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1 Filter speci�cations

Filter specifications are 5 parameters. The frequency specifications are analog frequencies, while
the attenuations for the passband and the stopband are given in db

𝐹𝑠 The sampling frequency in Hz

𝑓𝑐 The passband cuto� frequency in Hz

𝑓𝑠 The stopband corner frequency in Hz

𝛿𝑝 The attenuation in db at 𝑓𝑐
𝛿𝑠 The attenuation in db at 𝑓𝑠

This diagram below illustrates these specifications
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The frequency specifications are in 𝐻𝑧 and they must be first converted to digital frequencies 𝜔
where 0 ≤ |𝜔| ≤ 𝜋 before using the attenuation specifications, The sampling frequency 𝐹𝑠 is used to
do this conversion since 𝐹𝑠 corresponds to 2𝜋 on the digital frequency scale.

2 Analytical derivation of the design steps

These are the design steps

1. Convert specifications from analog to digital frequencies

2. Based on design method (impulse invariance of bilinear) apply the attenuation criteria to
determine Ω𝑐 and 𝑁 (the filter order)

3. Using Ω𝑐 and 𝑁 find the locations of the poles of 𝐻 (𝑠), the Butterworth analog filter.

4. Find 𝐻 (𝑧) from 𝐻 (𝑠). The method of doing this depends if we are using impulse invariance or
bilinear. This step is much simpler for the bilinear method as it does not require performing
partial fractions decomposition on 𝐻(𝑠)

Now we begin the analytical design procedure.

2.1 Finding the analog Butterworth �lter 𝐻(𝑠)

We first convert analog specifications to digital specifications: 𝐹𝑠
2𝜋 =

𝑓𝑝
𝜔𝑝
, hence 𝜔𝑝 = 2𝜋

𝑓𝑝
𝐹𝑠

and

𝜔𝑠 = 2𝜋𝑓𝑠
𝐹𝑠

Convert the criteria relative to the digital normalized scale:

20 log �𝐻 �𝑒𝑗𝜔𝑝�� ≥ 𝛿𝑝

20 log �𝐻 �𝑒𝑗𝜔𝑠�� ≤ 𝛿𝑠
Hence

�𝐻 �𝑒𝑗𝜔𝑝�� ≥ 10
𝛿𝑝
20 (A)

�𝐻 �𝑒𝑗𝜔𝑠�� ≤ 10
𝛿𝑠
20 (B)

Butterworth analog filter squared magnitude Fourier transform is given by

�𝐻𝑎 �𝑗Ω��
2
=

1

1 + � 𝑗Ω
𝑗Ω𝑐

�
2𝑁
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hence equations (A) and (B) above are now written in terms of the analog Butterworth amplitude
frequency response and become

1

1 + �
Ω𝑝

Ω𝑐
�
2𝑁 ≥ �10

𝛿𝑝
20 �

2

= 10
𝛿𝑝
10

1

1 + �Ω𝑠
Ω𝑐
�
2𝑁 ≤ �10

𝛿𝑠
20 �

2
= 10

𝛿𝑠
10

Now we assign values for Ω𝑝 and Ω𝑠 as follows

Ω𝑝 Ω𝑠

impulse invariance
𝜔𝑝

𝑇
𝜔𝑠
𝑇

bilinear transformation 2
𝑇 tan �

𝜔𝑝

2
� 2

𝑇 tan �𝜔𝑠
2
�

Where 𝜔𝑝 = 2𝜋
𝑓𝑝
𝐹𝑠

and 𝜔𝑠 = 2𝜋𝑓𝑠
𝐹𝑠
as was mentioned earlier. Let 𝛼𝑝 = 1

10
𝛿𝑝
10

and 𝛼𝑠 =
1

10
𝛿𝑠
10
, then the

above inequalities can be written as

1 + �
Ω𝑝

Ω𝑐
�
2𝑁

≤ 𝛼𝑝 (1)

1 + �
Ω𝑠
Ω𝑐

�
2𝑁

≥ 𝛼𝑠 (2)

