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1 Problem 1.4

Solve 𝑥̈ − 𝑥̇ + 𝑥 = 0 with 𝑥0 = 1 and 𝑣0 = 0 for 𝑥 (𝑡) and sketch the solution

Answer

𝑥 = 𝑥ℎ + 𝑥𝑝
Since there is no forcing function, 𝑥𝑝 do not exist, hence 𝑥 = 𝑥ℎ. To determine 𝑥ℎ we first
find the characteristic equation and find its root. The characteristic equation is 𝜆2 −𝜆+1 = 0
which has solutions

𝜆1 =
1
2
+ 𝑗√

3
2

𝜆2 =
1
2
− 𝑗√

3
2

This is of the form 𝜆 = 𝛼 ± 𝛽𝑗 (complex conjugates) which has the solution

𝑥 (𝑡) = 𝑒𝛼𝑡 �𝐴 cos 𝛽𝑡 + 𝐵 sin 𝛽𝑡�
Hence

𝑥 (𝑡) = 𝑒
1
2 𝑡 �𝐴 cos √3

2 𝑡 + 𝐵 sin √3
2 𝑡�

To find 𝐴 and 𝐵 we use the initial conditions. At 𝑡 = 0, 𝑥 (0) = 1, hence

𝐴 = 1

Now

𝑥̇ (𝑡) =
1
2
𝑒
1
2 𝑡
⎛
⎜⎜⎜⎝𝐴 cos √3

2
𝑡 + 𝐵 sin √3

2
𝑡
⎞
⎟⎟⎟⎠ + 𝑒

1
2 𝑡
⎛
⎜⎜⎜⎝−𝐴

√3
2

sin √3
2
𝑡 + 𝐵√

3
2

cos √3
2
𝑡
⎞
⎟⎟⎟⎠

At 𝑡 = 0, 𝑣0 = 0, hence the above becomes

0 =
1
2
𝐴 + 𝐵√

3
2

But 𝐴 = 1, hence

𝐵 = − 1

√3

Then the solution is

𝑥 (𝑡) = 𝑒
1
2 𝑡 �cos √3

2 𝑡 −
1

√3
sin √3

2 𝑡�

The solution will blow up in oscillatory fashion due to the exponential term at the front.
This is a plot for up to 𝑡 = 10
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2 Problem 1.9

Calculate the maximum value of the peak response (magnification factor) for the system in
figure 1.18 with 𝜁 = 1

√2

Solution

In this figure, the y-axis is the magnitude of the frequency response of the second order
system. Hence we must first calculate the frequency response of the system

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑢 (𝑡)

or

𝑥̈ + 2𝜉𝜔𝑛𝑥̇ + 𝜔2
𝑛𝑥 =

𝑢 (𝑡)
𝑚

Take Laplace transform

𝑠2𝑋 (𝑠) + 2𝜉𝜔𝑛𝑠𝑋 (𝑠) + 𝜔2
𝑛𝑋 (𝑠) =

1
𝑚
𝑈 (𝑠)

𝑋 (𝑠) �𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2
𝑛� =

1
𝑚
𝑈 (𝑠)

Hence the transfer function is

𝑍 (𝑠) =
𝑋 (𝑠)
𝑈 (𝑠)

=
1
𝑚

1
𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2

𝑛
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Let 𝑠 = 𝑗𝜔, the above becomes the frequency response

𝑍 �𝑗𝜔� =
1
𝑚 �

1
−𝜔2 + 2𝑗𝜉𝜔𝑛𝜔 + 𝜔2

𝑛
�

=
1

𝑚𝜔2
𝑛 �1 −

𝜔2

𝜔2𝑛
+ 2𝑗𝜉 𝜔

𝜔𝑛
�

But 𝜔2
𝑛 =

𝑘
𝑚 , hence

𝑍 �𝑗𝜔� =
1/𝑘

1 − 𝜔2

𝜔2𝑛
+ 2𝑗𝜉 𝜔

𝜔𝑛

Introduce 𝐺�𝑗𝜔� ≡ 𝑘𝑍 �𝑗𝜔� and let 𝑟 = 𝜔
𝜔𝑛

𝐺�𝑗𝜔� = 1
1−𝑟2+2𝑗𝜉𝑟

Now we can determine the magnitude of the frequency response

�𝐺 �𝑗𝜔�� = �𝐺 �𝑗𝜔�𝐺
∗ �𝑗𝜔�

= ��
1

1 − 𝑟2 + 2𝑗𝜉𝑟� �
1

1 − 𝑟2 − 2𝑗𝜉𝑟��

1
2

=
1

��1 − 𝑟
2�

2
+ (2𝜉𝑟)2

The maximum of �𝐺 �𝑗𝜔�� occurs when
𝑑�𝐺�𝑗𝜔��

𝑑𝜔 = 0 But

𝑑 �𝐺 �𝑗𝜔��
𝑑𝜔

= −
1
2
2 �1 − 𝑟2� (−2𝑟) + 4𝜉2 (2𝑟)

