HW 4, EE 420 Digital Filters
 California State University, Fullerton
 Spring 2010

Nasser M. Abbasi

Spring $2010 \quad$ Compiled on May 12, 2019 at $4: 26 \mathrm{pm}$

Contents

1	Problem 1 (chapter 2, 2, page 78)
2	

2 Problem 2 (problem 7 in text book, chapter 2, page 79) 5
3 Problem (3) (problem 10, chapter 2, page 80) 6

4 Problem (4) (Problem 11, chapter 2, page 80)	7

5 Problem (5) problem 15, chapter 2, page 81 9
2. Determine the z-transform of each of the following. Include with your answer the region of convergence in the z-plane and a sketch of the pole-zero pattern. Express all sums in closed form. α can be complex.

- (a) $x(n)=\alpha^{|n|}, 0<|\alpha|<1$.
- (b) $x(n)=A r^{n} \cos \left(\omega_{0} n+\phi\right) u(n), 0<r<1$.
- (c) $x(n)= \begin{cases}1, & 0 \leq n \leq N-1, \\ 0, & N \leq n, \\ 0, & n<0 .\end{cases}$
- (d) $x(n)= \begin{cases}n, & 0 \leq n \leq N, \\ 2 N-n, & N+1 \leq n \leq 2 N, \\ 0, & 2 N \leq n, \\ 0, & 0>n .\end{cases}$
[Hint (easy way): First express $x(n)$ in terms of the $x(n)$ in part (c).]

Part (a)

$$
x(n)=\alpha^{|n|}, \quad 0<|\alpha|<1
$$

When $n<0$, then $x(n)=\alpha^{-n}$ and when $n \geq 0$, then $x(n)=\alpha^{n}$, hence we split the sum

$$
\begin{align*}
X(z) & =\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
& =\sum_{n=-\infty}^{-1} \alpha^{-n} z^{-n}+\sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& =\sum_{1}^{\infty} \alpha^{n} z^{n}+\sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& =-1+\sum_{0}^{\infty} \alpha^{n} z^{n}+\sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& =-1+\sum_{0}^{\infty}(\alpha z)^{n}+\sum_{n=0}^{\infty}\left(\frac{\alpha}{z}\right)^{n} \\
& =-1+\frac{1}{1-\alpha z}+\frac{1}{1-\alpha z^{-1}} \tag{1}
\end{align*}
$$

Where for the first sum $\sum_{0}^{\infty}(\alpha z)^{n}$, we need $|\alpha z|<1$ or $|z|<\left|\frac{1}{\alpha}\right|$ for convergence, and for the second sum $\sum_{n=0}^{\infty}\left(\frac{\alpha}{z}\right)^{n}$, we need $\left|\frac{\alpha}{z}\right|<1$ for convergence, or $|z|>|\alpha|$ Hence, since $0<|\alpha|<1$, we have the ROC as

$$
|\alpha|<|z|<\left|\frac{1}{\alpha}\right|
$$

To help see where the poles and zeros are, expression (1) is simplfied to

$$
X(z)=\frac{z\left(1-\alpha^{2}\right)}{(1-\alpha z)(z-\alpha)}
$$

We now see that a pole exist at $z=\frac{1}{\alpha}$ and at $z=\alpha$ and a zero at $z=0$

Part (2)

$$
x(n)=A r^{n} \cos \left(\omega_{0} n+\phi\right) u(n), \quad 0<r<1
$$

$$
\begin{aligned}
\mathfrak{J}(x(n)) & =X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
& =\sum_{n=0}^{\infty} A r^{n} \cos \left(\omega_{0} n+\phi\right) z^{-n} \\
& =\frac{A}{2} \sum_{n=0}^{\infty} r^{n}\left(e^{i\left(\omega_{0} n+\phi\right)}+e^{-i\left(\omega_{0} n+\phi\right)}\right) z^{-n} \\
& =\frac{A}{2} \sum_{n=0}^{\infty} r^{n}\left(e^{i \omega_{0} n} e^{i \phi}+e^{-i \omega_{0} n} e^{-i \phi}\right) z^{-n} \\
& =\frac{A}{2} \sum_{n=0}^{\infty} r^{n} e^{i \omega_{0} n} e^{i \phi} z^{-n}+\frac{A}{2} \sum_{n=0}^{\infty} r^{n} e^{-i \omega_{0} n} e^{-i \phi} z^{-n} \\
& =\frac{A}{2} e^{i \phi} \sum_{n=0}^{\infty}\left(\frac{r e^{i \omega_{0}}}{z}\right)^{n}+\frac{A}{2} e^{-i \phi} \sum_{n=0}^{\infty}\left(\frac{r}{e^{i \omega_{0}} z}\right)^{n} \\
& =\frac{A}{2} e^{i \phi} \frac{1}{1-r e^{i \omega_{0}} z^{-1}}+\frac{A}{2} e^{-i \phi} \frac{1}{1-r\left(e^{i \omega_{0}} z\right)^{-1}}
\end{aligned}
$$

