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1 Problem 1.4

Solve X — & + x = 0 with xy =1 and vy = 0 for x (f) and sketch the solution

Answer

X=X+,

Since there is no forcing function, x, do not exist, hence x = x;,. To determine x; we first
find the characteristic equation and find its root. The characteristic equation is A2—A+1 =0
which has solutions

/11: +j

]
This is of the form A = a + §j (complex conjugates) which has the solution

x(t) = e (A cos Bt + Bsin ﬁt)

1 3
2y
1 A3
2 T2

2:

Hence

x(t):e%t (Acos\/g V3 )

. 3
7t+BSlH7t

To find A and B we use the initial conditions. At ¢ =0, x(0) =1, hence

A=1

Now

11 1
x(t):—eZt Acos —t + Bsin —t |+ e2 — sin —t + B— cos —
2 2 2 2 2 2 2

At t =0, vy =0, hence the above becomes

1 V3
+

0=-A+B—
2 2
But A =1, hence
1
P="5%
Then the solution is
_ i V3, 1 . V3
x(t) =e2 (cos 7t Y sin 7t)

The solution will blow up in oscillatory fashion due to the exponential term at the front.
This is a plot for up to t =10






2 Problem 1.9

Calculate the maximum value of the peak response (magnification factor) for the system in

figure 1.18 with C = %

Solution

In this figure, the y-axis is the magnitude of the frequency response of the second order
system. Hence we must first calculate the frequency response of the system

mx +cx + kx = u(t)
or
¥+ 28w,k + w2x = u(®)
Take Laplace transform

$2X (5) + 2Ew,sX (s) + w2 X (s) = %U(s)

X (s) (52 +28w,s + a)%) = %U(s)

Hence the transfer function is
X(s) 1 1
U(s) ms2+2Ew,s + w?

Z(s) =



Let s = jw, the above becomes the frequency response

Z (a)) = l !
)=\ Zor + 2jw,w + w?
1

2
Mmaw? (1 -+ 2]'5(%)
Wi n

But 2 = &, hence
m
1/k

w? oW
1- w—% + Z]CSE

Z (]a)) =

Introduce G (]a)) =kZ (]a)) and let r = =

Wy

G(j) = magm

Now we can determine the magnitude of the frequency response

G (j)] = G (joo) G (j) |

~ 1 1 2
|\ =2+ 28 ) \1 - 12 - 2jér

1
\/ (1- r2)2 + (287
The maximum of |G (]a))| occurs when (74%;0})' =0 But
d|G(jw)|  12(1-77)(-2r) + 42 (2r)
a2 3

[(1 - r2)2 + (?_(sr)z]E
Hence for the above to be zero, set the numerator to zero, we obtain
2(1-72) (-2r) + 4£2(2r) = 0
~(1-r)r+282r=0
“1+7r2+282=0

Hence the maximum of |G (]a))l occurs at

Tmax = wi = V1 -2&2

n

The above is valid only when 1 - 2&2 > 0 which means & <

&=



Now substitute r,,,, value into |G (jw)| we obtain
J

6 (), =|—=
e \/ (1-72) + &7 i
] e
\/ (1-(1- 252))2 + (281 - 2,52)2
1
) Vet + 422 (1-22)
1
VA a2 -8t
1
R
1
| iz

We are given & = Lz’ hence from the above

|G(](1)) max: 1 - \/El :%
2\1-3 z\g
Hence
6 (), =1
But G (jw) = kZ (jw), hence
|2 (o) =

Note that |G (]a)) is called the quality factor. Hence for different values of £ there will be

a different quality factor value.




3 Problem 1.12

Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation
with & = 1.1 and w? = 4. Plot the magnitude of the steady state response versus the driving
frequency. For what values of w, is the response maximum?

Answer Since the excitation is harmonic, assume it has the form Fsin wt where w is the
deriving frequency. Then the equation of motion for the SDOF system is

mx + cx + kx = F cos wt

Dividing by m and using w? = \/E and & = = = % the above becomes
m Cer m

¥ + 28w,k + w2x = focoswt 1)
Where f = 5

Since this is an overdamped system (& > 1), then the transient solution is

Xy, (t) = e‘&unt (Ae_wnt‘/ffz—l + Bewnt\/tfz_—l)

But we need only consider the particular solution since we are asked to plot the steady state
solution. Assume

xp (£) = 1 cos wt + ¢y sinwt

Then
X, (t) = —weg sinwt + cow cos wt
X, (f) = ~w?cq cos wt — cow? sin wt
Substitute x, (t), %, (t), X, (t) in (1) we obtain