��1 − 𝑟2�
2
+ (2𝜉𝑟)2�

3
2

Hence for the above to be zero, set the numerator to zero, we obtain

2 �1 − 𝑟2� (−2𝑟) + 4𝜉2 (2𝑟) = 0

− �1 − 𝑟2� 𝑟 + 2𝜉2𝑟 = 0
−1 + 𝑟2 + 2𝜉2 = 0

Hence the maximum of �𝐺 �𝑗𝜔�� occurs at

𝑟max =
𝜔
𝜔𝑛
= √1 − 2𝜉2

The above is valid only when 1 − 2𝜉2 > 0 which means 𝜉 < 1

√2
.
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Now substitute 𝑟max value into �𝐺 �𝑗𝜔�� we obtain

�𝐺 �𝑗𝜔��
max

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

��1 − 𝑟
2�

2
+ (2𝜉𝑟)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑟=𝑟max

=
1

��1 − �1 − 2𝜉
2��

2
+ �2𝜉√1 − 2𝜉2�

2

=
1

�4𝜉
4 + 4𝜉2 �1 − 2𝜉2�

=
1

√4𝜉4 + 4𝜉2 − 8𝜉4

=
1

√4𝜉2 − 4𝜉4

= 1

2𝜉�1−𝜉2

We are given 𝜉 = 1

√2
, hence from the above

�𝐺 �𝑗𝜔��
max

= √2

2�1 −
1
2

= √2

2�
1
2

= √2

√2

Hence

�𝐺 �𝑗𝜔��
max

= 1

But 𝐺�𝑗𝜔� = 𝑘𝑍 �𝑗𝜔�, hence

�𝑍 �𝑗𝜔��
max

=1
𝑘

Note that �𝐺 �𝑗𝜔��
max

is called the quality factor. Hence for di�erent values of 𝜉 there will be
a di�erent quality factor value.
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3 Problem 1.12

Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation
with 𝜉 = 1.1 and 𝜔2

𝑛 = 4. Plot the magnitude of the steady state response versus the driving
frequency. For what values of 𝜔𝑛 is the response maximum?

Answer Since the excitation is harmonic, assume it has the form 𝐹 sin𝜔𝑡 where 𝜔 is the
deriving frequency. Then the equation of motion for the SDOF system is

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝐹 cos𝜔𝑡

Dividing by 𝑚 and using 𝜔2
𝑛 = �

𝑘
𝑚 and 𝜉 = 𝑐

𝑐𝑐𝑟
= 𝑐

2√𝑘𝑚
the above becomes

𝑥̈ + 2𝜉𝜔𝑛𝑥̇ + 𝜔2
𝑛𝑥 = 𝑓0 cos𝜔𝑡 (1)

Where 𝑓0 =
𝐹
𝑚

Since this is an overdamped system (𝜉 > 1), then the transient solution is

𝑥ℎ (𝑡) = 𝑒−𝜉𝜔𝑛𝑡 �𝐴𝑒−𝜔𝑛𝑡�𝜉2−1 + 𝐵𝑒𝜔𝑛𝑡�𝜉2−1�

But we need only consider the particular solution since we are asked to plot the steady state
solution. Assume

𝑥𝑝 (𝑡) = 𝑐1 cos𝜔𝑡 + 𝑐2 sin𝜔𝑡

Then

𝑥̇𝑝 (𝑡) = −𝜔𝑐1 sin𝜔𝑡 + 𝑐2𝜔 cos𝜔𝑡
𝑥̈𝑝 (𝑡) = −𝜔2𝑐1 cos𝜔𝑡 − 𝑐2𝜔2 sin𝜔𝑡

Substitute 𝑥𝑝 (𝑡) , 𝑥̇𝑝 (𝑡) , 𝑥̈𝑝 (𝑡) in (1) we obtain

�−𝜔2𝑐1 cos𝜔𝑡 − 𝑐2𝜔2 sin𝜔𝑡� + 2𝜉𝜔𝑛 (−𝜔𝑐1 sin𝜔𝑡 + 𝑐2𝜔 cos𝜔𝑡) + 𝜔2
𝑛 (𝑐1 cos𝜔𝑡 + 𝑐2 sin𝜔𝑡) = 𝑓0 cos𝜔𝑡

