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1 Problems

2 problem 1

We will find the magnitude spectrum
��H (

e jω
) �� as the digital frequency ω is changed from 0 radians to π

radians. At each different value of ω, the magnitude of the frequency response is
��H (

e jω
) �� =

M∏
i=1

|ω−zi |

N∏
i=1

|ω−pi |

where |ω − zi | is the length of the vector from the point ω (which is the point on the unit circle) to the
point where the ith zero is located. And similarly, |ω − pi | is the length of the vector from the point ω
to the point where the ith pole is located. So, by estimating these products, one can estimate a value for��H (

e jω
) �� as ω is moved around the unit circle.
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2.1 Part (a)

At ω = 00,
��H (

e jω
) �� ≈ .25×.25

.2×.2 ≈ 1.5

At ω = 150 where the zero is located,
��H (

e jω
) �� = 0

At ω = 900,
��H (

e jω
) �� ≈ .7×1.2

.65×1.1 ≈ 1.1

At ω = 1800,
��H (

e jω
) �� ≈ 1.9×1.9

1.7×1.7 ≈ 1.3

Hence this is a sketch

900 1800150

1.5

|Hej |



So this is a notch filter

2.2 Part (b)

At ω = 00,
��H (

e jω
) �� ≈ 1

25 ≈ 0.03

At ω = 900,
��H (

e jω
) �� ≈ 1

.8×1×1.4×1.6×1.7 ≈ 0.328 26

At ω = 1800,
��H (

e jω
) �� ≈ 1

small values ≈ large

900 1800150

|Hej |



So this allows frequencies very close to π to pass. So high pass filter

2.3 Part (c)

At ω = 00,
��H (

e jω
) �� ≈ .7×1×1.4×1.6· · ·×2×1.8×1.6· · ·

1 ≈ 20

At ω = 900,
��H (

e jω
) �� ≈ smaller values than above since vector is smaller now

1 ≈ 10

At ω = 1800,
��H (

e jω
) �� ≈ much smaller values than above since close to zeros

1 ≈ 0
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So, this is low pass filter

2.4 part (d)

At ω = 00,
��H (

e jω
) �� ≈ 1

.3×.5×.7×.3×.5×.7 ≈ large value

At ω = 300,
��H (

e jω
) �� ≈ 1

very small values due to being close to poles ≈much larger value the above

At ω = 900,
��H (

e jω
) �� ≈ 1

larger values than the above due to vectors below x-axis being further away ≈smaller than where
at ω = 00

At ω = 1800,
��H (

e jω
) �� ≈ 1

much larger values than the above ≈ 0

So, this is band pass filter

2.5 Part (e)

At ω = 00,
��H (

e jω
) �� ≈ 1

very small values due to being close to poles ≈ large value

At ω = 900,
��H (

e jω
) �� ≈ 1

1.3×1.4×1.5×1.6 ≈ .2

At ω = 1800,
��H (

e jω
) �� ≈ 1

1.8×1.8×1.8×1.8 ≈ smaller values than above

So, low pass filter

3 Problem 2

H (s) = s+2
(s+2)2+4

3.1 part(a)

Using impulse invariance, H (z) =
N∑
i=1

T Ai
1−epiT z−1 where pi are the poles of H (s) and Ai is the partial

fraction result of expressing H (s) as
N∑
i=1

Ai
s−pi

. Notice that this method works only for distinct poles in

H (s). So the first step is to express H (s) is partial fraction form to determine Ai . The poles of H (s)
are roots of the denominator (s + 2)2 + 4 hence poles are roots of s2 + 4s + 8 or −b

2 ± 1
2

√
b2 − 4ac =

−1 ± 1
2

√
16 − 4 × 8 = −1 ± 2j, hence

p1 = −1 + 2j

p2 = −1 − 2j

Then H (s) = s+2
(s−p1)(s−p2)

=
A1
s−p1
+

A2
s−p2

, then

A1 = lim
s→p1

s + 2
(s − p2)

= lim
s→p1

−1 + 2j + 2
((−1 + 2j) − (−1 − 2j))

=
1 + 2j
4j

and
A2 = lim

s→p2

s + 2
(s − p1)

= lim
s→p2

−1 − 2j + 2
((−1 − 2j) − (−1 + 2j))

=
1 − 2j
−4j
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Hence

H (s) =

1+2j
4j

s − (−1 + 2j)
+

1−2j
−4j

s − (−1 − 2j)

And

H (z) =
T 1+2j

4j

1 − z−1 exp (−1 + 2j)T
+

T 1−2j
−4j

1 − z−1 exp (−1 − 2j)T

We can take T = 1 and the above becomes

H (z) =

1+2j
4j

1 − z−1 exp (−1 + 2j)
+

1−2j
−4j

1 − z−1 exp (−1 − 2j)

This can be simplified to

H (z) =
z2 + 0.32035z

z2 + 0.30618z + 0.13535

The poles are

z1 = −0.153 − 0.3345 j

z2 = −0.153 + 0.3345 i

So, they are both inside the unit circle.