Where the first sum $\sum_{n=0}^{\infty}\left(\frac{r e^{i \omega_{0}}}{z}\right)^{n}$ requires that $\left|\frac{r e^{i \omega_{0}}}{z}\right|<1$ or $|z|>r\left(\right.$ since $\left|e^{i \omega_{0}}\right|=1$), and the second sum $\sum_{n=0}^{\infty}\left(\frac{r}{e^{i \omega_{0} z}}\right)^{n}$ requires that $\left|\frac{r}{e^{i \omega_{0} z}}\right|<1$ or $|z|>|r|$, hence the ROC is $|z|>|r|$, and since $|r|<1$, then the ROC contains the unit circle, i.e. the sequence $x(n)$ has a DTFT transform as well (it is BIBO stable).

To find poles and zeros: Since the ROC is surrounded by poles, we conclude that $z=r$ is a pole, and since this is a causal signal, the zero is at $z=\infty$

Part(3)

$$
x(n)=\left\{\begin{array}{cc}
1 & 0 \leq n \leq N-1 \\
0 & N \leq n \\
0 & n<0
\end{array}\right.
$$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{N-1} z^{-n} \\
& =\frac{1-z^{-N}}{1-z^{-1}}
\end{aligned}
$$

Where the only condition is that $\left|\frac{1}{z^{n}}\right|<\infty$ for any n in the above range. Since $n \geq 0$, then this implies that $z \neq 0$

Hence the ROC is the complete z plane, except for $z=0$
To find poles and zero, easier to rewrite $X(z)$ in powers of z

$$
X(z)=\frac{z^{N}-1}{z^{N}-z^{N-1}}=\frac{z^{N}-1}{z^{N-1}(z-1)}
$$

So we have N zeros around the unit circle (roots of unity) and one pole at $z=1$ and $N-1$ poles at $z=0$. notice pole at $z=1$ would cancel the zero at $z=0$
part (4)

$$
\begin{gather*}
x(n)=\left\{\begin{array}{cc}
1 & 0 \leq n \leq N \\
2 N-n & N+1 \leq n \leq 2 N \\
0 & 2 N \leq 0 \\
0 & 0>n
\end{array}\right. \\
X(z)=\sum_{n=0}^{N} z^{-n}+\sum_{n=N+1}^{2 N}(2 N-n) z^{-n} \\
=\sum_{n=0}^{N} z^{-n}+2 N \sum_{n=N+1}^{2 N} z^{-n}-\sum_{n=N+1}^{2 N} n z^{-n} \\
= \\
\sum_{n=0}^{N} z^{-n}+2 N\left(\sum_{n=0}^{2 N} z^{-n}-\sum_{n=0}^{N} z^{-n}\right)-\left(\sum_{n=0}^{2 N} n z^{-n}-\sum_{n=0}^{N} n z^{-n}\right) \tag{1}\\
= \\
=\frac{1-z^{-(N+1)}}{1-z}+2 N\left(\frac{1-z^{-(2 N+1)}}{1-z^{-1}}-\frac{1-z^{-(N+1)}}{1-z^{-1}}\right)-\sum_{n=0}^{2 N} n z^{-n}+\sum_{n=0}^{N} n z^{-n}
\end{gather*}
$$

To find $\sum_{n=0}^{2 N} n z^{-n}$, I will use the relation that if the z-transform of $x(n)$ is $X(z)$, then the z-transform of $n x(n)$ is $-z X^{\prime}(z)$. Hence, let

$$
x(n)=\left\{\begin{array}{cc}
1 & 0 \leq n \leq 2 N \\
0 & N \leq n \\
0 & n<0
\end{array}\right.
$$