�−𝑐2𝜔2 − 2𝜉𝜔𝑛𝜔𝑐1 + 𝑐2𝜔2
𝑛� sin𝜔𝑡 + �−𝜔2𝑐1 + 2𝜉𝜔𝑛𝑐2𝜔 + 𝜔2

𝑛𝑐1� cos𝜔𝑡 = 𝑓0 cos𝜔𝑡
Hence by comparing coe�cients in the LHS and RHS we obtain 2 equations to solve for 𝑐1
and 𝑐2

−𝑐2𝜔2 − 2𝜉𝜔𝑛𝜔𝑐1 + 𝑐2𝜔2
𝑛 = 0

−𝜔2𝑐1 + 2𝜉𝜔𝑛𝑐2𝜔 + 𝜔2
𝑛𝑐1 = 𝑓0

or

𝑐1 (−2𝜉𝜔𝑛𝜔) + 𝑐2 �𝜔2
𝑛 − 𝜔2� = 0 (2)

𝑐1 �𝜔2
𝑛 − 𝜔2� + 𝑐2 (2𝜉𝜔𝑛𝜔) = 𝑓0 (3)
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From (2) we obtain 𝑐1 =
𝑐2�𝜔2

𝑛−𝜔2�

2𝜉𝜔𝑛𝜔
, and substitute this into (3)

⎛
⎜⎜⎜⎜⎝
𝑐2 �𝜔2

𝑛 − 𝜔2�
2𝜉𝜔𝑛𝜔

⎞
⎟⎟⎟⎟⎠ �𝜔

2
𝑛 − 𝜔2� + 𝑐2 (2𝜉𝜔𝑛𝜔) = 𝑓0

𝑐2

⎡
⎢⎢⎢⎢⎢⎢⎣
�𝜔2

𝑛 − 𝜔2�
2

2𝜉𝜔𝑛𝜔
+ 2𝜉𝜔𝑛𝜔

⎤
⎥⎥⎥⎥⎥⎥⎦ = 𝑓0

𝑐2 ��𝜔2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2� = 2𝜉𝜔𝑛𝜔𝑓0

Hence

𝑐2 =
2𝜉𝜔𝑛𝜔𝑓0

�𝜔2𝑛−𝜔2�
2
+4𝜉2𝜔2𝑛𝜔2

Substitute the above into (2) we solve for 𝑐1

𝑐1 (−2𝜉𝜔𝑛𝜔) +

⎛
⎜⎜⎜⎜⎜⎜⎝

2𝜉𝜔𝑛𝜔𝑓0
�𝜔2

𝑛 − 𝜔2�
2
+ 4𝜉2𝜔2

𝑛𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎠ �𝜔

2
𝑛 − 𝜔2� = 0

or

𝑐1 =
𝑓0�𝜔2

𝑛−𝜔2�

�𝜔2𝑛−𝜔2�
2
+4𝜉2𝜔2𝑛𝜔2

Hence, since

𝑥𝑝 (𝑡) = 𝑐1 cos𝜔𝑡 + 𝑐2 sin𝜔𝑡
Then

𝑥𝑝 (𝑡) =
𝑓0�𝜔2

𝑛−𝜔2�

�𝜔2𝑛−𝜔2�
2
+4𝜉2𝜔2𝑛𝜔2

cos𝜔𝑡 + 2𝜉𝜔𝑛𝜔𝑓0

�𝜔2𝑛−𝜔2�
2
+4𝜉2𝜔2𝑛𝜔2

sin𝜔𝑡

We can convert the above to the form 𝑥𝑝 (𝑡) = 𝑐 cos (𝜔𝑡 − 𝜃) by using the relation

