=∞
�
𝑟=−∞

+𝜋
𝑇

�
−𝜋
𝑇

𝑋𝑎 �Ω +
2𝜋
𝑇
𝑟� 𝑒𝑗Ω𝑛𝑇𝑑Ω

But 𝜔 = Ω𝑇 (the frequency axis scaling for the discrete case is a collapsed version of the frequency
axis scaling of the continuous case. The scaling is determined by 𝑇). Hence, using the above, then
the integral becomes

𝑥 (𝑛𝑇) = 𝑥 [𝑛] =
1
2𝜋

𝑟=∞
�
𝑟=−∞

1
𝑇

+𝜋

�
−𝜋

𝑋𝑎 �
𝜔
𝑇
+
2𝜋
𝑇
𝑟� 𝑒𝑗𝜔𝑛𝑑𝜔

Notice the 1
𝑇 coming out due to scaling e�ect. Now interchange the summation with the integration,

we obtain

𝑥 (𝑛𝑇) = 𝑥 [𝑛] =
1
2𝜋

+𝜋

�
−𝜋

�
1
𝑇

𝑟=∞
�
𝑟=−∞

𝑋𝑎 �
𝜔
𝑇
+
2𝜋
𝑇
𝑟�� 𝑒𝑗𝜔𝑛𝑑𝜔

Compare the above to the original expression for the inverse DTFT of 𝑥 [𝑛] which is
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𝑥 [𝑛] =
1
2𝜋

𝜋

�
−𝜋

𝑋 (𝜔) 𝑒𝑗𝜔𝑛𝑑𝜔

We see immediately that

𝑋 (𝜔) =
1
𝑇

𝑟=∞
�
𝑟=−∞

𝑋𝑎 �
𝜔
𝑇
+
2𝜋
𝑇
𝑟�

But 𝜔
𝑇 = Ω , so the above becomes

𝑋 (𝜔) =
1
𝑇

𝑟=∞
�
𝑟=−∞

𝑋𝑎 �Ω +
2𝜋
𝑇
𝑟�

Hence we see the final result, an important result, which is that the DTFT 𝑋 (𝜔) of the samples can
be obtained from the Fourier transform 𝑋𝑎 of the signal itself from which the samples are taken using
sampling rate 𝑇.

We just need to scale 𝑋𝑎 and pick only 𝑋𝑎 over the frequency Ω range of −𝜋⋯𝜋 rad/sec, then divide
the result by 𝑇 to obtain −𝜋⋯𝜋 radians. Then make copies of these by shifting them left and right
by 2𝜋 at a time.

Hence, given 𝑋𝑎 and 𝑇 one can always generate 𝑋 (𝜔) (need to write small program to show this).

10 Lecture 8, Monday Feb. 22,2010

2 main parts, the first was on properties of CTFT and DTFT. Handout was given. What happens to
the transform when we do things to the time domain, such as scaling. Remember important thing,
doing 𝑥 (2𝑡) in time domain result is new signal which is squeezed version of 𝑥 (𝑡), but we can still
recover the original, but in discrete time e�ect of 𝑥 [2𝑛] could be to produce a new sequence which we
can’t recover from the original. See notes for examples. So watch out for this., Learn the properties
and proof of them. Learn how multiplication of summation and making it a double summation.
Watch for indices.

Went over the dirac delta function 𝛿 (𝑡) and how to use in. Sni�ng property.

The rest of the lecture was on aliasing. A signal with 2 harmonics was given, we sample it under
Nyquist, and using spectrum, the result is analyzed. Learn how to do this. I need to make a more
detailed diagram as shown in the notes. learn the boundaries of the spectrum and the window used.

I made some notes on this, see below in the study notes section.

HW1 solutions returned.

11 Lecture 9, Wednesday Feb. 24, 2010

This lecture was all about Z transform and region of convergence ROC. We looked at left sides, right
sides, and 2 sides, and how to find the ROC for each. Nice trick to help us remember the ROC was
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shown, which is: For right-sided sequence, look to the right, so the ROC is outside some circle. And
for left-sided sequence, look to the left, hence the ROC is inside some circle.