Change inequalities to equalities and simplify

�
Ω𝑝

Ω𝑐
�
2𝑁

= 𝛼𝑝 − 1

�
Ω𝑠
Ω𝑐

�
2𝑁

= 𝛼𝑠 − 1

Divide the above 2 equations

�
Ω𝑝

Ω𝑠
�
2𝑁

=
𝛼𝑝 − 1
𝛼𝑠 − 1

2𝑁 �log �Ω𝑝� − log (Ω𝑠)� = log �𝛼𝑝 − 1� − log [𝛼𝑠 − 1]

𝑁 =
1
2

log �𝛼𝑝 − 1� − log [𝛼𝑠 − 1]

log �Ω𝑝� − log (Ω𝑠)

We need to round the above to then nearest integer using the Ceiling function i.e. 𝑁 = ⌈𝑁⌉

Now for impulse invariance method, use equation (1) above to solve for Ω𝑐 and for bilinear
transformation we used equation (2) above to find Ω𝑐

For impulse invariance method, let Ω̄ = Ω𝑝 and let �̄� = 𝛼𝑝 , and for bilinear method let Ω̄ = Ω𝑠 and
let �̄� = 𝛼𝑠 . Hence we now solve for Ω𝑐

1 + �
Ω̄
Ω𝑐

�
2𝑁

= �̄�

2𝑁 �log10
Ω̄
Ω𝑐

� = log10 [�̄� − 1]

log10
Ω̄
Ω𝑐

=
1
2𝑁

log10 [�̄� − 1]

Ω̄
Ω𝑐

= 10
� 1
2𝑁 log10[�̄�−1]�

Ω𝑐 =
Ω̄

10
� 1
2𝑁 log10[�̄�−1]�

Hence for impulse invariance the butterworth magnitude square of the transfer function is

|𝐻𝑎 (𝑠)|
2 =

𝑇2

1 + � 𝑠
𝑗Ω𝑐

�
2𝑁

and for bilinear the magnitude square of the transfer function is

|𝐻𝑎 (𝑠)|
2 =

1

1 + � 𝑠
𝑗Ω𝑐

�
2𝑁
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Hence 𝐻 (𝑠) poles are found by setting the denominator of the above to zero

1 + �
𝑠

𝑗Ω𝑐
�
2𝑁

= 0

�
𝑠

𝑗Ω𝑐
�
2𝑁

= −1

= 𝑒𝑗(𝜋+2𝜋𝑘) 𝑘 = 0, 1, 2,⋯2𝑁 − 1
𝑠

𝑗Ω𝑐
= 𝑒

𝑗�𝜋+2𝜋𝑘2𝑁 �

𝑠 = 𝑗Ω𝑐 𝑒
𝑗�𝜋+2𝜋𝑘2𝑁 �

= Ω𝑐 𝑒
𝑗𝜋2 𝑒

𝑗�𝜋+2𝜋𝑘2𝑁 �

= Ω𝑐 𝑒
𝑗�𝜋(1+2𝑘+𝑁)2𝑁 �

We only need to find the LHS poles, which are located at 𝑖 = 0⋯𝑁 − 1, because these are the stable
poles. Hence the 𝑖𝑡ℎ pole is

𝑠𝑖 = Ω𝑐 𝑒
𝑗�𝜋(1+2𝑖+𝑁)2𝑁 �

For example for 𝑖 = 0, 𝑁 = 6 we get

𝑠0 = Ω𝑐 𝑒
𝑗�𝜋(1+𝑁)2𝑁 �

= Ω𝑐 𝑒
𝑗�𝜋712 �

Now we can write the analog filter generated based on the above selected poles, which is, for
impulse invariance

𝐻𝑎 (𝑠) =
𝑇 𝐾

𝑁−1
�
𝑖=0

(𝑠 − 𝑠𝑖)
(3)

and for bilinear

𝐻𝑎 (𝑠) =
𝐾

𝑁−1
�
𝑖=0

(𝑠 − 𝑠𝑖)
(3)

𝐾 is found by solving 𝐻𝑎 (0) = 𝑇 for impulse invariance, and by setting 𝐻𝑎 (0) = 1 for bilinear, hence
for impulse invariance, we obtain

𝑘 =
𝑁−1
�
𝑖=0

(−𝑠𝑖)

and for bilinear we obtain

𝑘 =
𝑁−1
�
𝑖=0

(−𝑠𝑖)

We see that the same expression results for 𝑘 for both cases.

