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1 Filter specifications

Filter specifications are 5 parameters. The frequency specifications are analog frequencies, while the
attenuations for the passband and the stopband are given in db

F, | The sampling frequency in Hz

fc | The passband cutoff frequency in Hz

fs | The stopband corner frequency in Hz
0, | The attenuation in db at f,
0s | The attenuation in db at f

This diagram below illustrates these specifications
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The frequency specifications are in Hz and they must be first converted to digital frequencies w where
0 < |w| < 7 before using the attenuation specifications, The sampling frequency F; is used to do this
conversion since F; corresponds to 27t on the digital frequency scale.

2 Analytical derivation of the design steps

These are the design steps
1. Convert specifications from analog to digital frequencies

2. Based on design method (impulse invariance of bilinear) apply the attenuation criteria to
determine Q. and N (the filter order)

3. Using Q. and N find the locations of the poles of H (s), the Butterworth analog filter.

4. Find H (z) from H (s). The method of doing this depends if we are using impulse invariance or
bilinear. This step is much simpler for the bilinear method as it does not require performing
partial fractions decomposition on H(s)

Now we begin the analytical design procedure.

2.1 Finding the analog Butterworth filter H(s)
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We first convert analog specifications to digital specifications: -~ = =, hence w, = 27~ and w; = 27'(;5
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Convert the criteria relative to the digital normalized scale:
201og|H (é7)| 2 5,
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Hence
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Butterworth analog filter squared magnitude Fourier transform is given by
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hence equations (A) and (B) above are now written in terms of the analog Butterworth amplitude
frequency response and become
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Now we assign values for Q, and € as follows
Q, Q,
. Ise i . “p Ws
impulse invariance i _ 7 _
o1 . 14 s
bilinear transformation 7 tan (?) 7 tan (?)
Where w, = 271? and w, = 2n§as was mentioned earlier. Let a), = Lﬁp and a, = %, then the above
s s 1010 1010
inequalities can be written as
) Q, 2N "
+ = fa
Q. g
2N
Q
1+(=| =2a 2
( QC ) ’ ( )



Divide the above 2 equations

Q;

2N [log (Qp> —log (Qs)] = log [ap - 1] —log[a, —1]
1 log [ap - 1] —log[a, —1]

) log (Qp) - log (€y)

We need to round the above to then nearest integer using the Ceiling function i.e. N = [N]
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Now for impulse invariance method, use equation (1) above to solve for Q. and for bilinear transfor-
mation we used equation (2) above to find Q,

For impulse invariance method, let Q = Q, and let @ = a, , and for bilinear method let Q=Q, and
let @ = a; . Hence we now solve for Q,
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Hence for impulse invariance the butterworth magnitude square of the transfer function is
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and for bilinear the magnitude square of the transfer function is
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Hence H (s) poles are found by setting the denominator of the above to zero
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We only need to find the LHS poles, which are located at i = 0--- N -1, because these are the stable
poles. Hence the i pole is
n(1+2i+N))

s;=Q, ej( 2N

For example for i = 0, N = 6 we get

so = Q. ej(n(;’N)) =Q, ej(%)

Now we can write the analog filter generated based on the above selected poles, which is, for impulse
invariance
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and for bilinear
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K is found by solving H, (0) = T for impulse invariance, and by setting H, (0) = 1 for bilinear, hence
for impulse invariance, we obtain
N-1

k=T]s)
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and for bilinear we obtain

N-1
k=T1Gs)
=0

We see that the same expression results for k for both cases.

Now we need to write poles in non-polar form and plug them into (3)
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Hence, for impulse invariance

T K
H, () = y5 (4)
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and for bilinear
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Now that we have found H (s) we need to convert it to H (z)

2.2 Analog to digital conversion or finding H (z) from H (s)

impulse invariance method We need to make sure that we multiply poles of complex conjugates
with each others to make the result simple to see.

Now that we have H, (s), we do the A — D conversion. l.e. obtain H(z) from the above H (s). When
using impulse invariance, we need to perform partial fraction decomposition on (4) above in order
to write H (s) in this form

For example, to obtain A;, we write
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Once we find all the A’s, we now write H (z) as follows
N-1 A,
1

H(z):E

A1 -exp(Ts)z?

This completes the design. We can try to convert the above form of H (z) to a rational expression as

_ NG
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1
bilinear transformation method After finding H(s) as shown above, we simply replace s by %L;l .