𝑐 = �𝑐
2
1 + 𝑐22 and tan𝜃 = 𝑐2

𝑐1
, hence

𝑐 =

�
⃓
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑓0 �𝜔2
𝑛 − 𝜔2�

�𝜔2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎜⎜⎝

2𝜉𝜔𝑛𝜔𝑓0
�𝜔2

𝑛 − 𝜔2�
2
+ 4𝜉2𝜔2

𝑛𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎠

2

= 𝑓0

�
⃓
⃓
⃓
⃓
⎷

�𝜔2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2

��𝜔2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2�
2

=
𝑓0

��𝜔
2
𝑛 − 𝜔2�

2
+ (2𝜉𝜔𝑛𝜔)

2
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The last equation can be written as

𝑐 =
𝐹/𝑚

𝜔2
𝑛
�
�1 − �

𝜔
𝜔𝑛
�
2
�
2

+ �2𝜉 𝜔
𝜔𝑛
�
2

= 𝐹/𝑘

�
�1−�

𝜔
𝜔𝑛

�
2
�
2
+�2𝜉 𝜔

𝜔𝑛
�
2

And

tan𝜃 = 𝑐2
𝑐1
=

⎛
⎜⎜⎜⎝

2𝜉𝜔𝑛𝜔𝑓0

�𝜔2𝑛−𝜔2�
2
+4𝜉2𝜔2𝑛𝜔2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝑓0�𝜔2𝑛−𝜔2�

�𝜔2𝑛−𝜔2�
2
+4𝜉2𝜔2𝑛𝜔2

⎞
⎟⎟⎟⎠

=
2𝜉𝜔𝑛𝜔
�𝜔2

𝑛 − 𝜔2�

=
2𝜉 𝜔

𝜔𝑛

�1 − �
𝜔
𝜔𝑛
�
2
�

Hence

𝑥𝑝 (𝑡) = 𝑐 cos (𝜔𝑡 − 𝜃)

=

magnitude

�����������������������������������𝐹/𝑘

�
�1 − �

𝜔
𝜔𝑛
�
2
�
2

+ �2𝜉 𝜔
𝜔𝑛
�
2

cos

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝜔𝑡 − tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝜉 𝜔
𝜔𝑛

�1 − �
𝜔
𝜔𝑛
�
2
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

Let 𝑟 = 𝜔
𝜔𝑛
, then the above becomes

𝑥𝑝 (𝑡) =
𝐹/𝑘

�
�1−𝑟2�

2
+(2𝜉𝑟)2

cos �𝜔𝑡 − tan−1 �
2𝜉𝑟

�1−𝑟2���

For the supplied values for 𝜔2
𝑛 = 4 and 𝜉 = 1.1then the above steady state solution becomes

𝑥𝑝 (𝑡) =

𝑋

�������������������𝐹/𝑘

�
�1−

𝜔2
4 �

2
+1. 21𝜔2

cos

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝜔𝑡 − tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.1𝜔

�1−
𝜔2
4 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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To plot the magnitude, use a normalized 𝐹 = 1, and let 𝑘 = 1, use the supplied values for
𝜔2
𝑛 = 4 and 𝜉 = 1.1, hence magnitude 𝑋 of steady state response is

𝑋 =
1

�
�1 − 𝜔2

4
�
2
+ 1. 21𝜔2

Plot the expression for the magnitude 𝑋 against the driving frequency 𝜔

To answer the final question about the resonance. Looking at the steady state solution in
equation (4), we see that the amplitude of the 𝑥𝑝 is

𝐹/𝑘

�
�1−�

𝜔
𝜔𝑛

�
2
�
2
+�2𝜉 𝜔

𝜔𝑛
�
2
which is maximum when

the denominator is minimum which occurs as 𝜔 approaches 𝜔𝑛, but in this problem since the

system is overdamped, hence no oscillation will occur and the maximum response occurs when 𝜔 = 0
(i.e. input is non oscillatory).
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4 Problem 1.18

Discuss the stability of following system 2𝑥̈ − 3𝑥̇ + 8𝑥 = −3𝑥̇ + sin 2𝑡

Answer

The system can be rewritten as

2𝑥̈ + 8𝑥 = sin 2𝑡

We need to consider only the transient response (homogeneous solution). Hence the char-
acteristic equation is

2𝜆2 + 8 = 0

which has roots ±√2𝑗. Since the roots are on the 𝑗 axis, then this is a marginally unstable

system
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5 Problem 1.20

Calculate an allowable range of values for the gains 𝐾, 𝑔1, 𝑔2 for the system 2𝑥̈+0.8𝑥̇+8𝑥 = 𝑓 (𝑡)
such that the closed-loop system is stable and the formulae for the overshoot and peak time
of an underdamped system are valid

solution

The transfer function of the controller (a P.D. controller) is 𝐻 (𝑠) = 𝑠𝑔1 +𝑔2 and for the plant
(the system) the transfer function is 𝐺 (𝑠) = 1