Then

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{2 N} z^{-n} \\
& =\frac{1-\left(z^{-1}\right)^{2 N+1}}{1-z^{-1}}=\frac{1-z^{-2 N-1}}{1-z^{-1}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
-z X^{\prime}(z) & =-z \frac{d}{d z}\left(\frac{1-z^{-2 N-1}}{1-z^{-1}}\right) \\
& =-z\left[\frac{-(-2 N-1) z^{-2 N-2}}{\left(1-z^{-1}\right)}-\frac{\left(1-z^{-2 N-1}\right)}{\left(1-z^{-1}\right)^{2} z^{2}}\right] \\
& =\left[\frac{z^{-2 N}\left(-2 N(z-1)+z\left(z^{2 N}-1\right)\right)}{(z-1)^{2}}\right]
\end{aligned}
$$

Hence

$$
\sum_{n=0}^{2 N} n z^{-n}=\left[\frac{z^{-2 N}\left(-2 N(z-1)+z\left(z^{2 N}-1\right)\right)}{(z-1)^{2}}\right]
$$

Similarly, for $\sum_{n=0}^{N} n z^{-n}$, Let

$$
x(n)=\left\{\begin{array}{cc}
1 & 0 \leq n \leq N \\
0 & N \leq n \\
0 & n<0
\end{array}\right.
$$

then

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{N} z^{-n} \\
& =\frac{1-\left(z^{-1}\right)^{N+1}}{1-z^{-1}}=\frac{1-z^{-N-1}}{1-z^{-1}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
-z X^{\prime}(z) & =-z \frac{d}{d z}\left(\frac{1-z^{-N-1}}{1-z^{-1}}\right) \\
& =\frac{z^{-N}\left(N-N z+z\left(z^{N}-1\right)\right)}{(z-1)^{2}}
\end{aligned}
$$

Therefore

$$
\sum_{n=0}^{N} n z^{-n}=\frac{z^{-N}\left(N-N z+z\left(z^{N}-1\right)\right)}{(z-1)^{2}}
$$

Going back to (1) and substitute the above results, we obtain

$$
\begin{aligned}
X(z) & =\frac{1-z^{-(N+1)}}{1-z}+2 N\left(\frac{1-z^{-(2 N+1)}}{1-z^{-1}}-\frac{1-z^{-(N+1)}}{1-z^{-1}}\right)-\sum_{n=0}^{2 N} n z^{-n}+\sum_{n=0}^{N} n z^{-n} \\
& =\frac{1-z^{-(N+1)}}{1-z}+2 N\left(\frac{1-z^{-(2 N+1)}}{1-z^{-1}}-\frac{1-z^{-(N+1)}}{1-z^{-1}}\right) \\
& -\left[\frac{z^{-2 N}\left(-2 N(z-1)+z\left(z^{2 N}-1\right)\right)}{(z-1)^{2}}\right] \\
& +\frac{z^{-N}\left(N-N z+z\left(z^{N}-1\right)\right)}{(z-1)^{2}}
\end{aligned}
$$

This can be simplified little more to be

$$
\begin{aligned}
X(z) & =\frac{1-z^{-(N+1)}}{1-z}+2 N\left(\frac{1-z^{-(2 N+1)}}{1-z^{-1}}-\frac{1-z^{-(N+1)}}{1-z^{-1}}\right) \\
& +\frac{-z^{-2 N}\left(-2 N(z-1)+z\left(z^{2 N}-1\right)\right)+z^{-N}\left(N-N z+z\left(z^{N}-1\right)\right)}{(z-1)^{2}}
\end{aligned}
$$

That is as closed form as I can get it to be.
Since this is finite sequence, and $n>0$, then the sum converges as long as $z \neq 0$. Hence the ROC is all the z-plane except for $z=0$.

To find poles and zero, easier to rewrite $X(z)$ in powers of z, but too complicated to do. I think my solution here is not what I should have done, but I am not sure now what else to do.

2 Problem 2 (problem 7 in text book, chapter 2, page 79)

Determine whether or not the function $F(z)=z^{*}$ can correspond to the z transform of a sequence.
Answer:
I assume we are only to consider a real sequence $x(n)$ and not complex sequence.
Consider z at the unit circle, hence $z=e^{j \omega}$, therefore $z^{*}=e^{-j \omega}=z^{-1}$, So, we want to find a sequence $x(n)$, such that

$$
\sum_{n} x(n) z^{-n}=z^{-1}
$$

But if $x(n)=\delta(n-1)$, then

$$
\sum_{n} \delta(n-1) z^{-n}=\sum_{n} \delta(n-1) z^{-1}=z^{-1} \sum_{n} \delta(n-1)=z^{-1}
$$

Hence, we found such a sequence.

