HW 7, EE 420 Digital Filters California State University, Fullerton Spring 2010

Nasser M. Abbasi

Spring $2010 \quad$ Compiled on May 12, 2019 at $4: 29 \mathrm{pm}$

Contents

1 Problem 1 2
2 Problem 2 (3.18 in text book, page 125) 2
2.1 First solution. 3
2.2 second solution 3
3 Problem 3 (problem 3.25 in textbook, page 130) 4

1 Problem 1

Given an N point sequence $h(n)$, let $H(z)=Z(h(n))$ and $H(k)=\operatorname{DFT}(h(n))$

1. Find $H(z)$ in terms of $H(k)$
2. For z on the unit circle ($z=e^{j \omega}, \omega \in[0,2 \pi]$), compute result in (1) using equation (d) in D-5 using $\beta=1, \Omega=\frac{\omega N}{2 \pi}$

Solution: Part (1)

$$
\begin{equation*}
H(z)=\sum_{n=0}^{N-1} h(n) z^{-n} \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
H(k) & =\sum_{n=0}^{N-1} h(n) W_{N}^{n k} \quad k=0 \cdots N-1 \\
& =\sum_{n=0}^{N-1} h(n) e^{-j \frac{2 \pi}{N} n k} \tag{2}
\end{align*}
$$

Compare (1) and (2) we see that

$$
H(k)=\left.H(z)\right|_{z=e^{j \frac{2 \pi}{N} k}}
$$

2 Problem 2 (3.18 in text book, page 125)

18. A finite-duration sequence $x(n)$ of length 8 has the eight-point DFT $X(k)$ shown in Fig. P3.18-1. A new sequence $y(n)$ of length 16 is defined by

$$
y(n)= \begin{cases}x\left(\frac{n}{2}\right), & n \text { even } \\ 0, & n \text { odd }\end{cases}
$$

From the list in Fig. P3.18-2, choose the sketch corresponding to the 16 -point DFT of $y(n)$.

Fig. P3.18-1

Answer:

2.1 First solution

$$
y(n)=\left\{\begin{array}{cc}
x\left(\frac{n}{2}\right) & n \text { even } \\
0 & n \text { odd }
\end{array}\right.
$$

We are asked to D-5 in handout E . Using equation (c) in the $\mathrm{D}-5$ handout, let $\beta=2$, using equation (c) we obtain

$$
Y_{N}(k)=X_{M}(k \bmod M)
$$

In this case $N=16$ and $M=8$, Hence

$$
Y_{16}(k)=X_{8}((k))_{8}
$$

Hence based on the above, we select $Y(k)$ as the one shown in diagram (c) in the book on page 126

2.2 second solution

This solution is longer, but this is how I first solved the problem, before using the above method. Start by writing $y(n)$ in terms of $x(n)$

$$
\begin{align*}
y_{n} & =\left\{y_{0}, y_{1}, y_{2}, \cdots, y_{15}\right\} \\
& =\left\{x_{0}, 0, x_{1}, 0, x_{2}, 0, x_{3}, \cdots, x_{7}, 0\right\} \tag{1}
\end{align*}
$$

Now

$$
\begin{aligned}
Y(k) & =\sum_{n=0}^{15} y(n) W_{16}^{n k} \quad k=0 \cdots 15 \\
& =y_{0}+y_{1} W_{16}^{k}+y_{2} W_{16}^{2 k}+\cdots+y_{15} W_{16}^{15 k}
\end{aligned}
$$

But odd values of y are zero, so the above becomes (using (1))

$$
\begin{aligned}
Y(k) & =x_{0}+0+x_{1} W_{16}^{2 k}+0+x_{2} W_{16}^{4 k}+\cdots+x_{7} W_{16}^{14 k}+0 \\
& =x_{0}+x_{1} W_{16}^{2 k}+x_{2} W_{16}^{4 k}+\cdots+x_{7} W_{16}^{14 k} \quad k=0 \cdots 15
\end{aligned}
$$

