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1 Problem 1

Find the linear convolution given the following input and impulse response of a linear shift invariant
system
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2 Problem 2

By Explicitly evaluating the convolution sum, evaluate the following 𝑦 (𝑛) = ℎ (𝑛) ⊛ 𝑥 (𝑛)

ℎ (𝑛) =

⎧⎪⎪⎨
⎪⎪⎩
𝛼𝑛 0 ≤ 𝑛 < 𝑁
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒



3

𝑥 (𝑛) =

⎧⎪⎪⎨
⎪⎪⎩
𝛽𝑛−𝑛0 𝑛0 ≤ 𝑛
0 𝑛 < 𝑛0

use 𝑁 = 4, 𝑛0 = 0

Solution: I will evaluate ℎ (𝑛) ⊛ 𝑥 (𝑛) by flipping ℎ (𝑛), i.e. ℎ (𝑛) ⊛ 𝑥 (𝑛) =
∞
�
𝑘=−∞

𝑥 (𝑘) ℎ (𝑛 − 𝑘)

There are 3 regions to consider.

One when 𝑛 < 0. In this region there are no overlapping between ℎ (−𝑘) and 𝑥 (𝑘), hence 𝑦 (𝑛) = 0
for 𝑛 < 0.

The second region where there is partial overlapping, and this region extends from 𝑛 = 0 to 𝑛 = 𝑁−1.
Hence over this region

𝑦 (𝑛) =
𝑛
�
𝑘=0
𝛼−(𝑘−𝑛)𝛽𝑘

=
𝑛
�
𝑘=0
𝛼𝑛−𝑘𝛽𝑘

= 𝛼𝑛
𝑛
�
𝑘=0
𝛼−𝑘𝛽𝑘 = 𝛼𝑛

𝑛
�
𝑘=0

�
𝛽
𝛼�

𝑘

= 𝛼𝑛
1 − � 𝛽𝛼�

𝑛+1

1 − 𝛽
𝛼

0 ≤ 𝑛 ≤ 𝑁 − 1

If � 𝛽𝛼 � < 1 and 𝑁 very large, the above simplifies to 𝛼𝑛

1− 𝛽
𝛼

.

The third region is when ℎ (−𝑘) is completely inside 𝑥 (𝑘) and this occurs when 𝑛 ≥ 𝑁 − 1 and over
this region we have

𝑦 (𝑛) =
𝑛
�

𝑘=𝑛−(𝑁−1)
𝛼−(𝑘−𝑛)𝛽𝑘

= 𝛼𝑛
𝑛
�

𝑘=𝑛−(𝑁−1)
�
𝛽
𝛼�

𝑘

(1)

But
𝑏
�
𝑘=𝑎
𝑟𝑘 =

𝑟𝑏+1 − 𝑟𝑎

𝑟 − 1

hence (1) becomes

𝑦 (𝑛) = 𝛼𝑛
� 𝛽
𝛼
�
𝑛+1

− � 𝛽𝛼�
𝑛−(𝑁−1)

� 𝛽
𝛼
� − 1

= 𝛼𝑛
� 𝛽
𝛼
�
𝑛
� 𝛽
𝛼
� − � 𝛽𝛼�

𝑛
� 𝛽
𝛼
�
−𝑁
� 𝛽
𝛼
�

� 𝛽
𝛼
� − 1

Divide by � 𝛽𝛼�

𝑦 (𝑛) = 𝛼𝑛
� 𝛽
𝛼
�
𝑛
− � 𝛽𝛼�

𝑛
� 𝛽
𝛼
�
−𝑁

1 − 𝛼
𝛽

= 𝛼𝑛 �
𝛽
𝛼�

𝑛 1 − �𝛼𝛽 �
𝑁

1 − 𝛼
𝛽

= 𝛽𝑛
1 − �𝛼𝛽 �

𝑁

1 − 𝛼
𝛽

Now consider the term 𝛼
𝛽 . If �

𝛼
𝛽 � < 1, then the above will become

𝛽𝑛

1− 𝛼
𝛽
. hence to summarize the
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general solution:

𝑦 (𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑛 < 0

𝛼𝑛
1−� 𝛽𝛼 �

𝑛+1

1− 𝛽
𝛼

0 ≤ 𝑛 ≤ 𝑁 − 1
𝛼𝑛

1− 𝛽
𝛼

0 ≤ 𝑛 ≤ 𝑁 − 1 and � 𝛽𝛼 � < 1 and 𝑁 very large

𝛽𝑛
1−� 𝛼𝛽 �

𝑁

1− 𝛼
𝛽

𝑛 ≥ 𝑁 − 1
𝛽𝑛

1− 𝛼
𝛽

𝑛 ≥ 𝑁 − 1 and �𝛼𝛽 � < 1 and 𝑁 very large

Since 𝑁 = 4 in this problem, the specific solution is

𝑦 (𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑛 < 0

𝛼𝑛
1−� 𝛽𝛼 �

𝑛+1

1− 𝛽
𝛼

0 ≤ 𝑛 ≤ 𝑁 − 1

𝛽𝑛
1−� 𝛼𝛽 �

𝑁

1− 𝛼
𝛽

𝑛 ≥ 𝑁 − 1

For example, for 𝑁 = 4, 𝛼 = .9, 𝛽 = .8, the following is a plot for up to 𝑛 = 50

code used to generate the above plot is
f[n_] := Piecewise[{{\[Alpha]^n*((1 - (\[Beta]/\[Alpha])^(n + 1))/(1 - \[Beta]/\[Alpha])),
n <= NN - 1}, {\[Beta]^n*((1 - (\[Beta]/\[Alpha])^(-(n + 1)))/
(1 - (\[Beta]/\[Alpha])^(-1))), n > NN - 1}}]
NN = 4;
\[Beta] = 0.8;
\[Alpha] = 0.9
data = Table[{n, f[n]}, {n, 0, 50}];
ListPlot[data,
Filling -> Axis,
AxesOrigin -> {0, 0},
Frame -> True,
FrameLabel -> {{"f[n]", None}, {"n", "\[Alpha]=.9, \[Beta]=.8, N=50"}}
]

3 Problem 3

Let 𝑒 (𝑛) be an exponential sequence 𝑒 (𝑛) = 𝛼𝑛 for all n, and let 𝑥 (𝑛) and 𝑦 (𝑛) denote 2 arbitrary
sequences. Show that [𝑒 (𝑛) 𝑥 (𝑛)] ⊛ �𝑒 (𝑛) 𝑦 (𝑛)� = 𝑒 (𝑛) �𝑥 (𝑛) ⊛ 𝑦 (𝑛)�
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Solution

[𝑒 (𝑛) 𝑥 (𝑛)] ⊛ �𝑒 (𝑛) 𝑦 (𝑛)� = 𝛼𝑛𝑥 (𝑛) ⊛ 𝛼𝑛𝑦 (𝑛)

=
∞
�
𝑘=−∞

�������𝛼𝑘𝑥 (𝑘)���������������𝛼𝑛−𝑘𝑦 (𝑛 − 𝑘)

=
∞
�
𝑘=−∞

𝛼𝑘𝛼𝑛−𝑘𝑥 (𝑘) 𝑦 (𝑛 − 𝑘)

=
∞
�
𝑘=−∞

𝛼𝑛𝑥 (𝑘) 𝑦 (𝑛 − 𝑘)

Move 𝛼𝑛 outside the summation since does not depend on 𝑘, we obtain

[𝑒 (𝑛) 𝑥 (𝑛)] ⊛ �𝑒 (𝑛) 𝑦 (𝑛)� = 𝛼𝑛
∞
�
𝑘=−∞

𝑥 (𝑘) 𝑦 (𝑛 − 𝑘)

But
∞
�
𝑘=−∞

𝑥 (𝑘) 𝑦 (𝑛 − 𝑘) = 𝑥 (𝑛) ⊛ 𝑦 (𝑛), hence the above becomes

[𝑒 (𝑛) 𝑥 (𝑛)] ⊛ �𝑒 (𝑛) 𝑦 (𝑛)� = 𝛼𝑛 �𝑥 (𝑛) ⊛ 𝑦 (𝑛)�

= 𝑒 (𝑛) �𝑥 (𝑛) ⊛ 𝑦 (𝑛)�

4 Problem 4

Prove (𝑋 ⊛ 𝑌) ⊛𝑊 = 𝑋 ⊛ (𝑌 ⊛𝑊)