This is much simpler than the impulse invariance method. Before doing this substitution, multiply
poles which are complex conjugate of each others in the denominator of H(s). After this, then do the
above substitution



2.3 Summary of analytical derivation method

We will now make a table with the derivation equations to follow to design in either bilinear or
impulse invariance. Note that the same steps are used in both designs except for step 5,6,8,13. This

table make it easy to develop a program.

step | Impulse invariance common equation bilinear
— ol
1 wp = 21
fs
2 Wg = 2711_7
T
101 10
4 as = s
1010 ,
— % z @y
QP T Etan( > )
Ws Ws
QS = T T tan (?)
7 N = llog[ap—l]—log[as—l]
2 log(Qp)—log(Qs)
Q O
8 Q, = 4 O - s
‘ 10(§ IOglo[ap_l]) S ¢ 10(% loglo[as—ll)
[ m(1+2i+ i—0---N-1
9 H(S) poles s; = Q, e]( N ) l
N-T
10 k=TT s
i=0
TK K
| B =5 H() = g0 —

I I
i=0

i=0

N-1
12 fraction H, (s) = E %
N-T =0
Ai
13 H(Z) = E W H(Z) = Ha (S)|S:g 1271
i=0 T 14771

3 Numerical design

Sampling frequency F, = 10khz, passband corner frequency f, = 1khz, stopband corner frequency
fs = 2khz, with criteria 6, > -3db and 04, < -10db

using impulse invariance method T =1



step Impulse invariance
) 27(1000)
1 =2n f— o000 0.21
s 2m(2000)
2 =2n 10000 — 04m
3 Ocp=%—>——>19953
10 10 1010
4 |a=— > —= 100
19@ wloﬁ
_ b P
5 Q, = = oT4 — 0.27
Q=2 - == - 04n
_|1 log[apf }log[as—l] 1 log,4(1.9953-1)-log, ,(10.0-1)
7 N - 2 log( ) log( ) - 2 loglo(O.Zn)—loglo(O.éln) - 1'5884 - 2
Q, 0.2
8 | Q.=— — 0.62906
10(m loglo[ap—l]) 10(2X2 log;q(1.9953 1))
( (1+21+N)) (n(3+21))
9 poles of H(S) s; = Q. J N —>s—062906e 4 i=0---1
so = —0.444 81 +j0.444 81,5, = —0.444 81 - j0.444 81
N-T
10 | k=] (s = (0.44481 - j0.44481) (0.444 81 +j0.44481) = 0.39571
i=0
TK 039571 039571
1 Hoy (s) = 1\1’_—11 © (5+0.44481-j0.44481)(5+0.44481+/0.44481)  s2+0.889625+0.39571
(s-s7)
i=0
-1
NV AL 0.44481] B 0.444 81
12 partial fraction H, (s) = & s, T 5+0.44481+0.44481j  5+0.44481-0.44481;
13 H() = e 0.44481; _ 0.44481] B 0.245352
a Py 1- eXP(Ts )21 1—exp(—0.44481—]'0.44481)2’1 1-exp(-0.444 81+/0.44481)z "1 T 22-1.572z+0.41081
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Using bilinear T = —

10000




step Impulse invariance

fp _2m(1000)

1 =2n e =02
2 wszzfpi:%:o.zm
1 1
3 OCPZTP=—;3=1.9953
1010 1010
1 1
4 |a,=—=—5=100
1010 10710
5| Q=% tan() =2x10000tan (%) - 64984
6 | Qs ==tan(%)=2x10000 tan(‘);‘") — 14531.
|1 log[ap ] log[as—1] 1 log10(1.9953 1)—log10(10‘0—1) _
7 N = 2 log(Q,)-log(Qy) | 2 log,(6498.4)-log,(14531) 1.3681 — 2
8 |o.=—1=* =1 _ 83895
10(m logw[as—l]) 10(2><z log(10.0- 1))

n(1+2i+N) 71(3+21)

9 | poles of H(S) s; = Q, e]( N )—s —838956( ) i=0--1
5o = —5932.3 + j5932.3,5; = —5932.3 — j5932.3

2

10 |k= ( si) — (5932.3 - /5932.3) (5932.3 + j5932.3) — 7.0384 x 10’

I
S

K _ 7.038 4x10” _ 7.038 4x107
1 H,(s) = N-1 T (s+5932.3-i5932. 3)(s+5932.3+i5932.3)  s2+11865.5+7. 038 4x107
I

i=0
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13 H(z) = H, (5)| 2121 =

T 141
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A 147,038 4107
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2
7.0384x107(T)?(1+271)

2(1—z*1)2+2><11865((1—2*1)(1+z*1)T+7. 038 4><107(T2)(1+z*1)2

_0.09945 922+0.198 922+0.09945 9
2-(.931 562+0.329 38
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