Now we need to write poles in non-polar form and plug them into (3)

𝑠𝑖 = Ω𝑐 𝑒
𝑗�𝜋(1+2𝑖+𝑁)2𝑁 �

= Ω𝑐 �cos 𝜋
(1 + 2𝑖 + 𝑁)

2𝑁
+ 𝑗 sin 𝜋 (1 + 2𝑖 + 𝑁)

2𝑁 � 𝑖 = 0⋯𝑁 − 1

Hence, for impulse invariance

𝐻𝑎 (𝑠) =
𝑇 𝐾

𝑁−1
�
𝑖=0

�𝑠 − Ω𝑐 �cos 𝜋(1+2𝑖+𝑁)
2𝑁 + 𝑗 sin 𝜋(1+2𝑖+𝑁)

2𝑁
��

(4)

and for bilinear

𝐻𝑎 (𝑠) =
𝐾

𝑁−1
�
𝑖=0

�𝑠 − Ω𝑐 �cos 𝜋(1+2𝑖+𝑁)
2𝑁 + 𝑗 sin 𝜋(1+2𝑖+𝑁)

2𝑁
��

(4)

Where

Ω𝑐 =
Ω̄

10
� 1
2𝑁 log10[�̄�−1]�

and

𝑁 =
⎡
⎢⎢
1
2

log �𝛼𝑝 − 1� − log [𝛼𝑠 − 1]
log (Ω1) − log (Ω2)

⎤
⎥⎥
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Now that we have found 𝐻 (𝑠) we need to convert it to 𝐻 (𝑧)

2.2 Analog to digital conversion or �nding 𝐻 (𝑧) from 𝐻 (𝑠)

impulse invariance method We need to make sure that we multiply poles of complex conjugates
with each others to make the result simple to see.

Now that we have 𝐻𝑎 (𝑠), we do the 𝐴 → 𝐷 conversion. I.e. obtain 𝐻 (𝑧) from the above 𝐻 (𝑠). When
using impulse invariance, we need to perform partial fraction decomposition on (4) above in order
to write 𝐻 (𝑠) in this form

𝐻 (𝑠) =
𝑁−1
�
𝑖=0

𝐴𝑖
𝑠 − 𝑠𝑖

For example, to obtain 𝐴𝑗, we write

𝐴𝑗 = lim
𝑠→𝑠𝑗

𝐻𝑎 (𝑠) =
𝑇 𝑘

𝑁−1
�
𝑖=0
𝑖≠𝑗

(𝑠 − 𝑠𝑖)

Once we find all the 𝐴′𝑠, we now write 𝐻 (𝑧) as follows

𝐻 (𝑧) =
𝑁−1
�
𝑖=0

𝐴𝑖
1 − exp (𝑇𝑠𝑖) 𝑧−1

This completes the design. We can try to convert the above form of 𝐻 (𝑧) to a rational expression
as 𝐻 (𝑧) = 𝑁(𝑧)

𝐷(𝑧)

bilinear transformation method After finding 𝐻(𝑠) as shown above, we simply replace 𝑠 by
2
𝑇
1−𝑧−1

1+𝑧−1
. This is much simpler than the impulse invariance method. Before doing this substitution,

multiply poles which are complex conjugate of each others in the denominator of 𝐻(𝑠). After this,
then do the above substitution

2.3 Summary of analytical derivation method

We will now make a table with the derivation equations to follow to design in either bilinear or
impulse invariance. Note that the same steps are used in both designs except for step 5, 6, 8, 13. This
table make it easy to develop a program.