2

(—CU2C1 cos wt — cow? sin a)t) + 28w, (~wey sin wt + cyw cos wt) + w2 (c1 cos wt + ¢, sinwt) = f cos wt

(—cza)2 - 28w, weq + cza),%) sin wt + (—wzcl + 28w, cow + a),%cl) coswt = focos wt

Hence by comparing coefficients in the LHS and RHS we obtain 2 equations to solve for c¢;
and ¢,

—cyw? = 28w,wey + w2 =0
—w?c) + 28w, cow + wier = £
or
c1 (—2Ew,w) + ¢y (a)% - wz) =0 (2)
o1 (@2 - @?) + ¢, QEw,w) = fo (3)



Co (w%—aﬂ)

28w

From (2) we obtain ¢; = and substitute this into (3)

2 2
S
(03 -

o ow +28w,w| = fo

2
fo [(w% - a)z) + 452a),%a)2] =2lw,wfy

Hence

25(Unwf0

2
(a),%—a)z) +4£2a),%a)2

Cy =

Substitute the above into (2) we solve for ¢;

G (_ZEwnw) +

28w,w fo 2_.2YZ0
(a),% - w2)2 + 4&2w3w? (wn N )

or

folwd-w?)

(w%—w2)2+4£2w%w2

1 =

Hence, since
xp (£) = 1 cos wt + ¢y sinwt
Then

folwi-o7) cos wt + 2ewn@fo

5 > sin wt
(m%—mz) +48205w? (a)%—a)z) +4&20Fw?

xp (t) =

We can convert the above to the form x, (t) = c cos (wt — 6) by using the relation

c
¢ =/c] + ¢ and tan 0 = 2, hence
1

2
e I

2 2
(a),% - a)z) +4E2w2w? (w% - a)z) +482wiw?

2
(a),% - a)z) +4E2w2w?

((w,% - w2)2 + 4£2w%a)2)2
fo
\/(w% - a)z)z + Ew,w)*




The last equation can be written as

F/m
Cc =
@ 2 2 w 2
Al
— Flk
) @ 2 2 2
(1—(5) ) +(2"E)
And
28w fo
tan @ = @ _ ((‘)’%_(‘)2)24'452(0,21@2
1 [ fO(fU;%—a)z) ]
(‘”’21_“)2)2"'4-520),%0)2
_ 2wuw
(wh -]
2,50%
= ; 2
(1 -(2) )
Hence

x, (t) = ccos (wt - 0)

magnitude
w

F/k 28—
= / cos|wt — tan™ | ———

\/(1 - (wi)z)z + (2551)2 (1 - (wi)z)

Let r = =, then the above becomes

Wy

(4)

Xy (H) = S S— COS (a)t —tan™! ( 2572 ))
(1-r2) "+ @er? (1-2)

For the supplied values for wj = 4 and £ = 1.1then the above steady state solution becomes

X
—_—

F/k 1] llw

cos|wt —tan™

Xp (H) = 2 ] 2
(1—%) +1.21w2 1




10

To plot the magnitude, use a normalized F =1, and let k = 1, use the supplied values for
w? =4 and & = 1.1, hence magnitude X of steady state response is

1

w? 2
(1 - Z) +1.21w?

Plot the expression for the magnitude X against the driving frequency w

X =

To answer the final question about the resonance. Looking at the steady state solution in
equation (4), we see that the amplitude of the x,, is il which is maximum when

V2)) sz

the denominator is minimum which occurs as w approaches w,, but in this problem since the

system is overdamped, hence no oscillation will occur and| the maximum response occurs when w =0

(i.e. input is non oscillatory).
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4 Problem 1.18

Discuss the stability of following system 2% — 3x + 8x = -3& + sin 2t
Answer

The system can be rewritten as

2% + 8x = sin 2t

We need to consider only the transient response (homogeneous solution). Hence the char-
acteristic equation is

2A2+8=0

which has roots +v/2j. Since the roots are on the j axis, then this is a | marginally unstable

system
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5 Problem 1.20

Calculate an allowable range of values for the gains K, g;, g, for the system 2¥+0.8x+8x = f (t)
such that the closed-loop system is stable and the formulae for the overshoot and peak time
of an underdamped system are valid

solution

The transfer function of the controller (a P.D. controller) is H (s) = sg; + g, and for the plant

(thfe system) the trar.lsfer function is G (s) = 72 +;.8 73’
which we call C(s), is

hence the closed loop transfer function,

kG (s)

1+ HG)KG ()
1

252+0.85+8
- 581+82
1+
k252+0.83+8
k

T 22108518+ (sg1 +g2)k
k
2824 (0.8 +kg1)s +8+ kg

The characteristic equation is the denominator of the above transfer function. Hence