For 2 sided sequence, the ROC will be inside the space of 2 circles, one larger than the other. It is
also possible that the ROC can not exist for 2 sided.

Notes are given, We went over residue theorem, but it wont be on exam.

Important properties of Z transform given, but we did not go over some of them, they are in the
notes.

Exam will be in 2 weeks time.

12 Lecture 10, Monday March 1, 2010

This lecture was on finding the inverse Z transform using contour integration with the trick of using
𝑧 → 1

𝑝 for left sided signals to make it easier to do. We send most of the time looking at this. This is

a little confusing lecture for me, and need more studying, but it looks like this will not be on exams.
Most likely if we have to find inverse Z transform, then use partial fractions or long division. So for
now, I will not spend to much time on this unless I think it will be on the exam.

Solution to HW 2 was given.

13 Lecture 11, Wednesday March 3, 2010

On partial fractions. Remember this: Always start by multiplying both sides by 𝑧−1, so we end up
with
𝑋(𝑧)
𝑧 , and do partial fraction on the RHS, which now should be with one less zero in the numerator.

Once done, then find 𝑋 (𝑧) by multiplying the result with 𝑧 again. Here is an example:
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Looked at case with multipoles for partial fractions. This requires derivatives. See the notes. I do
not think we will get one like this in the example.

Then went over HW3, the sampling problem. This is important. Remember that aliasing happens at
frequencies which are 𝑓0 +𝑘𝑓𝑠 where 𝑓0 is the frequency of the signal (highest) and 𝑓𝑠 is the sampling
frequency, and 𝑘 = 1, 2, 3, 𝑒𝑡𝑐..

Looked at more partial fractions. Just multiply both sides by 𝑧−1 and should be ok.
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14 Lecture 12, Monday March 8, 2010

Went back to residue integration a little. Then covered initial value theorem. This is useful to find
𝑥 (0) given 𝑋 (𝑧), where 𝑥 (0) = lim𝑧→∞𝑋 (𝑧), to find 𝑥 (1), the trick is to find 𝑥 (0) first, then if it is zero,
then multiply 𝑋 (𝑧) by 𝑧, this shifts everything back by 1, then apply the theory again to 𝑥 (0), which
is now really 𝑥 (1).

Then went over a quick way to plot |𝐻 (𝜔)| from the location of poles and zeros around the unit circle.
Imagine moving around the circle from 0 to 𝜋, then consider a pole to be where |𝐻(𝜔)| is very large,
and a zero is where |𝐻(𝜔)| is very small, then one can draw a rough sketch of the |𝐻(𝜔)|

End of lecture.

15 Lecture 13, Wed March 10, 2010

First midterm (a little hard and long)

16 Lecture 14, Monday March 15, 2010

Went over solution of midterm. For next midterm, good chance we will have a question on periodic
convolution and z-transforms (no question on z-transform in the first midterm). Average of class was
70. I need to buy myself one of those fancy calculators and learn how to use them, so I can use it to
verify my solution in the exam.

17 Lecture 15, Wed March 17, 2010

HW4 key solution handed in.

Handout D handed in (4th handout). This lecture was mainly about 2 things: Periodic convolution,
and DFT.

If we have a sequence of numbers, we can find the DFT (Discrete Fourier Transform) of this sequence.
We assume the sequence of numbers repeat (just for convenience). Write little delta over 𝑥 to indicate
periodic. These are the definitions to know

𝑥̃(𝑛) =
1
𝑁

𝑁−1
�
𝑘=0

𝑋̃(𝑘)𝑒
𝑗� 2𝜋𝑁 �𝑛𝑘

𝑛 = 0⋯𝑁 − 1

𝑋̃ (𝑘) =
𝑁−1
�
𝑛=0

𝑥̃ (𝑛) 𝑒
−𝑗� 2𝜋𝑁 �𝑛𝑘

𝑘 = 0⋯𝑁 − 1

𝑁 is the length of the sequence 𝑥̃(𝑛) and 𝑋̃(𝑘) is the DFT of 𝑥̃(𝑛).