3 Problem (3) (problem 10, chapter 2, page 80)

Show that if $X(z)$ is the z transform of a sequence $x(n)$, then
(a) $z^{n_{0}} X(z)$ is the z-transform of $x\left(n+n_{0}\right)$
(b) $X\left(a^{-1} z\right)$ is the z-transform of $a^{n} x(n)$
(c) $-z X^{\prime}(z)$ is the z-transform of $n x(n)$

Part(a)

$$
\begin{aligned}
& \mathfrak{I}(x(n))=X(z)=\sum_{n} x(n) z^{-n} \\
& z^{n_{0}} X(z)=z^{n_{0}} \sum_{n=-\infty}^{\infty} x(n) z^{-n}=\sum_{n=-\infty}^{\infty} x(n) z^{-n+n_{0}}
\end{aligned}
$$

Let $m=n-n_{0}$, hence $n=m+n_{0}$ and when $n=-\infty,=-\infty$, and then $n=\infty, m=\infty$, then the above becomes

$$
z^{n_{0}} X(z)=\sum_{m=-\infty}^{\infty} x\left(m+n_{0}\right) z^{-m}
$$

But m is a dummy variable, rename it back to n, we have

$$
z^{n_{0}} X(z)=\sum_{n=-\infty}^{\infty} x\left(n+n_{0}\right) z^{-n}
$$

But RHS above is just the z-transform of $x\left(n+n_{0}\right)$. QED Part(b)

$$
\begin{aligned}
\mathfrak{J}(x(n)) & =X(z)=\sum_{n} x(n) z^{-n} \\
X\left(\frac{z}{a}\right) & =\sum_{n=-\infty}^{\infty} x(n)\left(\frac{z}{a}\right)^{-n} \\
& =\sum_{n=-\infty}^{\infty} x(n) a^{n} z^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left[a^{n} x(n)\right] z^{-n}
\end{aligned}
$$

Hence, RHS is $\mathfrak{J}\left(a^{n} x(n)\right)$, hence

$$
\mathfrak{J}\left(a^{n} x(n)\right)=X\left(\frac{z}{a}\right)
$$

Part(c)

$$
\begin{aligned}
\mathfrak{J}(x(n)) & =X(z)=\sum_{n} x(n) z^{-n} \\
X^{\prime}(z) & =\sum_{n} x(n)\left(-n z^{-n-1}\right) \\
& =-\sum_{n} x(n) n \frac{z^{-n}}{z} \\
& =-\frac{1}{z} \sum_{n}[n x(n)] z^{-n}
\end{aligned}
$$

Hence

$$
-z X^{\prime}(z)=\sum_{n}[n x(n)] z^{-n}
$$

Therefore

$$
\mathfrak{I}(n x(n))=-z X^{\prime}(z)
$$

QED
\rightarrow 11. With $X(z)$ denoting the z-transform of $x(n)$, show that

$$
\begin{gathered}
3\left[x^{*}(n)\right]=X^{*}\left(z^{*}\right) . \\
3[x(-n)]=X\left(\frac{1}{z}\right) . \\
3[\operatorname{Re} x(n)]=\frac{1}{2}\left[X(z)+X^{*}\left(z^{*}\right)\right] . \\
3[\operatorname{Im} x(n)]=\frac{1}{2 j}\left[X(z)-X^{*}\left(z^{*}\right)\right] .
\end{gathered}
$$

part (1) show that $\mathfrak{I}\left(x^{*}(n)\right)=X^{*}\left(z^{*}\right)$. By definition,

$$
\mathfrak{I}(x(n))=X(z)=\sum_{n} x(n) z^{-n}
$$

For the sequence $x^{*}(n)$

$$
\begin{equation*}
\mathfrak{J}\left(x^{*}(n)\right)=\sum_{n} x^{*}(n) z^{-n} \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
X^{*}\left(z^{*}\right) & =\left(\sum_{n} x(n)\left(z^{*}\right)^{-n}\right)^{*} \\
& =\left(\sum_{n} x(n)\left(z^{-n}\right)^{*}\right)^{*}
\end{aligned}
$$