Solution

(𝑋 ⊛ 𝑌) ⊛𝑊 =
∞
�
𝑘=−∞

(𝑋 ⊛ 𝑌) (𝑘) 𝑊 (𝑛 − 𝑘)

=
∞
�
𝑘=−∞

�
∞
�
𝑙=−∞

𝑋 (𝑙) 𝑌 (𝑘 − 𝑙)�𝑊 (𝑛 − 𝑘)

Move 𝑊(𝑛 − 𝑘) inside the inner sum

(𝑋 ⊛ 𝑌) ⊛𝑊 =
∞
�
𝑘=−∞

�
∞
�
𝑙=−∞

𝑋 (𝑙) 𝑌 (𝑘 − 𝑙)𝑊 (𝑛 − 𝑘)�

=
∞
�
𝑘=−∞

�
∞
�
𝑙=−∞

𝑋 (𝑙)𝑊 (𝑛 − 𝑘) 𝑌 (𝑘 − 𝑙)�

Since summation indices are just dummy variable, we can rename them. Let 𝑘 be renamed to 𝑙
and let 𝑙 be renamed to 𝑘 (this can be done in 2 steps using a temporary variable if needed to
avoid confusion). This is equivalent to interchanging the order of integrals in the continuous time
domain case.

After this name switching of the dummy variables we obtain

(𝑋 ⊛ 𝑌) ⊛𝑊 =
∞
�
𝑙=−∞

�
∞
�
𝑘=−∞

𝑋 (𝑘)𝑊 (𝑛 − 𝑙) 𝑌 (𝑙 − 𝑘)�

Now 𝑊(𝑛 − 𝑙) inside the inner sum do not depend on the summation index 𝑘, so we can take it
outside the inner sum

(𝑋 ⊛ 𝑌) ⊛𝑊 =
∞
�
𝑙=−∞

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�����������������������∞
�
𝑘=−∞

𝑋 (𝑘) 𝑌 (𝑙 − 𝑘)

(𝑋⊛𝑌)(𝑙)⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝑊 (𝑛 − 𝑙)

But now we see that
∞
�
𝑘=−∞

𝑋 (𝑘) 𝑌 (𝑙 − 𝑘) is just (𝑋 ⊛ 𝑌) (𝑙) hence the above becomes

(𝑋 ⊛ 𝑌) ⊛𝑊 =
∞
�
𝑙=−∞

(𝑋 ⊛ 𝑌) (𝑙)𝑊 (𝑛 − 𝑙)

But the above is a convolution sum. Hence

(𝑋 ⊛ 𝑌) ⊛𝑊 = (𝑋 ⊛ 𝑌) ⊛𝑊

Which is what we are asked to show.

5 Problem 5

Find causal solution for the 2-sided di�erence equation 𝑦 (𝑛) − 2.5𝑦 (𝑛 − 1) + 𝑦 (𝑛 − 2) = 𝛿 (𝑛) for
−∞ < 𝑛 < ∞

Solution



6

Let 𝑌 (𝑧) be the 𝑍 transform of 𝑦 (𝑛). In addition, since we are told that the system is causal, and
the input occurs at 𝑛 = 0 only (it is a delta function), then this means that 𝑦 (𝑛) = 0 for 𝑛 < 0.

Now take the Z transform of the above di�erence equation we obtain

𝑌 (𝑧) − (2.5𝑧−1𝑌 (𝑧) + 𝑦 (−1)) + �𝑧−2𝑌 (𝑧) + 𝑧−1𝑦 (−1) + 𝑦 (−2)� = 1

But the system is causal, hence 𝑦 (−1) = 0 and 𝑦 (−2) = 0, the above becomes

𝑌 (𝑧) �1 − 2.5𝑧−1 + 𝑧−2� = 1

𝑌 (𝑧) =
1

1 − 2.5𝑧−1 + 𝑧−2

Solve by partial fractions expansion. �1 − 2.5𝑧−1 + 𝑧−2� = �𝑧−1 − 1
2
� �𝑧−1 − 2�, hence the above becomes

