HW 9, EE 420 Digital Filters California State University, Fullerton Spring 2010

Nasser M. Abbasi

Spring $2010 \quad$ Compiled on May 12, 2019 at $4: 31$ pm

Contents

1 Problems 2
2 problem 1 2
2.1 Part (a) 3
2.2 Part (b) 3
2.3 Part (c) 3
2.4 part (d) 4
2.5 Part (e) 4
3 Problem 2 4
$3.1 \quad \operatorname{part}(\mathrm{a})$ 4
3.2 part (2) 5
$3.3 \quad \operatorname{part}(\mathrm{~B})$ 6
4 Problem 3 6

1 Problems

2

 problem 1We will find the magnitude spectrum $\left|H\left(e^{j \omega}\right)\right|$ as the digital frequency ω is changed from 0 radians to π radians. At each different value of ω, the magnitude of the frequency response is $\left|H\left(e^{j \omega}\right)\right|=\frac{\prod_{i=1}^{M}\left|\omega-z_{i}\right|}{\prod_{i=1}^{N}\left|\omega-p_{i}\right|}$ where $\left|\omega-z_{i}\right|$ is the length of the vector from the point ω (which is the point on the unit circle) to the point where the $i^{\text {th }}$ zero is located. And similarly, $\left|\omega-p_{i}\right|$ is the length of the vector from the point ω to the point where the $i^{t h}$ pole is located. So, by estimating these products, one can estimate a value for $\left|H\left(e^{j \omega}\right)\right|$ as ω is moved around the unit circle.

2.1 Part (a)

At $\omega=0^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{.25 \times .25}{.2 \times .2} \approx 1.5$
At $\omega=15^{0}$ where the zero is located, $\left|H\left(e^{j \omega}\right)\right|=0$
At $\omega=90^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{.7 \times 1.2}{.65 \times 1.1} \approx 1.1$
At $\omega=180^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1.9 \times 1.9}{1.7 \times 1.7} \approx 1.3$
Hence this is a sketch

So this is a notch filter

2.2 Part (b)

At $\omega=0^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{2^{5}} \approx 0.03$
At $\omega=90^{\circ},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{.8 \times 1 \times 1.4 \times 1.6 \times 1.7} \approx 0.32826$
At $\omega=180^{\circ},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{\text { small values }} \approx$ large

So this allows frequencies very close to π to pass. So high pass filter

2.3 Part (c)

At $\omega=0^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{.7 \times 1 \times 1.4 \times 1.6 \cdots \times 2 \times 1.8 \times 1.6 \cdots}{1} \approx 20$
At $\omega=90^{\circ},\left|H\left(e^{j \omega}\right)\right| \approx \frac{\text { smaller values than above since vector is smaller now }}{1} \approx 10$
At $\omega=180^{\circ},\left|H\left(e^{j \omega}\right)\right| \approx \frac{\text { much smaller values than above since close to zeros }}{1} \approx 0$

So, this is low pass filter

2.4 part (d)

At $\omega=0^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{.3 \times .5 \times .7 \times .3 \times .5 \times .7} \approx$ large value
At $\omega=30^{\circ},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{\text { very small values due to being close to poles }} \approx$ much larger value the above
At $\omega=90^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{\text { larger values than the above due to vectors below } \mathrm{x} \text {-axis being further away }} \approx$ smaller than where at $\omega=0^{0}$
At $\omega=180^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{\text { much larger values than the above }} \approx 0$
So, this is band pass filter

2.5 Part (e)

At $\omega=0^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{\text { very small values due to being close to poles }} \approx$ large value
At $\omega=90^{0},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{1.3 \times 1.4 \times 1.5 \times 1.6} \approx .2$
At $\omega=180^{\circ},\left|H\left(e^{j \omega}\right)\right| \approx \frac{1}{1.8 \times 1.8 \times 1.8 \times 1.8} \approx$ smaller values than above
So, low pass filter