2𝑠2+0.8𝑠+8 , hence the closed loop transfer function,
which we call 𝐶 (𝑠), is

𝐶 (𝑠) =
𝑘𝐺 (𝑠)

1 + 𝐻 (𝑠) 𝐾𝐺 (𝑠)

=
𝑘 1
2𝑠2+0.8𝑠+8

1 + 𝑘 𝑠𝑔1+𝑔2
2𝑠2+0.8𝑠+8

=
𝑘

2𝑠2 + 0.8𝑠 + 8 + �𝑠𝑔1 + 𝑔2� 𝑘

=
𝑘

2𝑠2 + �0.8 + 𝑘𝑔1� 𝑠 + 8 + 𝑘𝑔2
The characteristic equation is the denominator of the above transfer function. Hence

𝑓 (𝑠) =
𝑎
⏞2𝑠2 +

𝑏

��������������0.8 + 𝑘𝑔1�𝑠 +
𝑐

�������8 + 𝑘𝑔2
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This has roots at

𝜆 =
−𝑏
2𝑎

± √
𝑏2 − 4𝑎𝑐
2𝑎

=
−0.8 − 𝑘𝑔1

4
± �

�0.8 + 𝑘𝑔1�
2
− 8 �8 + 𝑘𝑔2�
4

= −0.2 −
𝑘𝑔1
4
± �

𝑘2𝑔21 + 1.6𝑘𝑔1 − 8𝑘𝑔2 − 15. 36
4

= −0.2 −
𝑘𝑔1
4
±
�

𝑘2𝑔21
16

+ 0.1𝑘𝑔1 − 0.5𝑘𝑔2 − 0.96

The system is stable if the real part of the roots is in the left hand side of the imaginary
axis. Hence we require that

−0.2 −
𝑘𝑔1
4
< 0

Which implies −𝑘𝑔1
4 < 0.2 or 𝑘𝑔1

4 > −0.2 or

𝑘𝑔1 > −0.8 (1)

and we require that

𝑘2𝑔21
16

+ 0.1𝑘𝑔1 − 0.5𝑘𝑔2 − 0.96 < 0 (2)

Using the minimum value for 𝑘𝑔1 which is −0.8 and substitute that in above equation,

0.82

16
+ 0.1 (0.8) − 0.5𝑘𝑔2 − 0.96 < 0

0.04 + 0.08 − 0.96 − 0.5𝑘𝑔2 < 0
−0.84 − 0.5𝑘𝑔2 < 0

−0.5𝑘𝑔2 < 0.84
0.5𝑘𝑔2 > −0.84

Hence

𝑘𝑔2 > −0.42

And 𝑘 > 0 (positive gain is assumed). In summary, these are the allowed ranges
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𝑘𝑔2 > −0.42
𝑘𝑔1 > −0.8
𝑘 > 0
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6 Problem 1.21

Compute a feedback law with full state feedback (of the form given in equation 1.62 in the
book that stabilizes the system 4𝑥̈ + 16𝑥 = 0 and causes the closed loop setting time to be 1
second.

Answer

Equation 1.62 in the book is

𝑚𝑥̈ + �𝑐 + 𝑘̄𝑔1� 𝑥̇ + �𝑘 + 𝑘̄𝑔2� 𝑥 = 𝑘̄𝑓 (𝑡)

Notice that I modified the notation in this equation, where the lower case 𝑘 is the sti�ness
and 𝑘̄ is the gain, this is to reduce ambiguity in notations

Using the controller required, the equation 4𝑥̈ + 16𝑥 = 0 becomes

𝑚𝑥̈ + 𝑘̄𝑔1𝑥̇ + �𝑘 + 𝑘̄𝑔2� 𝑥 = 0

Notice that there is no damping in 4𝑥̈ + 16𝑥 = 0, (𝑐 = 0), but now 𝑘̄𝑔1term acts in place of the
damping. From the original equation 𝑚 = 4 and 𝑘 = 16, hence we can write the above as