We can simplify $W_{16}^{n k}$ above by dividing by 2 to obtain $W_{8}^{\frac{n}{2} k}$, so the above becomes

$$
\begin{equation*}
Y(k)=x_{0}+x_{1} W_{8}^{k}+x_{2} W_{8}^{2 k}+\cdots+x_{7} W_{8}^{7 k} \quad k=0 \cdots 15 \tag{2}
\end{equation*}
$$

But if we compare the above to $X(k)$, which is

$$
\begin{equation*}
X(k)=x_{0}+x_{1} W_{8}^{k}+x_{2} W_{8}^{2 k}+\cdots+x_{7} W_{8}^{7 k} \quad k=0 \cdots 7 \tag{3}
\end{equation*}
$$

We see that $Y(k)=X(k)$ at least for the range of $k=0 \cdots 7$. So now let us look at the second half of values, i.e. for $k=8 \cdots 15$. If we write down few terms we see

$$
\begin{aligned}
Y(8) & =x_{0}+x_{1} W_{8}^{8}+x_{2} W_{8}^{2 \times 8}+\cdots+x_{7} W_{8}^{7 \times 8} \\
& =x_{0}+x_{1} W+x_{2} W^{2}+\cdots+x_{7} W^{7} \\
& =x_{0}=X(0)
\end{aligned}
$$

and

$$
\begin{aligned}
Y(9) & =x_{0}+x_{1} W_{8}^{9}+x_{2} W_{8}^{2 \times 9}+\cdots+x_{7} W_{8}^{7 \times 9} \\
& =x_{0}+x_{1} W_{8}^{9}+x_{2} W_{8}^{18}+\cdots+x_{7} W_{8}^{63} \\
& =x_{0}+x_{1} W_{8}^{1}+x_{2} W_{8}^{2}+\cdots+x_{7} W_{8}^{7} \\
& =X(1)
\end{aligned}
$$

and so on. i.e. by taking advantage of the relation that $W_{N}^{M}=W_{N}^{((M))_{N}}$, where $((M))_{N}$ means M module N, ie. the reminder when M is divided by N, we see that the second half of $Y(k)$ also is the same as $X(k)$. Hence the correct result is the one shown in diagram (c) in the book.

3 Problem 3 (problem 3.25 in textbook, page 130)

25. Consider a finite-duration sequence $x(n)$ of length N so that $x(n)=0$ for $n<0$ and for $n>N-1$. We want to compute samples of its z-transform $X(z)$ at M equally spaced points around the unit circle. One of the samples is to be at $z=1$. The number of samples M is less than the duration of the sequence N; i.e., $M<N$. Determine and justify a procedure for obtaining the M samples of $X(z)$ by computing only once the M-point DFT of an M-point sequence obtained from $x(n)$.

We know that

$$
\operatorname{DFT}(x(n))=X_{N}(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}=\left.Z(x(n))\right|_{z=W_{N}^{k}}
$$

So, to find the DFT of $x(n)$ at some specific k value, instead of performing the sum above over the length of $x(n)$, we can just evaluate Z transform of $x(n)$ at just one point, $z=W_{N}^{k}$. So the sum operation is replaced by one evaluation operation (sampling) of the Z transform. So the idea is to compute the Z transform once, and then evaluate it at specific locations on the unit circle to obtain specific values of the DFT. I start by ilustrating the relation above on a diagram

Now, each point in the DFT space is found by performin the sum over N points in the sequence $x(n)$. (i.e the DFT calculation). Here is another diagram to illustrate

Now, we are asked to find M samples (equally spaced) in the Z space by using only M samples from $x(n)$, which is of length N. So we need to pick some values of x (M of them) and use them to find M samples in Z space. How to find these M values of x ? Looking at the DFT sum itself

$$
X_{N}(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}
$$

Break this into sums of M elements at a time (since $M<N$). Last segment can be less than M points if M do not divide N exactly.

$$
X_{N}(k)=\sum_{n=0}^{M-1} x(n) W_{N}^{n k}+\sum_{n=M}^{2 M-1} x(n) W_{N}^{n k}+\sum_{n=2 M}^{3 M-1} x(n) W_{N}^{n k} \cdots+\sum_{n=\beta M}^{(\beta+1) M-1} x(n) W_{N}^{n k}
$$

Where in the above, we assumed $N=\beta M$ QED.