𝑌 (𝑧) =
1

�𝑧−1 − 1
2
� �𝑧−1 − 2�

=
1

� 1
2 − 𝑧

−1� �2 − 𝑧−1�

=
1

�1 − 2𝑧−1� �1 − 1
2𝑧

−1�

=
𝐴

�1 − 2𝑧−1�
+

𝐵

�1 − 1
2𝑧

−1�

Hence
1

�1 − 2𝑧−1� �1 − 1
2𝑧

−1�
=

𝐴
�1 − 2𝑧−1�

+
𝐵

�1 − 1
2𝑧

−1�

Therefore,

𝐴 = lim
𝑧−1→ 1

2

1

�1 − 1
2𝑧

−1�
=
1
3
4

=
4
3

And

𝐵 = lim
𝑧−1→2

1
�1 − 2𝑧−1�

= −
1
3

Hence

𝑌 (𝑧) =
4
3

1
�1 − 2𝑧−1�

−
1
3

1

�1 − 1
2𝑧

−1�

Hence

𝑦 (𝑛) =
4
3
(2)𝑛 𝑢 (𝑛) −

1
3 �

1
2�

𝑛

𝑢 (𝑛)

But the above solution is not stable since the first term above 4
3
(2)𝑛 𝑢 (𝑛) blows up for large 𝑛. I

can find an anti causal solution which is stable, by making the first term − 4
3
(2)𝑛 𝑢 (−𝑛 − 1), but the

problem said the system is causal. So I will stop here.

Hence the final solution is

𝑦 (𝑛) =
4
3
(2)𝑛 𝑢 (𝑛) −

1
3 �

1
2�

𝑛

𝑢 (𝑛)

And it is an unstable system.

6 Problem 6

Solve the one sided di�erence equation

𝑦(𝑛) − 𝑦(𝑛 − 1) +
2
9
𝑦(𝑛 − 2) = 𝑥(𝑛) − 𝑥(𝑛 − 1)

for 𝑛 ≥ 0 where the input is given by 𝛿 (𝑛) and the IC are given by 𝑦 (−1) = 1, 𝑦 (−2) = 0

solution

Let 𝑌 (𝑧) be the 𝑍 transform of 𝑦 (𝑛) and 𝑋 (𝑧) be the 𝑍 transform of the input.
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Take the 𝑍 transform of both side, we obtain

𝑌 (𝑧) − �𝑧−1𝑌 (𝑧) + 𝑦 (−1)� +
2
9
�𝑧−2𝑌 (𝑧) + 𝑧−1𝑦 (−1) + 𝑦 (−2)� = 𝑋 (𝑧) − �𝑧−1𝑋 (𝑧) + 𝑥 (−1)�

But the input 𝑥 (𝑛) is 𝛿 (𝑛), hence its 𝑍 transform is 1. And 𝑥 (−1) = 𝛿 (−1) = 0 by definition. In
addition, substitute the initial conditions for 𝑦 (𝑛) in the above equation and it simplifies to

𝑌 (𝑧) − �𝑧−1𝑌 (𝑧) + 1� +
2
9
�𝑧−2𝑌 (𝑧) + 𝑧−1 + 0� = 1 − �𝑧−1 × 1 + 0�

𝑌 (𝑧) − 𝑧−1𝑌 (𝑧) − 1 +
2
9
𝑧−2𝑌 (𝑧) +

2
9
𝑧−1 = 1 − 𝑧−1

𝑌 (𝑧) �1 − 𝑧−1 +
2
9
𝑧−2� = 1 − 𝑧−1 + 1 −

2
9
𝑧−1

𝑌 (𝑧) =
2 − 11

9 𝑧
−1

1 − 𝑧−1 + 2
9𝑧

−2

=
9 − 11

2 𝑧
−1

9
2 −

9
2𝑧

−1 + 𝑧−2

Now, to find 𝑦(𝑛) we need to inverse Z transform the above.