C(s)

b
—~

f_ —_—
f(s) =2s% + (0.8 + kgl)s +8 + kg,

c
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This has roots at

1= —b b2 — 4ac
Za 2a
2
_ —08-kg . \/(0.8 + kgl) -8 (8 + kgz)
4T 4
ke, K2+ 1.6kgy —Bkgp —15.36
= 02- 81y
4 1
k
=-02- il 32+01kg1—05kg2—096

The system is stable if the real part of the roots is in the left hand side of the imaginary
axis. Hence we require that

k
~02-=1<0
Which 1mp11es <0.2o0r =~ kg1 >-0.2 or
kg1 > -0.8 (1)
and we require that
i +0.1kg; — 0.5kg, —0.96 < 0 (2)

16

Using the minimum value for kg; which is —0.8 and substitute that in above equation,

2

~¢ +01(08) - 0.5kg; - 0.96 <0

0.04 + 0.08 — 0.96 — 0.5kg, < 0
~0.84 — 0.5kg, < 0
~0.5kg, < 0.84
0.5kg, > —0.84

Hence

kgy > —0.42

And k > 0 (positive gain is assumed). In summary, these are the allowed ranges



kgz > —0.42
kgl > —0.8
k>0

14
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6 Problem 1.21

Compute a feedback law with full state feedback (of the form given in equation 1.62 in the
book that stabilizes the system 4% + 16x = 0 and causes the closed loop setting time to be 1
second.

Answer

Equation 1.62 in the book is

m5&+(c+l_cg1)x+(k+l_cg2)x:7cf(t)

Notice that I modified the notation in this equation, where the lower case k is the stiffness
and k is the gain, this is to reduce ambiguity in notations

Using the controller required, the equation 4% +16x = 0 becomes
mk + kg1x + (k+l_<g2)x =0

Notice that there is no damping in 4% +16x = 0, (c = 0), but now kg;term acts in place of the
damping. From the original equation m =4 and k = 16, hence we can write the above as

43 + kg + (16 + kgy) x = 0
The characteristic equation is
4702 + kg1 A + (16 + kgp) =0

Hence

b VR —da k= (k) 16 (16 + kg.)
2a B 8
+ é\/l_czg% — 256 — 16kg,

Aip =

e *

s . -k k
Hence for stability, the real part of the root must be negative, hence % <0or % >0 or

I_(g1>0
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And we require that k*¢? — 256 — 16kg, < 0 (for oscillation to occur). This implies

k2g% —16kg, < 256 1)
Now settling time is given by
32 32 32 32(m)
tS = w C = C = T = C
n a)n; n2wnm

But in this system (modified) m =4 and ¢ = kg, hence the above becomes

. 32x8

s = ’_(gl
But t; = 1sec., hence

]_(gl =25.6

Substitute the above into (1) we obtain

25.6% — 16 kg, < 256
655.36 — 16 kg, < 256
2.56 - 0.0625 kgp < 1
—0.0625 kg, < -1.56
Fey > 1.56
0.0625

Hence

I_cgz > 24.96

To plot the solution, choose kg, sayl00 and since kg; = 25.6, then since the loop back
equation of motion is

mx + kg1x + (k+l_<g2)x =0
Then plugging in the above values for kg, and kg; we obtain

4% +25.6x + (16 +100)x = 0
4% + 25.6x +116x =0

To confirm the result, I plot the solution to the above equation (which is now stable) using
some initial condition such as vy = 0.5 and xy = 0 (arbitrary I.C.). The result is the following
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7 Problem 1.22

Find the equilibrium points of the nonlinear pendulum equation m/?0 + mglsin 6 = 0
Answer
The equation of motion can be simplified to be

6+55in0=0

Convert to state space format.
X1 = 0 jCl = 9 =X
1=, . g . g .
X, =0 x2:9:—781n9:—78mx1

X

X X2
N
X2 —7 S1n Xq

For equilibrium of a nonlinear system, we require that X = 0, hence x, = 0 and —’% sinx; =0

Hence

But —% sinx; = 0 implies that x; = nm for n =0, +1,+2, ---

Since x; = 0, and 0 is assumed to be zero when the pendulum is hanging in the vertical
direction. Hence the equilibrium positions are as shown below (showing the first stable and
the first unstable points)

In both cases, 6 = 0. Notice that at 6 = nn for n = +1,+3, 45, --- the pendulum in a marginally
stable equilibrium position, while at n = 0, +2, +4, --- it is at a stable equilibrium position.
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