3 Problem 2

$H(s)=\frac{s+2}{(s+2)^{2}+4}$

$3.1 \operatorname{part}(\mathbf{a})$

Using impulse invariance, $H(z)=\sum_{i=1}^{N} \frac{T A_{i}}{1-e^{p_{i}} z^{-1}}$ where p_{i} are the poles of $H(s)$ and A_{i} is the partial fraction result of expressing $H(s)$ as $\sum_{i=1}^{N} \frac{A_{i}}{s-p_{i}}$. Notice that this method works only for distinct poles in $H(s)$. So the first step is to express $H(s)$ is partial fraction form to determine A_{i}. The poles of $H(s)$ are roots of the denominator $(s+2)^{2}+4$ hence poles are roots of $s^{2}+4 s+8$ or $-\frac{b}{2} \pm \frac{1}{2} \sqrt{b^{2}-4 a c}=$ $-1 \pm \frac{1}{2} \sqrt{16-4 \times 8}=-1 \pm 2 j$, hence

$$
\begin{aligned}
& p_{1}=-1+2 j \\
& p_{2}=-1-2 j
\end{aligned}
$$

Then $H(s)=\frac{s+2}{\left(s-p_{1}\right)\left(s-p_{2}\right)}=\frac{A_{1}}{s-p_{1}}+\frac{A_{2}}{s-p_{2}}$, then

$$
A_{1}=\lim _{s \rightarrow p_{1}} \frac{s+2}{\left(s-p_{2}\right)}=\lim _{s \rightarrow p_{1}} \frac{-1+2 j+2}{((-1+2 j)-(-1-2 j))}=\frac{1+2 j}{4 j}
$$

and

$$
A_{2}=\lim _{s \rightarrow p_{2}} \frac{s+2}{\left(s-p_{1}\right)}=\lim _{s \rightarrow p_{2}} \frac{-1-2 j+2}{((-1-2 j)-(-1+2 j))}=\frac{1-2 j}{-4 j}
$$

Hence

$$
H(s)=\frac{\frac{1+2 j}{4 j}}{s-(-1+2 j)}+\frac{\frac{1-2 j}{-4 j}}{s-(-1-2 j)}
$$

And

$$
H(z)=\frac{T \frac{1+2 j}{4 j}}{1-z^{-1} \exp (-1+2 j) T}+\frac{T \frac{1-2 j}{-4 j}}{1-z^{-1} \exp (-1-2 j) T}
$$

We can take $T=1$ and the above becomes

$$
H(z)=\frac{\frac{1+2 j}{4 j}}{1-z^{-} 1 \exp (-1+2 j)}+\frac{\frac{1-2 j}{-4 j}}{1-z^{-} 1 \exp (-1-2 j)}
$$

This can be simplified to

$$
H(z)=\frac{z^{2}+0.32035 z}{z^{2}+0.30618 z+0.13535}
$$

The poles are

$$
\begin{aligned}
& z_{1}=-0.153-0.3345 j \\
& z_{2}=-0.153+0.3345 i
\end{aligned}
$$

So, they are both inside the unit circle.

3.2 part (2)

Using bilinear transformation, $H(z)=\left.H(s)\right|_{s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}}$ Since $H(s)=\frac{s+2}{(s+2)^{2}+4}$, then

$$
\begin{aligned}
H(z) & =\frac{\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}+2}{\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}+2\right)^{2}+4} \\
& =\frac{T(1+z)(z-1+T+T z)}{2\left((z-1)^{2}+2 T^{2}(1+z)^{2}+2 T\left(z^{2}-1\right)\right)}
\end{aligned}
$$

For $T=1$, the above simplifies to

$$
H(z)=\frac{z+z^{2}}{1+2 z+10 z^{2}}
$$

The poles are located at roots of $1+2 z+10 z^{2}$, which are

$$
\begin{aligned}
& z_{1}=-0.1-0.3 i \\
& z_{1}=-0.1+0.3 i
\end{aligned}
$$

So, they are both inside the unit circle.