𝑌 (𝑧) =
9 − 11

2 𝑧
−1

�𝑧−1 − 3� �𝑧−1 − 3
2
�

=
𝐴

�𝑧−1 − 3�
+

𝐵

�𝑧−1 − 3
2
�

Hence

9 − 11
2 𝑧

−1

�𝑧−1 − 3� �𝑧−1 − 3
2
�
=

𝐴
�𝑧−1 − 3�

+
𝐵

�𝑧−1 − 3
2
�

Therefore

𝐴 = lim
𝑧−1→3

9 − 11
2 𝑧

−1

�𝑧−1 − 3
2
�
=
9 − 11

2 3

�3 − 3
2
�
=
18 − 33

3
2

=
18 − 33
3

= −5

And

𝐵 = lim
𝑧−1→ 3

2

9 − 11
2 𝑧

−1

�𝑧−1 − 3�
=
9 − 11

2 ×
3
2

� 3
2 − 3�

=
9 − 33

4

− 3
2

=
36 − 33
−6

= −
1
2

Hence

𝑌 (𝑧) = −5
1

�𝑧−1 − 3�
−
1
2

1

�𝑧−1 − 3
2
�

= −5
1
3

� 1
3𝑧

−1 − 1�
−
1
2

2
3

� 2
3𝑧

−1 − 1�

= −
5
3

1

� 1
3𝑧

−1 − 1�
−
1
3

1

� 2
3𝑧

−1 − 1�

=
5
3

1

�1 − 1
3𝑧

−1�
+
1
3

1

�1 − 2
3𝑧

−1�

Therefore

𝑦 (𝑛) =
5
3 �

1
3�

𝑛

+
1
3 �

2
3�

𝑛

𝑛 ≥ 0

The solution is stable since both terms go to zero as 𝑛 → ∞

7 Second solution to Problem 6

This is another way to solve problem 6 above. Solve the one sided di�erence equation 𝑦 (𝑛) −
𝑦 (𝑛 − 1) + 2

9𝑦 (𝑛 − 2) = 𝑥 (𝑛) − 𝑥 (𝑛 − 1) for 𝑛 ≥ 0 where the input is given by 𝛿 (𝑛) and the IC are given
by 𝑦 (−1) = 1, 𝑦 (−2) = 0

Solution
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Since the input is 𝛿 (𝑛), the di�erence equation is

𝑦 (𝑛) − 𝑦 (𝑛 − 1) +
2
9
𝑦 (𝑛 − 2) = 𝛿 (𝑛) − 𝛿 (𝑛 − 1)

The homogenous solution is

𝑦ℎ (𝑛) − 𝑦ℎ (𝑛 − 1) +
2
9
𝑦ℎ (𝑛 − 2) = 0

Hence the characteristic equation is

𝑧2 − 𝑧 +
2
9
= 0

�𝑧 −
2
3� �

𝑧 −
1
3�
= 0

Therefore

𝑦ℎ (𝑛) = 𝑐1 �
2
3�

𝑛

+ 𝑐2 �
1
3�

𝑛

𝑛 ≥ 0

Since the input 𝑥 (𝑛) is an impulse and is zero for 𝑛 > 0, the particular solution 𝑦𝑝 = 0. Hence the
general solution is

𝑦 (𝑛) = 𝑐1 �
2
3�

𝑛

+ 𝑐2 �
1
3�

𝑛

𝑛 ≥ 0 (1)

Now we need to find 𝑐1 and 𝑐2. Lets find 𝑦 (0) and 𝑦 (1) to help do that. From the di�erence equation,
we have for 𝑛 = 0

𝑦 (0) − 𝑦 (−1) +
2
9
𝑦 (−2) = 𝛿 (0) − 𝛿 (−1)

𝑦 (0) = 1 −
2
9
(0) + 1

= 2

for 𝑛 = 1

𝑦 (1) − 𝑦 (0) +
2
9
𝑦 (−1) = 𝛿 (1) − 𝛿 (0)

=
7
9

Hence (1) now can be evaluated at 𝑛 = 0 and 𝑛 = 1 and we obtain 2 equations for 𝑐1 and 𝑐2 and
they are

𝑦 (0) = 2 = 𝑐1 + 𝑐2

𝑦 (1) =
7
9
= 𝑐1 �

2
3�
+ 𝑐2 �

1
3�

Solving we obtain 𝑐1 =
1
3 and 𝑐2 =

5
3 , hence the solution is

𝑦 (𝑛) =
1
3 �

2
3�

𝑛

+
5
3 �

1
3�

𝑛

𝑛 ≥ 0

Which is the same solution we obtained using the Z transform method.