3.2 part (2)

Using bilinear transformation, H (z) = H (s)|s= 2
T

1−z−1
1+z−1

Since H (s) = s+2
(s+2)2+4

, then

H (z) =
2
T

1−z−1
1+z−1 + 2(

2
T

1−z−1
1+z−1 + 2

) 2
+ 4

=
T (1 + z) (z − 1 +T +Tz)

2
(
(z − 1)2 + 2T 2 (1 + z)2 + 2T (z2 − 1)

)
For T = 1, the above simplifies to

H (z) =
z + z2

1 + 2z + 10z2

The poles are located at roots of 1 + 2z + 10z2, which are

z1 = −0.1 − 0.3i

z1 = −0.1 + 0.3i

So, they are both inside the unit circle.
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3.3 part(B)

S-plane

j

Re(s)

Hs poles

(0,0)

z1

z2

z1  0. 1  0. 3i

z1  0. 1  0. 3i

z1

z2

Impulse invariant H(z)

Bilinear transformation H(z)

z1  0. 153  0. 3345 j

z2  0. 153  0. 3345 i

p1  1  2j

p2  1  2j

4 Problem 3

Consider some H (s) = N (s)
D(s) . Let D (s) be written in factored form

N∏
i
(s − pi ) where N is number of

H (s) poles and pi is the pole. For the purpose of this solution, we can assume there is one pole only.
The same idea applied for all others. Hence, we have

H (s) =
N (s)

s − p
(1)

And now we want to show that if p < 0, then the transformation results in H (z) with a pole inside the
unit circle. Let

s =
1 − z−1

T

then (1) becomes

H (z) =
N (z)

1−z−1
T − p

=
TN (z)

1 − z−1 −Tp
=

zTN (z)

z − 1 − zTp
=

zTN (z)

z (1 −Tp) − 1
=

zT N (z)
1−Tp

z − 1
1−Tp

Hence pole of the H (z) is

q =
1

1 −Tp

Since p < 0 then the numerator of q is larger than one. Hence q < 1, hence a stable pole of H (z).
Therefore, a stable pole of H (s) maps to a stable pole of H (z) Now we need to show that a stable pole
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of H (z) will not map to a stable pole of H (s). First we need to find the inverse transformation. Since
s = 1−z−1

T then

sT = 1 − z−1

sT =
z − 1
z

zsT = z − 1

zsT − z = −1

z − zsT = 1

z (1 − sT ) = 1

Hence
z =

1
1 − sT

Now, given H (z) = N (z)
D(z) =

N (z)
z−q where q is a pole of H (z) where q is stable. Hence |q | < 1, i.e. pole is

inside the unit circle. Now apply the above transformation

H (s) =
N (z)

z − q

=
N (s)
1

1−sT − q
=

N (s) (1 − sT )

1 − q (1 − sT )
=

N (s) (1 − sT )

1 − q + qsT
=

N (s) (1−sT )
qT

s +
1−q
qT

=
N (s) (1−sT )

qT

s −
(
q−1
qT

)
Hence H (s) pole is at

q − 1

qT

this pole will be stable only if the real part of it is less than zero. Let q = j
2 a stable pole in the z plane.

Then the above pole size becomes
j
2−1
j
2T
=

−j
(
j
2−1

)
1
2T

=

(
−j2
2 −j

)
1
2T

=

( 1
2−j

)
1
2T

. Hence the real part of this pole

is 1
T , which is > 0 since T is positive. Hence H (s) is unstable. Hence, starting with stable H (z), using

this transformation, the resulting H (s) is not always stable. (it depends on the location of the z pole),
sometimes we get stable H (s) and sometimes unstable H (s). For example, if we have used q = 1

2 , then

doing the above results in
1
2−1
1
2T
= − 1

T which is < 0 since T is positive. Hence we see that depending on
the z pole, the resulting H (s) can be stable or not.


	Problems
	problem 1
	Part (a)
	Part (b)
	Part (c)
	part (d)
	Part (e)

	Problem 2
	part(a)
	part (2)
	part(B)

	Problem 3