4𝑥̈ + 𝑘̄𝑔1𝑥̇ + �16 + 𝑘̄𝑔2� 𝑥 = 0

The characteristic equation is

4𝜆2 + 𝑘̄𝑔1𝜆 + �16 + 𝑘̄𝑔2� = 0

Hence

𝜆1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=
−𝑘̄𝑔1 ±��𝑘̄𝑔1�

2
− 16 �16 + 𝑘̄𝑔2�
8

=
−𝑘̄𝑔1
8

±
1
8�

𝑘̄2𝑔21 − 256 − 16𝑘̄𝑔2

Hence for stability, the real part of the root must be negative, hence −𝑘̄𝑔1
8 < 0 or 𝑘̄𝑔1

8 > 0 or

𝑘̄𝑔1 > 0
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And we require that 𝑘̄2𝑔21 − 256 − 16𝑘̄𝑔2 < 0 (for oscillation to occur). This implies

𝑘̄2𝑔21 − 16𝑘̄𝑔2 < 256 (1)

Now settling time is given by

𝑡𝑠 =
3.2
𝜔𝑛𝜁

=
3.2
𝜔𝑛

𝑐
𝑐𝑐𝑟

=
3.2

𝜔𝑛
𝑐

2𝜔𝑛𝑚

=
3.2 (2𝑚)

𝑐

But in this system (modified) 𝑚 = 4 and 𝑐 = 𝑘̄𝑔1, hence the above becomes

𝑡𝑠 =
3.2 × 8
𝑘̄𝑔1

But 𝑡𝑠 = 1sec., hence

𝑘̄𝑔1 = 25. 6

Substitute the above into (1) we obtain

25. 62 − 16 𝑘̄𝑔2 < 256
655. 36 − 16 𝑘̄𝑔2 < 256

2. 56 − 0.062 5 𝑘̄𝑔2 < 1
−0.062 5 𝑘̄𝑔2 < −1.56

𝑘̄𝑔2 >
1.56
0.062 5

Hence

𝑘̄𝑔2 > 24. 96

To plot the solution, choose 𝑘̄𝑔2 say100 and since 𝑘̄𝑔1 = 25.6, then since the loop back
equation of motion is

𝑚𝑥̈ + 𝑘̄𝑔1𝑥̇ + �𝑘 + 𝑘̄𝑔2� 𝑥 = 0

Then plugging in the above values for 𝑘̄𝑔2 and 𝑘̄𝑔1 we obtain

4𝑥̈ + 25.6𝑥̇ + (16 + 100) 𝑥 = 0
4𝑥̈ + 25.6𝑥̇ + 116𝑥 = 0

To confirm the result, I plot the solution to the above equation (which is now stable) using
some initial condition such as 𝑣0 = 0.5 and 𝑥0 = 0 (arbitrary I.C.). The result is the following



17



18

7 Problem 1.22

Find the equilibrium points of the nonlinear pendulum equation 𝑚𝑙2𝜃̈ + 𝑚𝑔𝑙 sin𝜃 = 0

Answer

The equation of motion can be simplified to be

𝜃̈ +
𝑔
𝑙

sin𝜃 = 0

Convert to state space format.
⎡
⎢⎢⎢⎢⎣
𝑥1 = 𝜃
𝑥2 = 𝜃̇

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

𝑥̇1 = 𝜃̇ = 𝑥2
𝑥̇2 = 𝜃̈ = −

𝑔
𝑙 sin𝜃 = −𝑔

𝑙 sin 𝑥1

⎤
⎥⎥⎥⎥⎦

Hence
𝑋̇
�⎡⎢⎢⎢⎢⎣
𝑥̇1
𝑥̇2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

𝑥2
−𝑔

𝑙 sin 𝑥1

⎤
⎥⎥⎥⎥⎦

For equilibrium of a nonlinear system, we require that 𝑋̇ = 0, hence 𝑥2 = 0 and −
𝑔
𝑙 sin 𝑥1 = 0

But −𝑔
𝑙 sin 𝑥1 = 0 implies that 𝑥1 = 𝑛𝜋 for 𝑛 = 0, ±1, ±2,⋯

Since 𝑥1 = 𝜃 , and 𝜃 is assumed to be zero when the pendulum is hanging in the vertical
direction. Hence the equilibrium positions are as shown below (showing the first stable and
the first unstable points)

In both cases, 𝜃̇ = 0. Notice that at 𝜃 = 𝑛𝜋 for 𝑛 = ±1, ±3, ±5,⋯ the pendulum in a marginally
stable equilibrium position, while at 𝑛 = 0, ±2, ±4,⋯ it is at a stable equilibrium position.
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