8 Problem 7

Find the sequence which has the Z transform 𝑋 (𝑧) = 1

�1−𝑧−1��1− 1
2 𝑧

−1�

solution

Since the Z transform is not unique without being given its ROC, we first need to determine the
valid ROC’s, and for each ROC, determine the corresponding inverse.

Poles are at 𝑧 = 1 and 𝑧 = − 1
2 and the zero is at 𝑧 = 0.

The ROC for a causal system, extends from outside the outermost pole to infinity. Hence for a
causal system, the ROC is |𝑧| > 1. Notice that this system is not stable if it is causal, since the ROC
did not include the unit circle, i.e. |𝑧| = 1.

For an anti causal system, the ROC is the region inside the inner most pole. Hence the ROC is
|𝑧| < 1

2 . Notice that this system is not stable if it is anti-causal as well since the ROC does not include
the unit circle.

Now we solve the problem.
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case 1: ROC is |𝑧| > 1, i.e. causal system:

𝑋 (𝑧) =
1

�1 − 𝑧−1� �1 − 1
2𝑧

−1�
=

𝐴
�1 − 𝑧−1�

+
𝐵

�1 − 1
2𝑧

−1�

Hence

𝐴 = lim
𝑧−1→1

1

�1 − 1
2𝑧

−1�
=

1

�1 − 1
2
�
= 2

And

𝐵 = lim
𝑧−1→2

1
�1 − 𝑧−1�

=
1

(1 − 2)
= −1

Hence

𝑋 (𝑧) =
2

�1 − 𝑧−1�
−

1

�1 − 1
2𝑧

−1�

Therefore

𝑦 (𝑛) = 2𝑢 (𝑛) − �
1
2�

𝑛

𝑢 (𝑛)

case 2: ROC |𝑧| < 1
2 , i.e. anti causal

𝑦 (𝑛) = −2𝑢 (−𝑛 − 1) + �
1
2�

𝑛

𝑢 (−𝑛 − 1)

In both cases, the solution is unstable.

9 Problem 8

proof that if 𝐻 (𝑧) is the transfer function of a stable system then �𝐻 �𝑒𝑗𝜔�� < ∞ for all 0 ≤ 𝜔 ≤ 2𝜋

Solution

𝐻 (𝑧) is the Z transform of the impulse response ℎ (𝑛). Hence

𝐻 (𝑧) =
∞
�
−∞
ℎ (𝑛) 𝑧−𝑛

Let 𝑧 = 𝑒𝑗𝜔

𝐻�𝑒𝑗𝜔� =
∞
�
−∞
ℎ (𝑛) 𝑒−𝑗𝜔𝑛

Take the magnitude of both sides

�𝐻 �𝑒𝑗𝜔�� = �
∞
�
−∞
ℎ (𝑛) 𝑒−𝑗𝜔𝑛�

But �
∞
�
−∞
ℎ (𝑛) 𝑒−𝑗𝜔𝑛� ≤

∞
�
−∞
�ℎ (𝑛) 𝑒−𝑗𝜔𝑛�, so the above becomes

�𝐻 �𝑒𝑗𝜔�� ≤
∞
�
−∞
�ℎ (𝑛) 𝑒−𝑗𝜔𝑛�

=
∞
�
−∞
|ℎ (𝑛)| �𝑒−𝑗𝜔𝑛�

But �𝑒−𝑗𝜔𝑛� = 1 hence

�𝐻 �𝑒𝑗𝜔�� ≤
∞
�
−∞
|ℎ (𝑛)| (1)

But we are told that this is a stable system, hence by definition of stable system
∞
�
−∞
ℎ (𝑛) < ∞

or

�
∞
�
−∞
ℎ (𝑛)� < ∞

∞
�
−∞
|ℎ (𝑛)| < ∞ (2)

From (1) and (2) we obtain

�𝐻 �𝑒𝑗𝜔�� < ∞
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But 𝐻�𝑒𝑗𝜔� is periodic function in 𝜔 of period 2𝜋. Hence we only need to consider one period, say
[0, 2𝜋] QED
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