step Impulse invariance common equation bilinear

1 𝜔𝑝 = 2𝜋
𝑓𝑝
𝐹𝑠

2 𝜔𝑠 = 2𝜋𝑓𝑠
𝐹𝑠

3 𝛼𝑝 =
1

10
𝛿𝑝
10

4 𝛼𝑠 =
1

10
𝛿𝑠
10

5 Ω𝑝 =
𝜔𝑝

𝑇
2
𝑇 tan �

𝜔𝑝

2
�

6 Ω𝑠 =
𝜔𝑠
𝑇

2
𝑇 tan �𝜔𝑠

2
�

7 𝑁 = �
1
2

log�𝛼𝑝−1�−log[𝛼𝑠−1]

log�Ω𝑝�−log(Ω𝑠)
�

8 Ω𝑐 =
Ω𝑝

10
� 1
2𝑁 log10�𝛼𝑝−1��

Ω𝑐 =
Ω𝑠

10
� 1
2𝑁 log10[𝛼𝑠−1]�

9 H(S) poles 𝑠𝑖 = Ω𝑐 𝑒
𝑗�𝜋(1+2𝑖+𝑁)2𝑁 � 𝑖=0⋯𝑁−1

10 𝑘 =
𝑁−1
�
𝑖=0

(−𝑠𝑖)

11 𝐻𝑎 (𝑠) =
𝑇 𝐾

𝑁−1
�
𝑖=0

(𝑠−𝑠𝑖)

𝐻𝑎 (𝑠) =
𝐾

𝑁−1
�
𝑖=0

(𝑠−𝑠𝑖)

12 fraction 𝐻𝑎 (𝑠) =
𝑁−1
�
𝑖=0

𝐴𝑖
𝑠−𝑠𝑖

13 𝐻 (𝑧) =
𝑁−1
�
𝑖=0

𝐴𝑖
1−exp(𝑇𝑠𝑖)𝑧−1

𝐻 (𝑧) = 𝐻𝑎 (𝑠)|𝑠= 2
𝑇
1−𝑧−1

1+𝑧−1
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3 Numerical design

Sampling frequency 𝐹𝑠 = 10𝑘ℎ𝑧, passband corner frequency 𝑓𝑝 = 1𝑘ℎ𝑧, stopband corner frequency
𝑓𝑠 = 2𝑘ℎ𝑧, with criteria 𝛿𝑝 ≥ −3𝑑𝑏 and 𝛿𝑠𝑡𝑜𝑝 ≤ −10𝑑𝑏

using impulse invariance method 𝑇 = 1

step Impulse invariance

1 𝜔𝑝 = 2𝜋
𝑓𝑝
𝐹𝑠

→ 2𝜋(1000)
10000 → 0.2𝜋

2 𝜔𝑠 = 2𝜋𝑓𝑠
𝐹𝑠

→ 2𝜋(2000)
10000 → 0.4𝜋

3 𝛼𝑝 =
1

10
𝛿𝑝
10

→ 1

10
−3
10

→ 1.995 3

4 𝛼𝑠 =
1

10
𝛿𝑠
10

→ 1

10
−10
10

→ 10.0

5 Ω𝑝 =
𝜔𝑝

𝑇 →
𝜔𝑝

1 → 0.2𝜋
6 Ω𝑠 =

𝜔𝑠
𝑇 → 0.4𝜋

1 → 0.4𝜋

7 𝑁 = �
1
2

log�𝛼𝑝−1�−log[𝛼𝑠−1]

log�Ω𝑝�−log(Ω𝑠)
� →

1
2

log10(1. 995 3−1)−log10(10.0−1)
log10(0.2𝜋)−log10(0.4𝜋)

→ 1.588 4 → 2

8 Ω𝑐 =
Ω𝑝

10
� 1
2𝑁 log10�𝛼𝑝−1��

→ 0.2𝜋

10
� 1
2×2 log10(1. 995 3−1)�

→ 0.629 06

9 poles of H(S) 𝑠𝑖 = Ω𝑐 𝑒
𝑗�𝜋(1+2𝑖+𝑁)2𝑁 �

→ 𝑠𝑖 = 0.629 06 𝑒
𝑗�𝜋(3+2𝑖)4 �

𝑖 = 0⋯1
𝑠0 = −0.444 81 + 𝑗0.444 81, 𝑠1 = −0.444 81 − 𝑗0.444 81

10 𝑘 =
𝑁−1
�
𝑖=0

(−𝑠𝑖) = �0.444 81 − 𝑗0.444 81� �0.444 81 + 𝑗0.444 81� = 0.395 71

11 𝐻𝑎 (𝑠) =
𝑇 𝐾

𝑁−1
�
𝑖=0

(𝑠−𝑠𝑖)