$3.3 \quad \operatorname{part}(B)$

4 Problem 3

Consider some $H(s)=\frac{N(s)}{D(s)}$. Let $D(s)$ be written in factored form $\prod_{i}^{N}\left(s-p_{i}\right)$ where N is number of $H(s)$ poles and p_{i} is the pole. For the purpose of this solution, we can assume there is one pole only. The same idea applied for all others. Hence, we have

$$
\begin{equation*}
H(s)=\frac{N(s)}{s-p} \tag{1}
\end{equation*}
$$

And now we want to show that if $p<0$, then the transformation results in $H(z)$ with a pole inside the unit circle. Let

$$
s=\frac{1-z^{-1}}{T}
$$

then (1) becomes

$$
H(z)=\frac{N(z)}{\frac{1-z^{-1}}{T}-p}=\frac{T N(z)}{1-z^{-1}-T p}=\frac{z T N(z)}{z-1-z T p}=\frac{z T N(z)}{z(1-T p)-1}=\frac{\frac{z T N(z)}{1-T p}}{z-\frac{1}{1-T p}}
$$

Hence pole of the $H(z)$ is

$$
q=\frac{1}{1-T p}
$$

Since $p<0$ then the numerator of q is larger than one. Hence $q<1$, hence a stable pole of $H(z)$. Therefore, a stable pole of $H(s)$ maps to a stable pole of $H(z)$ Now we need to show that a stable pole
of $H(z)$ will not map to a stable pole of $H(s)$. First we need to find the inverse transformation. Since $s=\frac{1-z^{-1}}{T}$ then

$$
\begin{aligned}
s T & =1-z^{-1} \\
s T & =\frac{z-1}{z} \\
z s T & =z-1 \\
z s T-z & =-1 \\
z-z s T & =1 \\
z(1-s T) & =1
\end{aligned}
$$

Hence

$$
z=\frac{1}{1-s T}
$$

Now, given $H(z)=\frac{N(z)}{D(z)}=\frac{N(z)}{z-q}$ where q is a pole of $H(z)$ where q is stable. Hence $|q|<1$, i.e. pole is inside the unit circle. Now apply the above transformation

$$
\begin{aligned}
H(s) & =\frac{N(z)}{z-q} \\
& =\frac{N(s)}{\frac{1}{1-s T}-q}=\frac{N(s)(1-s T)}{1-q(1-s T)}=\frac{N(s)(1-s T)}{1-q+q s T}=\frac{N(s) \frac{(1-s T)}{q T}}{s+\frac{1-q}{q T}}=\frac{N(s) \frac{(1-s T)}{q T}}{s-\left(\frac{q-1}{q T}\right)}
\end{aligned}
$$

Hence $H(s)$ pole is at

$$
\frac{q-1}{q T}
$$

this pole will be stable only if the real part of it is less than zero. Let $q=\frac{j}{2}$ a stable pole in the z plane. Then the above pole size becomes $\frac{\frac{j}{2}-1}{\frac{j}{2} T}=\frac{-j\left(\frac{j}{2}-1\right)}{\frac{1}{2} T}=\frac{\left(\frac{-j^{2}}{2}-j\right)}{\frac{1}{2} T}=\frac{\left(\frac{1}{2}-j\right)}{\frac{1}{2} T}$. Hence the real part of this pole is $\frac{1}{T}$, which is >0 since T is positive. Hence $H(s)$ is unstable. Hence, starting with stable $H(z)$, using this transformation, the resulting $H(s)$ is not always stable. (it depends on the location of the z pole), sometimes we get stable $H(s)$ and sometimes unstable $H(s)$. For example, if we have used $q=\frac{1}{2}$, then doing the above results in $\frac{\frac{1}{2}-1}{\frac{1}{2} T}=-\frac{1}{T}$ which is <0 since T is positive. Hence we see that depending on the z pole, the resulting $H(s)$ can be stable or not.