Move the outside conjugate operation to inside the sum results in

$$
\begin{align*}
X^{*}\left(z^{*}\right) & =\sum_{n} x^{*}(n)\left(\left(z^{-n}\right)^{*}\right)^{*} \\
& =\sum_{n} x^{*}(n) z^{-n} \tag{2}
\end{align*}
$$

Compare (1) and (2), they are the same. Hence $\mathfrak{J}\left(x^{*}(n)\right)=X^{*}\left(z^{*}\right)$ Part (2)
Show that $\mathfrak{I}(x(-n))=X\left(\frac{1}{z}\right)$
By definition,

$$
\begin{equation*}
\mathfrak{I}(x(n))=X(z)=\sum_{n} x(n) z^{-n} \tag{1}
\end{equation*}
$$

For the sequence $x(-n)$, we have

$$
\mathfrak{J}(x(-n))=\sum_{n} x(-n) z^{-n}
$$

Let $m=-n$, hence when $n=-\infty, m=\infty$, and when $n=\infty, m=\infty$, so the above becomes

$$
\mathfrak{J}(x(-n))=\sum_{m=\infty}^{-\infty} x(m) z^{m}
$$

But m is a dummy variable, hence rename to n, we have

$$
\begin{equation*}
\mathfrak{I}(x(-n))=\sum_{n=-\infty}^{\infty} x(n) z^{n} \tag{2}
\end{equation*}
$$

Now, in (1), Let $z=\frac{1}{z}$ on both sides, we obtain

$$
\begin{align*}
X\left(\frac{1}{z}\right) & =\sum_{n} x(n)\left(\frac{1}{z}\right)^{-n} \\
& =\sum_{n=-\infty}^{\infty} x(n) z^{n} \tag{3}
\end{align*}
$$

Compare (2) and (3), we see they are the same, hence

$$
\mathfrak{I}(x(-n))=X\left(\frac{1}{z}\right)
$$

Part (3)
Show that $\mathfrak{T}(\operatorname{Re}[x(n)])=\frac{1}{2}\left[X(z)+X^{*}\left(z^{*}\right)\right]$
By definition,

$$
\mathfrak{I}(x(n))=X(z)=\sum_{n} x(n) z^{-n}
$$

Let

$$
x(n)=\operatorname{Re}(x(n))+j \operatorname{Im}(x(n))
$$

Now

$$
X^{*}(z)=\left(\sum_{n} x(n) z^{-n}\right)^{*}=\sum_{n} x^{*}(n)\left(z^{-n}\right)^{*}
$$

Then

$$
X^{*}\left(z^{*}\right)=\sum_{n} x^{*}(n) z^{-n}
$$

Hence

$$
\begin{aligned}
X(z)+X^{*}\left(z^{*}\right) & =\sum_{n} x(n) z^{-n}+\sum_{n} x^{*}(n) z^{-n} \\
& =\sum_{n}\left[x(n)+x^{*}(n)\right] z^{-n} \\
& =\sum_{n}[\operatorname{Re}(x(n))+j \operatorname{Im}(x(n))+\operatorname{Re}(x(n))-j \operatorname{Im}(x(n))] z^{-n} \\
& =\sum_{n} 2 \operatorname{Re}(x(n)) z^{-n}
\end{aligned}
$$

Hence

$$
\frac{1}{2}\left(X(z)+X^{*}\left(z^{*}\right)\right)=\sum_{n} \operatorname{Re}(x(n)) z^{-n}
$$

But RHS above is $\mathfrak{J}(\operatorname{Re}(x(n)))$, hence

$$
\mathfrak{J}(\operatorname{Re}(x(n)))=\frac{1}{2}\left(X(z)+X^{*}\left(z^{*}\right)\right)
$$

Part (4)
Show that $\mathfrak{J}(\operatorname{Im}[x(n)])=\frac{1}{2 j}\left[X(z)-X^{*}\left(z^{*}\right)\right]$
By definition,

$$
\mathfrak{J}(x(n))=X(z)=\sum_{n} x(n) z^{-n}
$$

Let

$$
x(n)=\operatorname{Re}(x(n))+j \operatorname{Im}(x(n))
$$

Hence

$$
\begin{aligned}
X(z)-X^{*}\left(z^{*}\right) & =\sum_{n} x(n) z^{-n}-\sum_{n} x^{*}(n) z^{-n} \\
& =\sum_{n}\left(x(n)-x^{*}(n)\right) z^{-n} \\
& =\sum_{n}(\operatorname{Re}(x(n))+j \operatorname{Im}(x(n))-[\operatorname{Re}(x(n))-j \operatorname{Im}(x(n))]) z^{-n} \\
& =\sum_{n} 2 j \operatorname{Im}(x(n)) z^{-n}
\end{aligned}
$$