= 0.395 71
�𝑠+0.444 81−𝑗0.444 81��𝑠+0.444 81+𝑗0.444 81�

= 0.395 71
𝑠2+0.889 62𝑠+0.395 71

12 partial fraction 𝐻𝑎 (𝑠) =
𝑁−1
�
𝑖=0

𝐴𝑖
𝑠−𝑠𝑖

= 0.444 81𝑗
𝑠+0.444 81+0.444 81𝑗 −

0.444 81𝑗
𝑠+0.444 81−0.444 81𝑗

13 𝐻 (𝑧) =
𝑁−1
�
𝑖=0

𝐴𝑖
1−exp(𝑇𝑠𝑖)𝑧−1

= 0.444 81𝑗
1−exp�−0.444 81−𝑗0.444 81�𝑧−1

− 0.444 81𝑗
1−exp�−0.444 81+𝑗0.444 81�𝑧−1

= 0.245 35𝑧
𝑧2−1. 57 2𝑧+0.410 81

Using bilinear 𝑇 = 1
10000
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step Impulse invariance

1 𝜔𝑝 = 2𝜋
𝑓𝑝
𝐹𝑠

= 2𝜋(1000)
10000 = 0.2𝜋

2 𝜔𝑠 = 2𝜋𝑓𝑠
𝐹𝑠

= 2𝜋(2000)
10000 = 0.4𝜋

3 𝛼𝑝 =
1

10
𝛿𝑝
10

= 1

10
−3
10

= 1.995 3

4 𝛼𝑠 =
1

10
𝛿𝑠
10

= 1

10
−10
10

= 10.0

5 Ω𝑝 =
2
𝑇 tan �

𝜔𝑝

2
� = 2 × 10000 tan � 0.2𝜋

2
� → 6498.4

6 Ω𝑠 =
2
𝑇 tan �𝜔𝑠

2
� = 2 × 10000 tan � 0.4𝜋

2
� → 14531.

7 𝑁 = �
1
2

log�𝛼𝑝−1�−log[𝛼𝑠−1]

log�Ω𝑝�−log(Ω𝑠)
� =

1
2

log10(1.995 3−1)−log10(10.0−1)
log10(6498.4)−log10(14531.)

= 1.368 1 → 2

8 Ω𝑐 =
Ω𝑠

10
� 1
2𝑁 log10[𝛼𝑠−1]�

= 14531

10
� 1
2×2 log10(10.0−1)�

= 8389.5

9 poles of H(S) 𝑠𝑖 = Ω𝑐 𝑒
𝑗�𝜋(1+2𝑖+𝑁)2𝑁 �

= 𝑠𝑖 = 8389.5 𝑒
𝑗�𝜋(3+2𝑖)4 �

𝑖 = 0⋯1
𝑠0 = −5932.3 + 𝑗5932.3, 𝑠1 = −5932.3 − 𝑗5932.3

10 𝑘 =
𝑁−1
�
𝑖=0

(−𝑠𝑖) → �5932.3 − 𝑗5932.3� �5932.3 + 𝑗5932.3� → 7.038 4 × 107

11 𝐻𝑎 (𝑠) =
𝐾

𝑁−1
�
𝑖=0

(𝑠−𝑠𝑖)

= 7. 038 4×107

(𝑠+5932. 3−𝑖5932. 3)(𝑠+5932.3+𝑖5932.3) =
7. 038 4×107

𝑠2+11865.𝑠+7. 038 4×107

12

13 𝐻 (𝑧) = 𝐻𝑎 (𝑠)|𝑠= 2
𝑇
1−𝑧−1

1+𝑧−1
= 7. 038 4×107

( 2𝑇
1−𝑧−1

1+𝑧−1
)2+11865( 2𝑇

1−𝑧−1

1+𝑧−1
)+7.038 4×107

=
7. 038 4×107(𝑇)2�1+𝑧−1�

2

2�1−𝑧−1�
2
+2×11865(�1−𝑧−1��1+𝑧−1�𝑇+7. 038 4×107(𝑇2)�1+𝑧−1�

2

= 0.09945 9𝑧2+0.198 92𝑧+0.09945 9
𝑧2−0.931 56𝑧+0.329 38
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