One important thing to know: If we find the 𝑍 transform of 𝑥̃(𝑛), then sampling the Z transform
around the unit circle, we get the values of each 𝑋̃(𝑘).

How to sample the Z transform? start from zero angle and move anticlockwise for an angle 𝜃 where
𝜃 = 2𝜋

𝑁 and read the Z transform at that polar coordinate. This gives values of 𝑋̃(𝑘). So 𝑋̃(0) is Z
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transform of 𝑥̃(𝑛) at angle zero, and 𝑋̃(1) is Z transform of 𝑥̃(𝑛) at angle 2𝜋
𝑁 and 𝑋̃(2) is Z transform

at the angle 2 2𝜋
𝑁 and so on

Then went over properties of 𝑥̃(𝑛), but we are really more interested in properties of 𝑋̃(𝑘).

Went over example of periodic convolution (might be on second midterm).

It is easier than linear convolution, since both sequences will always start at 𝑛 = 0 and have the same
period. So, just flip one, and remember to only look at one period.

FFT is just an implementation to determine DFT.

Most use of FFT is for doing fast convolution. We studies FFT is details in EE 518 that I took last
year.

This was the end of this lecture.

18 Lecture 16, Monday March 22, 2010

Continue studying DFT.

Important things to know: We implement linear convolution by doing circular convolution. Assume
we have 2 sequences 𝑥1 and 𝑥2, both of same length, say 𝑁. We can use circular convolution to
implement linear convolution. but need 2𝑁 − 1 as the length to do it using circular.

But why do we do this? because circular convolution can then be found in a fast this way: Multiply
the DTF of the 2 sequences, then find the inverse DFT.

This is the circular convolution of the 2 sequences. Which is also the linear convolution (if we have
the 2𝑁 − 1 length sorted out first). We can always append zeros to the end of the sequences to make
the length be 2𝑁 − 1.

Since we have fast algorithm to do DFT and inverse DFT (example, FFT), then this is a way to
quickly find linear convolution of 2 sequences.

We had examples showing how to do circular convolution. Make sure to practice this more as it will
be on exam.

HW 6 assigned today. We are now going over Handout E on DFT.

19 Lecture 17, Wed March 24, 2010

Continue on handout E, page 11. We can do linear convolution using circular convolution. Talked
about realization of a system. Given the di�erence equation of a discrete system, how to connect
delay elements, adders, subtract to implement this di�erence equation. Finished handout E.

Handout F given, on flow graphs for digital system.

spring break !
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20 Lecture 18, Monday April 6,2010

On page 6, handout F. Realization forms of filters. cascade forms of order 2, direct form 1, and 2.
Learn how to given H(z), to generate direct forms.

Talked about linear phase FIR

21 Lecture 19, Thursday april 8,2010

midterm 2

22 Lecture 20, Monday april 12,2010

Went over exam problem

23 Lecture 21, Wednesday april 14,2010

More on direct forms, frequency sampling structures, mapping from H(s) to H(z)

24 Lecture 22, Monday april 19,2010

More on mapping from H(s) to H(z), impulse invariance and bilinear transformation. Frequency
wrapping

25 Lecture 23, Wednesday april 21,2010

Started on digital filters design, impulse invariance, specifications

26 Lecture 24, Monday april 26,2010

Continue with digital filter design, go over example, handout H

27 Lecture 25, Wednesday april 28,2010

Movie illustrations from a DSP book

28 Lecture 26, Monday may 3,2010

Went over geometric approach to filter design

29 Lecture 27, Wednesday may 5,2010

More on geometric approach to filter design, find notch filter specs from geometry.
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Started on FIR filter design, but will not be on exam. If we need linear phase, must use FIR. FIR
used in 2D application (digital images), used windows for design. Two e�ects to watch for: smearing
(from main loop), and oscillation (from side loops).

30 Lecture 28, Monday may 10,2010

More intro on FIR, windows used, frequency sampling design. Some review of FIR.

End of semester.
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