Hence

$$
\frac{1}{2 j}\left[X(z)-X^{*}\left(z^{*}\right)\right]=\sum_{n} \operatorname{Im}(x(n)) z^{-n}
$$

But RHS above is $\mathfrak{J}(\operatorname{Im}(x(n)))$, hence

$$
\mathfrak{J}(\operatorname{Im}(x(n)))=\frac{1}{2 j}\left[X(z)-X^{*}\left(z^{*}\right)\right]
$$

5 Problem (5) problem 15, chapter 2, page 81

Consider a finite impulse response filter with unit-sample response $h(n)$ of length $(2 N+1)$. If $h(n)$ is real and even, show that the zeros of the system function occur in mirror image pairs about the unit circle. i.e. if $H(z)=0$ for $z=\rho e^{j \theta}$ then $H(z)=0$ also for $z=\left(\frac{1}{\rho}\right) e^{j \theta}$
Answer:
Since $h(n)$ is real and even, then $\mathfrak{J}(h(n))$ is real and even. This can be seen as follows

$$
\begin{aligned}
\mathfrak{J}(h(n)) & =H(z)=\sum_{n=-N}^{N} h(n) z^{-n} \\
& =-h(0)+\sum_{n=-N}^{0} h(n) z^{-n}+\sum_{n=0}^{N} h(n) z^{-n} \\
& =-h(0)+\sum_{n=0}^{N} h(-n) z^{n}+\sum_{n=0}^{N} h(n) z^{-n}
\end{aligned}
$$

Since $h(n)$ is real and even, then $h(-n)=h(n)$, so the above becomes

$$
\begin{align*}
H(z) & =-h(0)+\sum_{n=0}^{N} h(n) z^{n}+\sum_{n=0}^{N} h(n) z^{-n} \\
& =-h(0)+\sum_{n=0}^{N} h(n)\left(z^{n}+z^{-n}\right) \tag{1}
\end{align*}
$$

Now, let $z=\rho e^{j \theta}$, so

$$
\begin{align*}
H(z) & =-h(0)+\sum_{n=0}^{N} h(n)\left(\rho e^{j \theta}+\frac{1}{\rho} e^{-j \theta}\right)^{n} \\
& =-h(0)+\sum_{n=0}^{N} h(n)\left(\rho e^{j \theta}+\frac{1}{\rho} e^{-j \theta}\right)^{n} \tag{2}
\end{align*}
$$

And let $z=\frac{1}{\rho} e^{j \theta}$ again in (1), we obtain

$$
\begin{align*}
H(z) & =-h(0)+\sum_{n=0}^{N} h(n)\left(\left(\frac{1}{\rho} e^{j \theta}\right)^{n}+\left(\frac{1}{\rho} e^{j \theta}\right)^{-n}\right) \\
& =-h(0)+\sum_{n=0}^{N} h(n)\left(\left(\frac{1}{\rho} e^{j \theta}\right)^{n}+\left(\rho e^{-j \theta}\right)^{n}\right) \\
& =-h(0)+\sum_{n=0}^{N} h(n)\left(\frac{1}{\rho} e^{j \theta}+\rho e^{-j \theta}\right)^{n} \tag{3}
\end{align*}
$$

Compare (2) and (3), they are the same. Hence $H(z)$ is the same at $z=\frac{1}{\rho} e^{j \theta}$ and at $z=\rho e^{j \theta}$, therefore $H(z)$ is even function w.r.t. unit circle. Hence if a zero occurs outside a unit circle, there will be a mirror image of this zero inside the unit circle (since $H(z)$ will have the same value, which is zero in this case) at both location.

This problem is similar to looking at the DTFT $F\left(e^{j \omega}\right)$, which is real and even when $x(n)$ is real and even. The difference is that $F\left(e^{j \omega}\right)$ will be even about the y-axis while $H(z)$ is even w.r.t. unit circle.

